地源热泵简介地源热泵概述
- 格式:doc
- 大小:21.50 KB
- 文档页数:9
地(水)源热泵系统一.地源热泵技术综述所谓地源热泵(Ground Source Heat Pump),即GSHP技术,是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调系统。
地源热泵利用地能一年四季温度稳定的特性,冬季把地能作为热泵供暖的热源,夏季把地能作为空调的冷源;即在冬季把高于环境温度的地能中的热能取出来供给室内采暖,夏季把室内的热能取出来释放到低于环境温度的地能中,通过少量的高位电能输入,实现低位能向高位能转移的一种技术。
关于地源热泵的名称问题一直以来都是各个地方叫法不一样的,到目前为止,“地源热泵”的命名尚不统一。
最近几年国内空调设备生产厂家纷纷推出了各式各样的地源热泵产品,冠之以诸如“地能中央空调系统”、“水源中央空调系统”、“地温中央空调系”、“中央液态冷热源”等等的名称,在一定程度上起到了混淆视听的作用,使地源热泵这一非常成熟的技术蒙上了一层神秘的面纱。
一般来讲有两个术语来描述:地热泵(Geothermal Heat Pump)和地源热泵(Ground-source Heat pump)。
前者一般用于人们在市场中以及官方用语;后者用于工程技术中。
国内来讲,一般叫做地(源)热泵,或者土壤源热泵。
目前,国内工程市场上习惯把采用地埋管技术的热泵系统称为“地源热泵”,利用抽灌井技术的热泵系统称为“水源热泵”。
其组成如图所示。
压缩机热泵机组介质循环泵过滤器土壤换热器(地藕换热井)空调循环泵地源热泵系统运行原理图蒸发器冷凝器节流阀空调器空调器空调器过滤器地源热泵技术采用热泵技术,将地层作为冷热源。
它的做功总是从低温热源提取热量,向高温热源放出热量,因此,一个相对稳定的地下热源是决定地源热泵技术工作效率的关键因素。
在供暖过程中,地层是低温热源,不断从地层吸收热量向热泵提供相对恒温的介质;在制冷场合,地上循环系统是热泵的低温热源,不断从室内吸收热量向热泵提供相对恒温的循环介质。
地源热泵的概念地源热泵是一种利用地热能实现供暖、制冷和热水供应的环境友好型设备。
它利用地下地热能源,通过地源热泵系统将地下的热能提取到地面上,然后将低温热能转化为高温热能,为建筑物内的供暖、制冷和热水提供能源。
地源热泵系统由地热换热器、热泵主机、水泵、蓄水池等组成。
地热换热器一般埋设在地下1.5-2米深的地下,换热器外部通过与地下热交换的方式将地下的低温热能传递给热泵主机。
热泵主机中的制冷剂在蒸发器中蒸发,吸收地下的低温热能并将其转化为制冷介质的低温低压气体。
这些低温低压气体通过压缩机被压缩成高温高压气体,然后通过换热器将其释放出去。
高温高压气体在冷凝器中冷凝成高温高压液体,并释放出高温热量。
这热量被传递到建筑物内的供暖系统或热水系统中,并为室内提供热量。
压力调节器将高温高压液体的压力调节到适当的值,并通过膨胀阀降低其温度和压力,以便重新进入蒸发器。
地源热泵系统的使用具有多种优点。
首先,它具有高效节能的特点。
地热能源在地下循环利用,不会消耗和浪费能源。
其次,地源热泵系统的运行成本相对较低。
虽然初始投资较高,但是由于其高效的能源利用率,长期来看,其运行成本是较低的。
再次,地源热泵系统具有环境友好的特点。
它不使用燃料燃烧,不产生废气和废渣,减少了对环境的污染。
此外,地源热泵系统还可以实现冷暖两用,既可以供暖,也可以制冷,满足不同季节的需求。
最后,地源热泵系统使用寿命较长,可达20-30年。
然而,地源热泵系统也存在一些挑战和限制。
首先,地源热泵系统的安装需要占用一定的土地面积。
其次,地下换热器的安装需要进行地下工作,需要考虑到地下管道的布置和地下结构的支撑。
再次,地热反射率和土壤导热性对系统的整体效率有一定的影响,不同地区的地热资源差异也会导致地源热泵系统的效果不同。
此外,地源热泵系统在寒冷地区需要考虑冬季地下热交换器的结冰问题。
地源热泵作为一种环保、高效的能源利用方式,具有广阔的应用前景。
它可以在住宅、商业建筑、学校、医院等各类建筑物中应用。
地源热泵系统简介一、地源热泵原理地源热泵系统是一种由双管路水系统连接起建筑物中的所有地源热泵机组而构成的封闭环路的中央空调系统。
冬季,地源热泵系统通过埋在地下的封闭管道(称为环路)从大地收集自然界的热量,而后由环路中的循环水把热量带到室内。
再由装在室内的地源热泵系统驱动的压缩机和热交换器把大地的能量集中,并以较高的温度释放到室内。
在夏季,此运行程序则相反,地源热泵系统将从室内抽出的多余热量排入环路而为大地所吸收,使房屋得到供冷。
尤如电冰箱那样,从冰箱内部抽出热量并将它排出箱外使箱内保持低温。
