《概率论与数理统计》复习答案
- 格式:doc
- 大小:1.34 MB
- 文档页数:18
《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。
a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。
A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。
〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。
的置信度为的置信区间, 则应有()。
A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。
A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。
A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。
《概率论与数理统计》期末复习题一、填空题1.(公式见教材第10页P10) 设A,B 为随机事件,已知P(A)=0.7,P(B)=0.5,P(A-B)=0.3,则P (B-A )= 。
2.(见教材P11-P12) 设有20个零件,其中16个是一等品,4个是二等品,今从中任取3个,则至少有一个是一等品的概率是 .3.(见教材P44-P45) 设()4 ,3~N X ,且c 满足()()c X P c X P ≤=>,则=c 。
4. (见教材P96) 设随机变量X 服从二项分布,即===n p EX p n B X 则且,7/1,3),,(~ .5.(见教材P126) 设总体X 服从正态分布)9,2(N ,921,X X X 是来自总体的样本,∑==9191i i X X 则=≥)2(X P 。
6. (见教材P6-7)设B A ,是随机事件,满足===)(,)(),()(B P p A P B A P AB P 则 .7. (见教材P7) B A ,事件,则=⋃B A AB 。
8. (见教材P100-P104) 设随机变量Y X ,相互独立,且)16,1(~),5,1(~N Y N X ,12--=Y X Z 则的相关系数为与Z Y 9.(见教材P44-P45) 随机变量=≤≤-=Φ=Φ}62{,9772.0)2(,8413.0)1(),4,2(~X P N X 则 .10. (见教材P96)设随机变量X 服从二项分布,即===n p EX p n B X 则且,5/1,3),,(~ .11 (见教材P42) 连续型随机变量X 的概率密度为()⎩⎨⎧≤>=-00,,3x x e x f x λ则=λ .12.(见教材P11-P12) 盒中有12只晶体管,其中有10只正品,2只次品.现从盒中任取3只,设3只中所含次品数为X ,则()==1X P .13. (见教材P73-P74) 已知二维随机变量221212(,)~(,;,;)X Y N μμσσρ,且X 与Y 相互独立,则ρ= ______ .二、选择题1.(见教材P37-38) 设离散型随机变量X 的分布列为F(3)= .A. 0B. 0.3C. 1D. 0.82.(见教材P39-40) 设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,x x x x x f则X 落在区间()2.1 ,4.0内的概率为( ).(A) 0.64;(B) 0.6;(C) 0.5;(D) 0.42.3. (见教材P133-136)矩估计是( )A. 点估计B. 极大似然估计C. 区间估计D. 无偏估计 4. (见教材P31)甲乙两人下棋,每局甲胜的概率为0.4,乙胜的概率为0.6,。
概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。
若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。
8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。
9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。
设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。