循环水泵地源热泵机组地下埋管图2地源热泵系统图地源热泵机组优点高效节能性夏季高温差的散热和冬季低温差的取热,使得地源热泵系统换热效率很高。
因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,而且冬季运行不需要任何辅助热源和除霜,大大地减少电能消耗和除霜的损失,从而达到节能的目的,其耗能仅为普通中央空调加锅炉系统的50%-60%。
地源热泵技术在很大程度上为国家节省能源,缓解电荒,同时也为用户节省了大量的运行费用。
下面是北京一项目中,提供的各种采暖制冷费用比较:从下面两个分析图中可以看出,与其它供暖制冷产品相比,地源热泵技术运行费用是最便宜的一种,很大程度地为最终使用户节约运行费用,也保证安全,健康。
一个采暖季(北京为125天)各种采暖方式的采暖费用比较表0.005.0010.0015.0020.0025.0030.0035.0040.00地源热泵电缆地板采暖天燃气集中供暖壁挂炉电热膜系列1一个制冷季(北京为90天)各种制冷方式的费用(元/m2)比较表0.005.0010.0015.0020.00地源热泵家用空调中央空调直燃机系列1● 环保、零污染地源热泵系统高效节能的优点,决定了它的运行费用低。
维修量极少,折旧费和维修费也都大大地低于传统空调。
据专家预测,在未来50年,世界将释放160亿吨CO2,对人们的健康和自然环境形成直接的影响。
第一章地源热泵技术的概念和工作原理第一节地源热泵技术概念地源热泵技术是利用地球表面浅层水源如地下水、河流和湖泊中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。
地源热泵机组工作原理就是在夏季,将建筑物中的热量转移到水源中,由于水源温度低于空气温度,所以可以高效地带走热量。
而冬季,则从水源中提取热量,通过热泵系统提升热量能级后送到建筑物中。
一般地源热泵消耗一份电能量,可得到4倍以上的热量或冷量,离心大型热泵可以达到5左右。
第二节地源热泵中央空调系统的组成及功能地源热泵供暖系统由地源能量采集系统、能量提升系统和能量释放系统三大部分组成。
⑴能量采集系统:通过能量采集系统将水源中所包含的能量(热量和冷量)采集出来,送至地源热泵机组加以利用。
它由水源水井、水源水抽取设备、水源水输送管道、水源水质处理设备和热交换设备构成。
⑵能量提升系统:通过能量提升系统将能量采集系统采集到的不可直接利用的低品位能量,转化成可直接利用的高品位能量。
它由压缩机完成并通过制冷剂封闭环路和各种控制阀门实现其功能。
⑶能量释放系统:通过能量释放系统将能量提升系统提升的能量传递到需要的场合。
它由热交换设备、供暖水循环设备和末端能量释放设备组成。
第三节地源热泵供暖(制冷)系统的工作原理◎冬季采暖工作原理:在供热模式下,高压高温制冷剂气体(R22、R134a等)从压缩机压出后进入冷凝器,同时向经过冷凝器的空调末端循环水中排放热量,末端循环水被加热后形成采暖热源。
而制冷剂冷却成高压液体,然后经热膨胀阀节流膨胀成低压液体进入蒸发器蒸发成低压蒸汽,蒸发过程中吸收水源水中的热量,制冷剂获得热量后变为饱和蒸汽又进入压缩机,压缩成高压气液体,如此循环不断的将水源水当中的热能提取出来形成热源。
地下水(水温在12-14℃左右)被吸收5℃-7℃的热量,降至5-7℃左右回灌地下,水在渗流过程中吸收地下土壤热量,温度又升至12℃,然后经过地下水流流走或再被抽取上来循环使用。
地源热泵简介一、发展历史地源热泵(Ground-Source Heat Pump)的概念最早出现在1912年瑞士的一份专利文献中,在20世纪50年代就已在一些北欧国家的供热中得到实际应用。
由于石油危机的影响,地源热泵在上世纪70年代得到较大的发展,但此时主要采用水平埋管的方式。
水平埋管占地面积大,而且水平埋管的地热换热器受地表气候变化的影响,效率较低。
因此这种水平埋管的地源热泵空调系统不适合中国人多地少的国情。
自上世纪80年代以来在北美也形成了利用地源热泵对建筑进行冷热联供的研究和工程实践的新一轮高潮,技术逐渐趋于成熟。
这一阶段的地源热泵主要采用竖直埋管的换热器,埋管的深度通常达60~200米,因此占地面积大大减小,应用范围也从单独民居的空调向较大型的公共建筑扩展。
国外在开发竖直埋管换热器时对保护地下水资源不受污染给予了高度的重视。
在钻孔、下管以后,再用水泥、膨润土等材料把井筒密封,杜绝了地面污染物进入地下水层或各地下水层之间互相贯通的可能性。
二、空调系统的主要型式地源热泵的地下环路中的介质是水或防冻液溶液,根据其供热(冷)介质(承担室内负荷的介质)的组合方式不同,地源热泵主机可分为:水-水系统、水-冷剂系统、水-空气系统热泵。