三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论复习一、单项选择题1.袋中有50个乒乓球,其中20个黄球,30个白球,现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是(B).A.51 B.52 C.53 D.54 2.设B A ,为随机事件,且5.0)(=A P ,6.0)(=B P ,=)(A B P 8.0.则=)(B A P U (C).A.0.5B.0.6C.0.7D.0.83.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数)(y F Y 为(C).A.)35(-y F XB.3)(5-y F XC.⎪⎭⎫⎝⎛+53y F X D.3)(51+y F X4.设二维随机变量),(Y X 的分布律为则==}{Y X P ( A ).A.3.0B.5.0C.7.0D.8.05.设随机变量X 与Y 相互独立,且2)(=X D ,1)(=Y D ,则=+-)32(Y X D (D).A.0B.1C.4D.66.设),(~2σμN X ,2,σμ未知,取样本n X X X ,,,21 ,记2,n S X 分别为样本均值和样本方差.检验:2:,2:10<≥σσH H ,应取检验统计量=2χ(C).A.8)1(2S n -B.2)1(2S n -C.4)1(2S n -D.6)1(2S n -7.在10个乒乓球中,有8个白球,2个黄球,从中任意抽取3个的必然事件是(B).A.三个都是白球B.至少有一个白球C.至少有一个黄球D.三个都是黄球8.设B A ,为随机事件,且B A ⊂,则下列式子正确的是(A).A.)()(A P B A P =UB.)()(A P AB P =C.)()(B P A B P =D.)()()(A P B P A B P -=-9.设随机变量)4 ,1(~N X ,已知标准正态分布函数值8413.0)1(=Φ,为使8413.0}{<<a X P ,则常数<a (C).A.0B.1C.2D.310.设随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F (B).A.0B.)(x F XC.)(y F YD.111.二维随机变量),(Y X 的分布律为设)1,0,(},{====j i j Y i X P P ij,则下列各式中错误..的是( D ). A.0100P P < B.1110P P < C.1100P P < D.0110P P< 12.设)5(~P X ,)5.0,16(~B Y ,则=--)22(Y X E (A).A.0B.0.1C.2.0 D.113.在假设检验问题中,犯第一类错误的概率α的意义是(C).A.在0H 不成立的条件下,经检验0H 被拒绝的概率B.在0H 不成立的条件下,经检验0H 被接受的概率C.在0H 成立的条件下,经检验0H 被拒绝的概率D.在0H 成立的条件下,经检验0H 被接受的概率14.设X 和Y 是方差存在的随机变量,若E (XY )=E (X )E (Y ),则(B) A 、D (XY )=D (X )D (Y )B 、D (X+Y )=D (X )+D (Y ) C 、X 和Y 相互独立D 、X 和Y 相互不独立 15.若X ~()t n 那么21X ~(B ) A 、(1,)F n ;B 、(,1)F n ;C 、2()n χ;D 、()t n16.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,2σ的无偏估计量是(B )A 、()211n i i X X n =-∑;B 、()2111n i i X X n =--∑;C 、211n i i X n =∑;D 、2X 17、设随机变量X 的概率密度为2(1)2()x f x --=,则(B ) A 、X 服从指数分布B 、1EX =C 、0=DX D 、(0)0.5P X ≤=18、设X 服从()2N σ0,,则服从自由度为()1n -的t 分布的随机变量是(B ) A 、nX S B、2nX S D 19、设总体()2,~σμN X,其中μ已知,2σ未知,123,,X X X 取自总体X 的一个样本,则下列选项中不是统计量的是(B ) A 、31(123X X X ++)B 、)(12322212X X X ++σC 、12X μ+D 、123max{,,}X X X20、设随机变量()1,0~N ξ分布,则(0)P ξ≤等于(C )A 、0B 、0.8413C 、0.5D 、无法判断 21、已知随机变量()p n B ,~ξ,且3,2E D ξξ==,则,n p 的值分别为(D )A 、112,4n p ==B 、312,4n p ==C 、29,3n p ==D 、19,3n p == 22.设321,,X X X 是来自总体X 的样本,EX=μ,则(D )是参数μ的最有效估计。
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
对外经济贸易大学远程教育学院2006-2007学年第一学期《概率论与数理统计》期末复习大纲(附参考答案)一、复习方法与要求学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成.学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目.如开学给出的学习建议中所讲:作为本科的一门课程,在课件中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.各章内容要求与所占分值如下:第一章介绍的随机事件的关系与运算,概率的基本概念与关系. 约占20分.第二章介绍的一维随机变量的分布. 约占20分.第三章二维随机变量的分布,主要要求掌握二维离散型随机变量的联合分布律、边缘分布律以及随机变量独立的判别. 约占15分.第四章介绍的随机变量的数字特征. 约占20分.第五章的中心极限定理. 约占5分.分布);第六章介绍的总体、样本、统计量等术语;常用统计量的定义式与分布(t分布、2正态总体样本函数服从分布定理. 约占7分.第七章的矩估计与一个正态总体期望与方差的区间估计. 约占8分.第八章一个正态总体期望与方差的假设检验. 约占5分.对上述内容之外部分,不作要求.二、期终考试方式与题型本学期期终考试采取开卷形式,即允许带教材与参考资料.题目全部为客观题,题型有判断与选择.当然有些题目要通过计算才能得出结果.其中判断题约占64分,每小题2分;选择题约占36分,每小题3分.三、 应熟练掌握的主要内容1.了解概率研究的对象——随机现象的特点;了解随机试验的条件.2. 理解概率这一指标的涵义.3. 理解统计推断依据的原理,会用其作出判断.4. 从发生的角度理解事件的包含、相等、和、差、积、互斥、对立的定义,掌握样本空间划分的定义.5. 熟练掌握用简单事件的和、差、积、划分等表示复杂事件 掌握事件的常用变形:AB A B A -=- (使成包含关系的差),A B -=AB (独立时计算概率方便)B A A B A +=+(使成为两互斥事件的和)n AB AB AB A +++= 21 (n B B B 、、、其中 21是一个划分)(利用划分将A 转化为若干互斥事件的和)B A AB A +=(B B 与即一个划分)6. 掌握古典概型定义,熟悉其概率计算公式.掌握摸球、放盒子、排队等课件所举类型概率的计算.7. 熟练掌握事件的和、差、积、独立等基本概率公式,以及条件概率、全概、逆概公式,并利用它们计算概率.8. 掌握离散型随机变量分布律的定义、性质,会求简单离散型随机变量的分布律.9. 掌握(0-1)分布、泊松分布、二项分布的分布律 10. 掌握一个函数可以作为连续型随机变量的概率密度的充分必要条件11. 掌握随机变量的分布函数的定义、性质,一个函数可以作为连续型随机变量的分布函数的条件.12. 理解连续型随机变量的概率密度曲线、分布函数以及随机变量取值在某一区间上的概率的几何意义13. 掌握随机变量X 在区间(a ,b )内服从均匀分布的定义,会写出X 的概率密度. 14. 掌握正态分布(,)N μσ2概率密度曲线图形; 掌握一般正态分布与标准正态分布的关系定理; 会查正态分布函数表;理解服从正态分布μ(N ),2σ的随机变量X ,其概率{P |X-μ|<σ}与参数μ和σ的关系. 15. 离散型随机变量有分布律会求分布函数;有分布函数会求分布律. 16. 连续型随机变量有概率密度会求分布函数;有分布函数,会求概率密度. 17. 有分布律或概率密度会求事件的概率.18. 理解当概率()P A =0时,事件A 不一定是不可能事件;理解当概率()P A =1时,事件A 不一定是必然事件. 19. 掌握二维离散型随机变量的联合分布律定义;会利用二维离散型随机变量的联合分布律计算有关事件的概率;有二维离散型随机变量的联合分布律会求边缘分布律以及判断是否独立.20.掌握期望、方差、协方差、相关系数的定义式与性质,会计算上述数字;了解相关系数的意义,线性不相关与独立的关系.21. 掌握(0-1)分布、泊松分布、二项分布、均匀分布、正态分布、指数分布的参数 与期望、方差的关系.22. 会用中心极限定理计算概率.理解拉普拉斯中心极限定理的涵义是:设随机变量X 服从二项分布(,)b n p ,当n 较大时,~(,)X N np npq 近似,其中q p =-123.了解样本与样本值的区别,掌握样本均值与样本方差的定义24. 了解2χ分布、t 分布的背景、概率密度图象,会查两个分布的分布函数表,确定上α分位点.25. 了解正态总体μ(N ),2σ中,样本容量为n 的样本均值X与22)1(σS n -服从的分布.26. 掌握无偏估计量、有效估计量定义. 27. 会计算参数的矩估计.28. 会计算正态总体(,)N μσ2参数μ与2σ的区间估计.29. 掌握一个正态总体μ(N ),2σ,当2σ已知或未知时,μ的假设检验,2σ的假设检验.30.了解假设检验的两类错误涵义四、复习题(附参考答案 )注 为了方便学员复习,提供复习题如下,这些题目都是课件作业题目的改造,二者相辅相成,希望帮助大家学懂基本知识点. 