与此相应的空调系统型式主要有三种:1.水-水系统水-水系统热泵主机的制冷工况与普通冷水机组的功能相同,即它是空调系统的冷源,为各种空调系统的末端装置提供冷冻水(二次冷媒)。
不同的是它所具有的供热工况-热泵运行方式,能够为空调系统提供45~550C的热水。
在选用该型主机时,应着重注意两点:一是空调系统供热工况或供暖方式末端装置的选择、设计应与热媒参数相匹配;二是该型主机制冷与供热工况间的转换一般是通过机外二次冷媒水与地热换热器循环水流道切换实现的。
因此水系统的设计应满足这一要求。
2.水-冷剂系统水-冷剂系统热泵主机与冷、热两用的家用分体式空调的工作原理基本相同。
不同的是它利用地热换热器循环水作为热泵制冷工况的冷却水和供热工况的低温热源。
地源热泵系统分类地源热泵系统是一种利用地下热能进行供暖和制冷的系统。
根据其工作原理和应用场景的不同,可以将地源热泵系统分为几个不同的分类。
一、地源热泵系统的分类1. 地下水源热泵系统地下水源热泵系统利用地下水的恒定温度来进行供暖和制冷。
系统通过井泵将地下水抽到地面,通过热交换器将地下水的热能传递给热泵系统。
在冬季,地下水的温度要高于地面温度,因此可以提供热能;而在夏季,地下水的温度要低于地面温度,可以提供制冷效果。
地下水源热泵系统需要有充足的地下水资源,并且需要进行水质处理。
2. 土壤源热泵系统土壤源热泵系统利用土壤中的热能来进行供暖和制冷。
系统通过埋设在土壤中的地埋管,将土壤的热能传递给热泵系统。
在冬季,土壤的温度要高于地面温度,因此可以提供热能;而在夏季,土壤的温度要低于地面温度,可以提供制冷效果。
土壤源热泵系统适用于土地资源丰富的地区。
3. 岩石源热泵系统岩石源热泵系统利用地下岩石中的热能来进行供暖和制冷。
系统通过在地下岩石中钻孔,将岩石的热能传递给热泵系统。
岩石源热泵系统的工作原理类似于土壤源热泵系统,但由于岩石的热传导性能较差,需要进行更深的钻孔。
岩石源热泵系统适用于地下水资源较为匮乏的地区。
4. 水体源热泵系统水体源热泵系统利用地下湖泊、河流或湿地等水体中的热能来进行供暖和制冷。
系统通过埋设在水体中的水埋管,将水域中的热能传递给热泵系统。
水体源热泵系统适用于水资源丰富的地区。
5. 海洋源热泵系统海洋源热泵系统利用海洋中的热能来进行供暖和制冷。
系统通过在海洋中埋设海洋埋管,将海洋中的热能传递给热泵系统。
海洋源热泵系统需要有充足的海洋资源,并且需要考虑对海洋生态环境的影响。
二、地源热泵系统的特点和优势地源热泵系统具有以下特点和优势:1. 高效节能:地源热泵系统利用地下热能进行供暖和制冷,不需要燃烧燃料,能够大幅度节省能源消耗,降低运行成本。
2. 环保低碳:地源热泵系统采用清洁能源,减少二氧化碳和其他污染物的排放,对环境友好。
地源热泵方案设计一、地源热泵系统概述地源热泵是一种利用地下土壤、地下水或地表水等作为冷热源,通过热泵机组进行能量交换,为建筑物提供制冷、供暖和生活热水的系统。
与传统的空调和供暖系统相比,地源热泵系统具有以下显著优势:1、高效节能:地源热泵系统的能效比(COP)通常较高,可大大降低能源消耗和运行成本。
2、环保无污染:不使用化石燃料,减少了温室气体排放和对环境的污染。
3、稳定可靠:地下温度相对稳定,使得系统运行更加稳定可靠,不受外界气候条件的影响。
4、使用寿命长:热泵机组和地下换热器的使用寿命较长,维护成本相对较低。
二、工程场地条件评估在进行地源热泵方案设计之前,首先需要对工程场地的条件进行详细评估。
这包括地质结构、土壤类型、地下水位、水文地质条件等。
不同的场地条件会影响地下换热器的设计和安装方式。
1、地质结构:了解地层的分布、厚度和岩石类型,以确定钻孔的可行性和难度。
2、土壤类型:土壤的热导率和比热容会影响热量传递效率,常见的土壤类型如砂土、黏土和壤土等,其热性能有所差异。
3、地下水位:地下水位的高低会影响换热器的安装深度和防水措施。
4、水文地质条件:包括地下水的流动速度、水质等,这对于选择合适的换热器类型和防止地下水污染至关重要。
三、建筑物负荷计算准确计算建筑物的冷热负荷是地源热泵方案设计的基础。
负荷计算需要考虑建筑物的用途、面积、朝向、围护结构的保温性能、室内人员和设备的发热量等因素。
通过专业的负荷计算软件,可以得到建筑物在不同季节和不同时段的制冷和供暖负荷需求。
1、制冷负荷:主要由室内外温差、太阳辐射、人员散热和设备散热等因素引起。
2、供暖负荷:与室外温度、建筑物的保温性能、通风换气次数等有关。
根据负荷计算结果,可以确定热泵机组的容量和地下换热器的规模,以保证系统能够满足建筑物的冷热需求。
四、地源热泵系统类型选择地源热泵系统主要有三种类型:地下水地源热泵系统、地埋管地源热泵系统和地表水地源热泵系统。
•地源热泵系统概述•地源热泵系统组成及工作原理•地源热泵系统设计要点•地源热泵系统运行维护与故障排除目录•地源热泵系统性能评价与案例分析•地源热泵系统市场前景及政策环境分析定义与原理定义地源热泵系统是一种利用地下浅层地热资源,通过输入少量的高品位能源(如电能),实现由低品位热能向高品位热能转移的装置。
原理地源热泵系统通过埋藏于地下的换热系统,与大地进行冷热交换。
冬季,热泵机组从地(水)源吸收热量,向建筑物供暖;夏季,热泵机组向地(水)源释放热量,为建筑物制冷。
它以水作为冷热源,进行能量转换的供暖空调系统。
发展历程及现状发展历程现状应用领域环保无污染使用寿命长一机多用高效节能优势应用领域与优势地下埋管换热介质设计与施工030201地下换热器热泵机组驱动制冷剂循环,提高制冷剂的压力和温度。
实现制冷剂与换热介质之间的热量交换。
降低制冷剂的压力和温度,使其能够吸收更多的热量。
对热泵机组进行自动控制和调节,确保其高效、安全运行。
压缩机换热器膨胀阀控制系统室内末端装置01020304风机盘管地暖散热器连接管道控制器传感器执行器通信接口控制与调节系统地质勘察与选址地质条件分析选址原则现场勘察热负荷计算与设备选型热负荷计算根据建筑物类型、使用功能、气候条件等,计算地源热泵系统所需承担的热负荷。
设备选型根据地源热泵系统类型、热负荷计算结果等,选择适合的热泵机组、水泵、换热器等设备。
设备性能要求确保所选设备具有高效、节能、环保、稳定可靠等性能特点。
系统配置与优化系统配置方案系统类型选择设计合理的系统配置方案,包括地下换热器、热泵机组、水泵、冷却塔等设备的组合和布局。
系统优化措施验收标准与流程明确地源热泵系统的验收标准和流程,包括设备性能测试、系统联动调试等环节。
施工安装要求制定详细的施工安装方案,确保地下换热器、热泵机组等设备的安装质量符合设计要求。
维护与保养建立地源热泵系统的维护与保养制度,定期检查设备运行状况,及时排除故障隐患。
一、地源热泵简介一、地源热泵的概念地源热泵系统(groud-source heat pump system)(又称地源中央空调系统)是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。
地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。
地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
地源热泵性能系数(即COP值)高于空气源热泵,目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。
系统运行性能稳定,它利用地下常温土壤或地下水温度相对稳定的特性:冬季:当机组在制热模式时,就从土壤/水中吸收热量,通过电驱动的压缩机和热交换器把大地的热量集中,并以较高的温度释放到室内。
夏季:当机组在制冷模式时,就从土壤/水中提取冷量,通过机组的运行将冷量集中,送入室内,同时将室内的热量排放到土壤/水中,达到空调的目的。
地源热泵机组只用一套设备可以满足供热和制冷的要求,同时还可以提供生活热水,减少了设备的初投资,是最经济的节能环保型中央空调系统。
热泵是一种将低温热源的热能转移到高温热源的装置。
通常用于热泵装置的低温热源改是我们周围的介质——空气、河水、海水,或者是从工业生产设备中排出助工质,这些工质常与周围介质具有相接近的温度。
热泵装置的工作原理与压缩式制冷机是一致的;在小型空调器中,为了充分发挥它的效能,在夏季空调降温或在冬季取暖,都是使用同一套设备来完成的。
在冬季取暖时,将空温器中的蒸发器与冷凝器通过一个换向阀来调换工作。
在夏季空调降温时,按制冷工况运行,由压缩机排出的高压蒸汽,经换向阀(又称四通阀)进入冷凝器,制冷剂蒸汽被冷凝成液体,经节流装置进入蒸发器,并在蒸发器中吸热,将室内空气冷却,蒸发后的制冷剂蒸汽,经换向阀后被压缩机吸入,这样周而复始,实现制冷循环。
地源热泵的概念地源热泵是一种以土壤、地下水作为低温热源的热泵空调技术。
其原理是依靠消耗少量的电力驱动压缩机完成制冷循环,利用土壤温度相对稳定(不受外界气候变化的影响)的特点,通过深埋土壤的环闭管线系统进行热交换,夏天向地下释放热量,冬天从地下吸收热量,从而实现制冷或供暖。
换言之:地源、水源热泵空调系统把夏天室内多余的热量通过热泵机组储存到相对稳定的大地中去,而冬天再把夏天通过热泵机组储存在大地中的能源提取出来,重新回放到室内,来完成室内房间的冷暖空调的需求,完成该系统的能源循环只需要少量的电力驱动。