期终试卷中70分的题目抽自复习题.(一)判断题(Y —正确,N —错误)第一章 随机事件与概率 1.写出下列随机试验的样本空间(1) 三枚硬币掷一次,观察字面朝上的硬币个数,样本空间为S={}321,,. N 2.一项任务:甲、乙、丙三人分别去干,设A ,B ,C 分别为甲、乙、丙完成任务. 用A 、B 、C 三个事件的关系式表示下列事件,则(1)(三人中,仅甲完成了任务)=BC A N (2)(三人都没完成任务)=ABC N (3)(至少一人没完成任务)=C B A ++ Y3.一批产品中有3件次品,从这批产品中任取5件检查,没A i =(5件中恰有i 件次品),i=0,1,2,3 叙述下列事件(1)0A =(至少有一件次品) Y (2)32A A + =(有3件次品) N 4.指出下列命题中哪些成立,哪些不成立 (1)B A A B A +≠+ N (2)AB A B A -=- Y5.设事件A 、B 互斥,2.0)(=A P ,5.0)(=+B A P 则)(B P = . Y6.设A 、B 、C 是三事件,且81)(,0)()(,41)()()(======AC P BC P AB P C P B P A P .则A 、B 、C 至少有一个发生的概率为7/8. N7. 事件设,6.0)(,=⊃A P B A ,则)(B A P =. N8. 设A 、B 是两事件,且7.0)(,6.0)(==B P A P ,则当,B A ⊂()P AB 取到最大值. Y 9.若)(,32)(,31)(,21)(B A P A B P B P A P 则==== 1. Y 10.一个教室中有100名学生,则其中至少有一人的生日在元旦的概率(一年以365天计)为1001003653641- . Y 11.将3个球随机地放入4个杯子中,杯子的容量不限,则杯中球最多个数为1的概率为P 3434.Y12.设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球,放入乙袋,再从乙袋中随机取一球,则:(1)P (两次都取到红球)=⨯681011 Y (2)P (从乙袋中取到红球)=710N13. 已知10只电子元件中有2只是次品,在其中取2次,每次任取一只,作不放回抽样,则(1)P (一次正品,一次次品 )= 2101218C C C Y (2) P (第二次取到次品)=7/9 N14. 41)(,5.0)(,4.0)(,3.0)(=+===B A B P B A P B P A P 则已知. Y 15.几点概率思想(1)概率是刻画随机事件发生可能性大小的指标. Y (2)随机现象是没有规律的现象. N(3)随机现象的确定性指的是频率稳定性,也称统计规律性.N(4)频率稳定性指的是随着试验次数的增多,事件发生的频率接近一个常数.Y (5)实际推断原理为:一次试验小概率事件一般不会发生.Y (6)实际推断原理为:一次试验小概率事件一定不会发生.N第二章 随机变量及其分布16. 在6只同类产品中有2只次品,从中每次取一只,共取五次,每次取出产品立即放回,再取 下一只,则(1)取出的5只产品中次品数X 的分布律为{}kkk C k X P -⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==553231 k=0,1,…5 . Y(2)取出的5只产品中次品数X 的分布律为{}kk k C k X P -⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==553231 k=1,2 . N17.某人有5发子弹,射一发命中的概率为,如果命中了就停止射击,如果不命中就一直射到子弹用尽。
概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。
概率论复习一、单项选择题1. 袋中有50个乒乓球,其中20个黄球,30个白球,现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是( B ).A.51B.52 C.53 D.54 2. 设B A ,为随机事件,且5.0)(=A P ,6.0)(=B P ,=)(A B P 8.0.则=)(B A P U ( C ).A.0.5B.0.6C.0.7D.0.83. 设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数)(y F Y 为( C ). A.)35(-y F XB.3)(5-y F XC.⎪⎭⎫⎝⎛+53y F XD.3)(51+y F X 4. 设二维随机变量),(Y X 的分布律为则==}{Y X P ( A ).A.3.0B.5.0C.7.0D.8.05. 设随机变量X 与Y 相互独立,且2)(=X D ,1)(=Y D ,则=+-)32(Y X D ( D ).A.0B.1C.4D. 66. 