由于系统采取了特殊的换热方式,使之具有传统空调系统无法比拟的优点,是真正高效、节能、环保的一种空调设备。
地源热泵技术是利用地下的土壤、地表水、地下水温相对稳定的特性,通过消耗电能,在冬天把低位热源中的热量转移到需要供热或加温的地方,在夏天还可以将建筑物内的余热转移到低位热源中,达到给建筑物降温或制冷的目的。
地源热泵不需要人工的冷热源,可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。
冬季它代替锅炉从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它向土壤、地下水或者地表水放热,达到给建筑物降温的目的。
同时,它还可以供应生活热水,可谓一举三得,是一种有效利用能源的方式。
地耦管土壤源热泵系统是一个密闭的闭路循环系统,它保持了地下水水源热泵利用大地作为冷热源的优点,同时又不需要抽取地下水作为传热的介质。
地耦管土壤源热泵系统从根本上解决了地下水水源热泵的种种弊端,是一种真正可持续发展的建筑节能的新技术,而且还具有适用范围广、运行费用低、节能和环保效益显著等优点。
地耦管土壤源热泵系统中的土壤换热器按照埋管方式可以分为:水平式土壤换热器、垂直U型式土壤换热器、垂直套管式土壤换热器、热井式土壤换热器及直接膨胀式土壤换热器。
1)水平式土壤换热器水平地埋管普遍使用在单相运行状态的空调系统中,一般的设计埋管深度在2~4米之间,在只用于采暖时,土壤在整个冬天处于放热状态,沟的深度一定要深,管间距要大。
地源热泵系统1、引言地源热泵系统是一种高效节能型并能实现可持续发展的新技术。
这种技术是将土壤等地下蓄热体中的能量用于建筑物的热交换,从而利用低品位能源来实现节能的目的。
地源热泵一般不会污染地下水,不会引起地面沉降;可以通过调整换热器的埋置深度,避免对浅层土壤中的微生物环境造成破坏。
合理利用自然资源,减少常规能源消耗,地源热泵越来越呈现其独特的优势,并成为一种高效节能、无污染的可再生能源系统。
地源热泵系统可用于空调系统的冷热源。
2、地源热泵技术概述地源热泵(GSHP- ground source heat pumps)大致分为三类,即土壤热泵、地下水源热泵和地表水源热泵。
地源热泵属于人工冷热源,可以取代锅炉或城市供热管网等系统。
冬季它从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它将普通空调系统携带的热量向土壤、地下水或者地表水释放,从而实现建筑物制冷;同时,它还可供应生活用水,可谓一举三得,是一种有效的利用能源的方式。
3、地源热泵工作原理在制冷工况下,压缩机4对冷媒做功,使其进行汽-液转化的逆卡诺循环。
冷媒在蒸发器7内蒸发,将空调系统所携带的建筑物内的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器3内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环通过埋地盘管1转移至地下水或土壤里。
在室内热量不断转移至地下的过程中,通过空调系统末端装置8,以13℃以下的冷风的形式为房间供冷。
在制热工况下,压缩机4对热媒做功,并通过换向阀5将热媒流动方向换向。
由地下的水路循环通过盘管1吸收地下水或土壤里的热量,通过冷凝器3(此时转为蒸发器)内热媒的蒸发,将水路循环中的热量吸收至热媒中,在热媒循环的同时再通过蒸发器7(此时转为冷凝器)内热媒的冷凝,将热媒所携带的热量转移至空调系统。
在地下的热量不断转移至室内的过程中,并通过末端装置8,以35℃以上热风的形式向室内供暖。
当空调系统回路、热泵机组、地源水系统回路三部分分置时,所组成的系统为地源热泵空调系统;当空调系统回路与热泵机组合二为一,地源水系统回路延伸至建筑物内时,所组成的系统为地源水环热泵空调系统。
地源热泵系统概念一、引言随着现代科技对可再生能源的追求,地源热泵系统逐渐进入了人们的视野。
作为一种高效、环保的能源利用方式,地源热泵技术在全球范围内受到了广泛的关注和应用。
本文将深入解析地源热泵系统的概念、原理及其优势。
二、地源热泵系统定义地源热泵系统是一种利用地下浅层地热资源,通过输入少量的电能,实现低位热能向高位热能转移的装置。
它既可以供热又可制冷,具有环保、节能、稳定等多重优势。
三、工作原理地源热泵系统的工作原理主要基于逆卡诺循环。
它通过消耗少量的电能,驱动压缩机运转,使得工质在蒸发器中吸收地下的热量,然后在冷凝器中释放热量,供给室内使用。
在制冷模式下,工质的方向相反,将室内的热量吸收并释放到地下。
这样,地源热泵系统就能实现夏季制冷、冬季供暖的双重功能。