设),(~2σμN X ,2,σμ未知,取样本n X X X ,,,21 ,记2,n S X 分别为样本均值和样本方差.检验:2:,2:10<≥σσH H ,应取检验统计量=2χ( C ).A.8)1(2S n -B.2)1(2S n -C.4)1(2S n -D.6)1(2S n -7. 在10个乒乓球中,有8个白球,2个黄球,从中任意抽取3个的必然事件是( B ).A. 三个都是白球B. 至少有一个白球C. 至少有一个黄球D. 三个都是黄球 8. 设B A ,为随机事件,且B A ⊂,则下列式子正确的是( A ).A.)()(A P B A P =UB.)()(A P AB P =C.)()(B P A B P =D.)()()(A P B P A B P -=-9. 设随机变量)4 ,1(~N X ,已知标准正态分布函数值8413.0)1(=Φ,为使8413.0}{<<a X P ,则常数<a ( C ).A.0B.1C.2D.3 10. 设随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( B ).A.0B.)(x F XC.)(y F YD.111. 二维随机变量),(Y X 的分布律为设)1,0,(},{====j i j Y i X P P ij ,则下列各式中错误..的是( D ). A.0100P P < B.1110P P < C.1100P P < D.0110P P < 12. 设)5(~P X ,)5.0,16(~B Y ,则=--)22(Y X E ( A ).A.0B.0.1C.2.0D. 1 13. 在假设检验问题中,犯第一类错误的概率α的意义是( C ).A.在0H 不成立的条件下,经检验0H 被拒绝的概率B.在0H 不成立的条件下,经检验0H 被接受的概率C.在0H 成立的条件下,经检验0H 被拒绝的概率D.在0H 成立的条件下,经检验0H 被接受的概率14. 设X 和Y 是方差存在的随机变量,若E (XY )=E (X )E (Y ),则( B ) A 、D (XY )=D (X ) D (Y ) B 、 D (X+Y )=D (X ) + D (Y ) C 、 X 和Y 相互独立 D 、 X 和Y 相互不独立 15. 若X ~()t n 那么21X ~( B ) A 、(1,)F n ; B 、(,1)F n ; C 、2()n χ; D 、()t n16. 设总体X 服从正态分布()212,,,,,n N X X X μσ 是来自X 的样本,2σ的无偏估计量是( B )A 、()211n i i X X n =-∑;B 、()2111n i i X X n =--∑; C 、211n i i X n =∑; D 、2X 17、设随机变量X 的概率密度为2(1)2()x f x --=,则 ( B ) A 、X 服从指数分布 B 、1EX = C 、0=DX D 、(0)0.5P X ≤= 18、设X 服从()2N σ0,,则服从自由度为()1n -的t 分布的随机变量是( B ) A 、nX S B 、、2nX S D 19、设总体()2,~σμNX ,其中μ已知,2σ未知,123,,X X X 取自总体X 的一个样本,则下列选项中不是统计量的是 ( B ) A 、31(123X X X ++) B 、)(12322212X X X ++σC 、12X μ+D 、123max{,,}X X X20、设随机变量()1,0~N ξ分布,则(0)P ξ≤等于 ( C ) A 、0 B 、0.8413 C 、0.5 D 、无法判断21、已知随机变量()p n B ,~ξ,且3,2E D ξξ==,则,n p 的值分别为 ( D ) A 、112,4n p ==B 、312,4n p ==C 、29,3n p ==D 、19,3n p == 22. 设321,,X X X 是来自总体X 的样本,EX=μ,则( D )是参数μ的最有效估计。
(A )3211213161ˆX X X ++=μ(B )3212525251ˆX X X ++=μ(C )3213214141ˆX X X ++=μ(D )3214313131ˆX X X ++=μ 23. 已知随机变量ξ服从二项分布,且,,44.14.2==E ξξD 则二项分布的参数p n ,的值为( B ) A 、6.04==p n , B 、4.06==p n , C 、3.08==p n , D 、1.024==p n ,二.填空1.设34{0,0},{0}{0}77P X Y P X P Y ≥≥=≥=≥=,则{max{,}0}P X Y ≥= 572.已知P (A )=0.4,P (B )=0.3,()0.6,()P A B P AB = 则= 0.3 ;3.~(),(1)(2),(0)X P X P X P X πλ=====且则 2e - ;4.