四、系统组成地源热泵系统主要由四部分组成:地下换热系统、热泵机组、室内采暖空调系统和热水供应系统。
地下换热系统是地源热泵的核心,它通过埋设在地下的换热管道,与土壤进行热交换。
热泵机组则负责驱动工质循环,实现热能的转移。
室内采暖空调系统和热水供应系统则根据需求,将热泵机组提供的热能分配到各个终端。
五、优势分析地源热泵系统具有以下显著优势:1.环保:地源热泵系统利用的是可再生能源,不燃烧任何燃料,不会产生废气废渣,对环境友好。
2.高效节能:地源热泵系统的COP(能效比)通常大于3,即消耗1KW的电能,可以得到3KW以上的热量或冷量,能效高。
3.运行稳定:由于地下温度相对稳定,地源热泵系统的运行也相对稳定,无论寒暑,都能提供舒适的室内环境。
4.一机多用:地源热泵系统既可以供暖,又可以制冷,还能提供生活热水,一机多用,节省空间。
六、应用前景随着环保意识的增强和可再生能源的开发利用,地源热泵系统的应用前景十分广阔。
无论是在居民楼、办公楼等建筑领域,还是在工业、农业等领域,地源热泵系统都有着巨大的应用潜力。
七、结论总的来说,地源热泵系统是一种高效、环保的能源利用方式,具有广泛的应用前景。
地源热泵中文名称:地源热泵英文名称:geothermal heat pump,ground-source heat pump定义:把地面做低温热源的热泵,即从地面土壤中吸热来取暖的循环设备。
应用学科:电力(一级学科);通论(二级学科)地源热泵是利用地球表面浅层水源(如地下水、河流和湖泊)和土壤源中吸收的太阳能和地热能,并采用热泵原理,既可供热又可制冷的高效节能空调系统。
地源热泵概述地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。
地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。
地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。
●形式地源热泵水源/地源热泵有开式和闭式两种。
开式系统:是直接利用水源进行热量传递的热泵系统。
该系统需配备防砂堵,防结垢、水质净化等装置。
闭式系统:是在深埋于地下的封闭塑料管内,注入防冻液,通过换热器与水或土壤交换能量的封闭系统。
闭式系统不受地下水位、水质等因素影响。
1、垂直埋管--深层土壤垂直埋管可获取地下深层土壤的热量。
垂直埋管通常安装在地下50-150米深处,一组或多组管与热泵机组相连,封闭的塑料管内的防冻液将热能传送给热泵,然后由热泵转化为建筑物所需的暖气和热水。
垂直埋管是地源热泵系统的主要方式,得到各个国家的政府部门大力支持。
2、水平埋管--大地表层在地下2米深处水平放置塑料管,塑料管内注满防冻的液体,并与热泵相连。
水平埋管占地面积大,土方开挖量大,而且地下换热器受地表气候变化的影响。
3、地表水江、河、湖、海的水以及深井水统称地表水。
地源热泵可以从地表水中提取热量或冷量,达到制热或制冷的目的。
利用地表水的热泵系统造价低,运行效率高,但受地理位置(如江河湖海)和国家政策(如取深井水)的限制。
地源热泵简介地源热泵概述地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。
地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。
地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。
地源热泵由来"地源热泵"的概念,最早于1912 年由瑞士的专家提出,而该技术的提出始于英、美两国。
北欧国家主要偏重于冬季采暖,而美国则注重冬夏联供。
由于美国的气候条件与中国很相似,因此研究美国的地源热泵应用情况,对我国地源热泵的发展有着借鉴意义。
编辑本段地源热泵的热源地源热泵目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源以及土壤源作为地源热泵的冷、热源。
编辑本段地源热泵组成地源热泵供暖空调系统主要分三部分:室外地能换热系统、地源热泵机组和室内采暖空调末端系统。
其中地源热泵机主要有两种形式:水—水式或水—空气式。
三个系统之间靠水或空气换热介质进行热量的传递,地源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。
主要特点(1)地源热泵技术属可再生能源利用技术。
由于地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。