设X 表示10次独立重复射击命中目标的次数,每次射中的概率为0.4,则2EX = 18.4 ; 5.设随机变量X 和Y 的方差分别为25和36,若相关系数为0.4,则D(X -Y )= 37 ;6.若X 和Y 相互独立,且X ~N (1,4),Y ~N (0,3),则23X Y -~_ N(2,43)__;7. 用(,X Y )的联合分布函数(,)F x y 表示{,}P a X b Y c ≤≤<= (,)(,){,}{,F b c F a c P aX b Y cP X a Y c --<≤=+=< ;8. 已知随机变量X 的均值12μ=,标准差3σ=,试用切比雪夫不等式估计:{}618P X <<34≥ ; 9.设2~(,)X N μσ,12,,,n X X X 是样本,2σ的矩估计量是 211()ni i X X n =-∑ ;10. 设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 18时CY ~2(2)χ11、“A 、B 、C 三个事件中至少发生了两个”,可以表示为 AB BC AC ++ 。
12、随机变量ξ的分布函数()F x 是事件 {}x ξ≤ 的概率。
13、某校一次英语测验,及格率80%,则一个班(50人)中,不及格的人数X ~ (50,0.2)B 分布,EX =10DX = 8 。
14、设12n X X X ,,,为总体X 的一个样本,若11ni i X X n ==∑且EX μ=,2DX σ=,则EX =___μ_,DX = ___2nσ___。
15、设随机变量X 的数学期望为EX u =、方差2DX σ=,则由切比雪夫不等式有{}2P X u σ-≥__14≤__。
16、“A 、B 、C 三个事件中恰好有一个发生”,可以表示为 ABC ABC ABC ++ 。
17、设X 服从参数为λ的泊松分布,且()()21===X P X P ,则λ=___2__。
18.设X 的期望和方差分别为μ和2σ,则由切比雪夫不等式可估计)2(σμ<-X P 34≥。
19.设n x x x ,,,21 是取自总体),(~2σμN X 的一个样本,∑=--=ni i X X n S 122)(11为样本方差,则~)1(22σS n - 2(1)n χ-20. 已知()A P =0.4,()B P =0.3,则当A 、B 互不相容时,()B A P = 0.7,,()AB P = 0 。
当A 、B 相互独立时,()B A P = 0.58 ,()AB P = 0.12 。
三、计算题1.设()0.5,()0.6,(|)0.8P A P B P B A ===,求)(B A P U 与()P B A -.解:)()()()(AB P B P A P B A P -+=U7.04.01.1)|()(1.1=-=-=A B P A P ,()()()0.60.40.2P B A P B P AB -=-=-=.2.有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份, 求先抽到的一份是女生表的概率p .解:记i H ={报名表是第i 个地区考生}(3,2,1=i ),j A ={第j 次抽到的报名表是男生}(2,1=j ),由题意知31)(=i H P (3,2,1=i ),103)(11=H A P , 157)(21=H A P ,255)(31=H A P ,由全概率公式,知90295115710331)()()(3111=⎪⎭⎫ ⎝⎛++===∑=i i i H A P H P A P p .3.设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=,3,1,31,8.0,11,4.0,1,0)(x x x x x F 试求:(1)X 的分布律;(2)}1|2{≠<X X P .解:(1)X 的所有可能取值为3 ,1 ,1-,}1{-=X P =1)(-F )01(---F =4.004.0=-, }1{=X P =)1(F )01(--F =4.04.08.0=-,}3{=X P =)3(F )03(--F =2.08.01=-,从而X 的分布律为(2)3)1()1(}1|2{=≠-==≠<X P X P X X P .4.一大批种子,良种占%20,从中任选5000粒.试计算其良种率与%20之差小于%1的概率.9616.0)77.1(=Φ.解:设X 表示在任选5000粒种子中良种粒数,则)(~p n B X ,,其中5000=n ,2.0=p ,则 800)1()(1000)(=-===p np X D np X E ,, 由棣莫夫-拉普拉斯中心极限定理得,良种率与%20之差小于%1的概率为)501000()01.02.05000(<-=<-X P XP 9616.0)77.1()80050()800508001000(=Φ=Φ≈<-=X P .5.