地表浅层地热资源可以称之为地能,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。
地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。
它不受地域、资源等限制,真正是量大面广、无处不在。
这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。
(2)地源热泵属经济有效的节能技术。
其地源热泵的COP值达到了4以上,也就是说消耗1KWh的能量,用户可得到4KWh以上的热量或冷量。
(3)地源热泵环境效益显著。
其装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。
(4)地源热泵一机多用,应用范围广。
地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统;可应用于宾馆、商场、办公楼、学校等建筑,更适合于别墅住宅的采暖、空调。
然而实现地源热泵主机系统的这一机多用,则需要一整套系统解决方案,其有动力输配系统-----节能空调机房,室内末端输送设备采用地暖分集水器,水力平衡分配器,生活热水采用多功能水箱。
由此可体现出地源热泵主机的一机多用也代表着暖通系统的整个运行体系。
水力平衡分配器(5)地源热泵空调系统维护费用低。
地源热泵的机械运动部件非常少,所有的部件不是埋在地下便是安装在室内,从而避免了室外的恶劣气候,机组紧凑、节省空间;自动控制程度高,可无人值守。
由以上的特点可以看出,地源热泵的技术以后可得到广泛的应用。
然而,地源热泵要实现制冷制热,则需要给它提供动力来输送制冷制热管道中的循环水,目前传统机房可提供动力,但施工起来比较复杂,难度高,周期长,采购的材料种类多,需库存,漏水隐患大等等问题,针对此,市场上开发了一款新型的动力输配系统设备-----节能空调机房。
此机房系统是将传统机房中的所有部件进行集成模块化,实行一体化安装的模式。
不仅在施工难度上大大降低了,而且无需库存,漏水隐患大大降低了,还能与主机进行无限联动等等,由此可以看出,节能空调机房实为一款为暖通行业提供一整套的解决方案.地源热泵主机可将空调、地暖、生活热水三合为一。
也就是地源热泵的一机多用,为暖通系统提供整套方案,由此可采用目前市场上出现的节能空调机房,水力平衡分配器,储能热水水箱,这几款设备能有效的解决以上问题,首先节能空调机房与地源热泵主机配套,为其提供输送循环水的动力,而其室内末端使用水力平衡分配器,它能将末端的水力系统达到平衡,使其室内的每个房间同时达到平衡,而且它无中间环节点,大大减少漏水隐患。
生活热水可以采用储能热水水箱实现全年全天候使用,而且带热回收的地源热泵主机或者通过节能空调机房给它提供热源。
可以得出,节能空调机房,水力平衡分配器,储能热水水箱这一套设备为暖通空调和供热采暖提供了完美的解决方案,与此同时它也实现了将地源热泵主机系统,地暖、空调、生活热水能实现一体化安装。
地源热泵主机与节能空调机房的完美配合给整个暖通系统的供热采暖提供整套的解决方案!节能空调机房和地源热泵配套使用,其节能空调机房可为整个空调系统提供动力,它的内部主要构造有两个泵,一个为水源侧的泵,一个用户侧的泵。
其水源侧的泵是给地源热泵的地埋侧输送循环水,而用户侧的泵就是为室内末端设备输送循环水,从而达到制冷制热的目的。
在室内末端输送时,采用水力平衡分配器大大减少漏水隐患,末端冷热效果均衡。
在地源热泵使用的同时,还可以回收制冷工作过程放出的热量,用来制取生活用水。
在这一整套系统中,地源热泵主机与节能空调机房、水力平衡分配器,多功能水箱有机地结合在一起,为暖通空调和供热采暖提供一整套解决方案。
总而言之,节能空调机房、水力平衡分配器、多功能水箱与地源热泵的结合为整个暖通系统增加亮点,同时在安装上便捷了很多,施工时间、采购周期都大大缩短了,人工成本也将低了等等。
由此可见节能空调机房与地源热泵的配合是未来暖通行业必然的发展趋势。
水源/地源热泵有开式和闭式两种。
开式系统:是直接利用水源进行热量传递的热泵系统。
该系统需配备防砂堵,防结垢、水质净化等装置。
闭式系统:是在深埋于地下的封闭塑料管内,注入防冻液,通过换热器与水或土壤交换能量的封闭系统。
闭式系统不受地下水位、水质等因素影响。
1、垂直埋管--深层土壤[1]垂直埋管可获取地下深层土壤的热量。
垂直埋管通常安装在地下50-150米深处,一组或多组管与热泵机组相连,封闭的塑料管内的防冻液将热能传送给热泵,然后由热泵转化为建筑物所需的暖气和热水。
垂直埋管是地源热泵系统的主要方式,得到各个国家的政府部门大力支持。