假设甲、乙两厂生产同样的灯泡,且其寿命),(~211σμN X ,),(~222σμN Y .已知它们寿命的标准差分别为84小时和96小时,现从两厂生产的灯泡中各取60只,测得平均寿命甲厂为1295小时,乙厂为1230小时,能否认为两厂生产的灯泡寿命无显著差异(0.05α=)?975.0)96.1(=Φ. 解:建立假设210:μμ=H ,211:μμ≠H .在0H 为真时,统计量~(0, 1)X YU N =.对于给定的显著性水平0.05α=,查标准正态分布表,可得 1.960.0252==u u α,从而拒绝域为1.96||>u .又由1295=x ,1230=y ,841=σ,962=σ,0621==n n ,得|| 3.95 1.96u ==>,故应拒绝0H ,即认为此制造厂家的说法不可靠.6.设二维随机变量),(Y X 的联合分布律为证明:X 和Y 相互独立.证: 由联合分布律可求得X 和Y 的边缘分布律分别为和直接验证可知对任何3,2,1,=j i ,有},{j iy Y x X P ==}{i x X P ==}{j y Y P =成立,所以X 和Y 相互独立.7.设随机变量X 的分布律为求:(1)常数a ;(2)}21{≤X P ;(3)}231{≤≤X P ;(4)分布函数)(x F .解:(1) 由12131=++a ,得61=a ;(2) 31}0{}21{===≤X P X P ;(3) 61}1{}231{====≤≤a X P X P ;(4) 由于X 的所有可能取值为2,1,0故应分情况讨论:当0<x 时,}{)(x X P x F ≤=0=; 当10<≤x 时,}{)(x X P x F ≤=}0{==X P 31=; 当21<≤x 时,}{)(x X P x F ≤=}1{}0{=+==X P X P 21=; 当2≥x 时,}{)(x X P x F ≤=}1{}0{=+==X P X P 1}2{==+X P .从而=)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<.212121103100x x x x ,,,,,,, 8.某批矿砂的5个样品中镍含量经测定为(%)X :3.25,3.27, 3.24,3.26,3.24,假设镍含量的测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(01.0=α)? 6041.4)4(005.0=t解:检验假设 25.3:00==μμH ,25.3:01=≠μμH .当0H 成立时,统计量~(1)X T t n =-.又05.0=α时,查表得6041.4)4(005.0=t .于是0H 的拒绝域为),6041.4()6041.4,(+∞--∞= W .经计算252.3=x ,00017.02=s ,且5=n .于是W nsx t ∉=-=-=345.05/00017.025.3252.30μ,所以接受0H ,即可以认为这批矿砂的镍含量为3.25.9.设有三只外形完全相同的盒子,甲盒中有14个黑球,6个白球,乙盒中有5个黑球,25个白球,丙盒中有8个黑球42个白球,现在从三个盒子中 任取一盒,再从中任取一球;问(1)求取到黑球的概率;(2)若取到的是黑球,它恰好是从乙盒来的概率是多少?解:设B 表示黑球,i A 表示从第i 个盒子取球(i=1,2,3)则1231231714()()(),(|),(|),(|)310625P A P A P A P B A P B A P B A ======显然,123,,A A A 构成样本空间的一个划分,1)112212()()(|)()(|)()(|)171114770.342231036325225P B P A P B A P A P B A P A P B A =++=⨯+⨯+⨯==(2)222()(|)1/18(|)0.1623()77225P A P B A P A B P B ===10.设随机变量X的密度函数为11()0,else x f x -<<=⎩求 :(1)常数A; (2) 1{||};2P X < (3)分布函数F (x );(4)(),()E X D X ;解:(1)1101()2sin |f x dx Aarc x A π+∞-∞-====⎰⎰1A π⇒=(2) 1121211()()23P X f x dx -<===⎰⎰(3)0,111()sin ,1121,1x F x arc x x x π≤-⎧⎪⎪=+-<<⎨⎪≥⎪⎩(4)()0EX xf x dx +∞-∞==⎰()2221()2DX EX EX x f x dx +∞-∞=-==⎰11.某电站供应10000户居民用电,假设用电高峰时,每户用电的概率为0.9, 若每户用电0.2千瓦,问电站至少应具有多大的发电量,才能以95%的概率保证居民用电。