2、水平埋管--大地表层在地下2米深处水平放置塑料管,塑料管内注满防冻的液体,并与热泵相连。
水平埋管占地面积大,土方开挖量大,而且地下换热器受地表气候变化的影响。
3、地表水江、河、湖、海的水以及深井水统称地表水。
地源热泵可以从地表水中提取热量或冷量,达到制热或制冷的目的。
利用地表水的热泵系统造价低,运行效率高,但受地理位置(如江河湖海)和国家政策(如取深井水)的限制。
编辑本段可再生性地源热泵是一种利用土壤所储藏的太阳能资源作为冷热源,进行能量转换的供暖制冷空调系统,地源热泵利用的是清洁的可再生能源的一种技术。
地表土壤和水体是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量);它又是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散相对的平衡,地源热泵技术的成功使得利用储存于其中的近乎无限的太阳能或地能成为现实。
地源热泵机组利用土壤或水体温度冬季为12-22℃,温度比环境空气温度高,热泵循环的蒸发温度提高,能效比也提高;土壤或水体温度夏季为18-32℃,温度比环境空气温度低,制冷系统冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率大大提高,可以节约30--40%的供热制冷空调的运行费用,1KW的电能可以得到4KW以上的热量或5KW以上冷量。
与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~90%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量;由于地源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60%。
因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及中、北欧如瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。
优点环境和经济效益显著地源热泵机组运行时,不消耗水也不污染水,不需要锅炉,不需要冷却塔,也不需要堆放燃料废物的场地,环保效益显著。
地源热泵机组的电力消耗,与空气源热泵相比也可以减少40%以上;与电供暖相比可以减少70%以上,它的制热系统比燃气锅炉的效率平均提高近50%,比燃气锅炉的效率高出了75%。
一机多用,应用广泛地源热泵系统可供暖、空调制冷,还可提供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统,特别是对于同时有供热和供冷要求的建筑物。
地源热泵有着明显的优点。
不仅节省了大量的能量,而且用一套设备可以同时满足供热、供冷、供生活用水的要求,减少了设备的初投资,地源热泵可应用于宾馆、居住小区、公寓、厂房、商场、办公楼、学校等建筑,小型的地源热泵更适合于别墅住宅的采暖、空调。
自动运行地源热泵机组由于工况稳定,可以设计成简单的系统,部件较少,机组运行可靠,维护费用用低,自动控制程度高,使用寿命长。
无环境污染地源热泵的污染物排放,与空气源热泵相比,相当于减少38%以上,与电供暖相比,相当于减少70%以上,真正的实现了节能减排节能减排是减少能源浪费和降低废气排放更多。
维护费用低地源热泵系统运动部件要比常规系统少,因而减少维护,系统安装在室内,不暴露在风雨中,也可免遭损坏,更加可靠,延长寿命。
使用寿命长地源热泵的地下埋管选用聚乙烯和聚丙烯塑料管,寿命可达50年,要比普通空调高35年使用寿命。
维持生态环境平衡地源热泵夏天把室内的热量排到地下,冬天把地下的热量取出来供室内使用,相对来说,向环境排放更少的能量,维持生态环境的平衡。
节省空间没有冷却塔、锅炉房和其它设备,省去了锅炉房,冷却塔占用的宝贵面积,产生附加经济效益,并改善了环境外部形象。
地源热泵系统的能量来源于自然能源。
它不向外界排放任何废气、废水、废渣、是一种理想的“绿色空调”。
被认为是目前可使用的对环境最友好和最有效的供热、供冷系统。
该系统无论严寒地区或热带地区均可应用。
可广阔应用在办公楼、宾馆、学校、宿舍、医院、饭店、商场、别墅、住宅等领域。
编辑本段工作原理在自然界中,水总是由高处流向低处,热量也总是从高温传向低温。
人们可以用水泵把水从低处抽到高处,实现水由低处向高处流动,热泵同样可以把热量从低温传递到高温。
所以热泵实质上是一种热量提升装置,工作时它本身消耗很少一部分电能,却能从环境介质(水、空气、土壤等)中提取4-7倍于电能的装置,提升温度进行利用,这也是热泵节能的原因。