2019-2020学年福建省南平市建阳区七年级下学期期末数学试卷及答案解析
- 格式:docx
- 大小:293.23 KB
- 文档页数:18
第 1 页 共 11 页2019-2020学年福建省南平市七年级下学期期末数学试卷一、选择题(本大题共10小题,每小3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列四个数中,属于无理数的是( )A .23B .0.5C .2D .π 【解答】解:23、0.5和2是有理数,π是无理数.故选:D .2.下列调查中,不适合用全面调查的是( )A .了解全班学生的课外读书时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员的面试D .了解一批灯管的使用寿命【解答】解:A .了解全班学生的课外读书时间适合普查;B .旅客上飞机前的安检适合普查;C .学校招聘教师,对应聘人员的面试适合普查;D .了解一批灯管的使用寿命适合抽样调查;故选:D .3.下列命题属于真命题的是( )A .如果a <0,b >0,那么a +b <0B .相等的两个角一定是对顶角C .同角的补角相等D .如果两条直线被第三条直线所截,那么同位角相等【解答】解:A 、如果a <0,b >0,那么a +b <0,错误,是假命题;B 、相等的两个角不一定是对顶角,故错误,是假命题;C 、同角的补角相等,正确,是真命题;D 、如果两条平行直线被第三条直线所截,那么同位角相等,错误,是假命题,故选:C .4.不等式组{x >−2x <1的整数解个数是( )第 2 页 共 11 页A .1B .2C .3D .4【解答】解:由题意知﹣2<x <1,∴此不等式组的整数解有﹣1、0这2个,故选:B .5.已知点P 在第四象限,它到x 轴的距离为6,到y 轴的距离为5,则点P 的坐标为( )A .(6,﹣5)B .(5,﹣6)C .(﹣6,5)D .(﹣5,6)【解答】解:∵点P 在第四象限,它到x 轴的距离为6,到y 轴的距离为5,∴点P 的坐标为(5,﹣6),故选:B .6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于( )A .35°B .45°C .55°D .65°【解答】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=90°﹣∠1=90°﹣35°=55°,又∵直尺的两边平行,∴∠2=∠3,∴∠2=55°.故选:C .7.我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两多7两,每人半斤少半斤,试问各位善算者,多少人分多少银(注:古代1斤=16两).设有x 人,分y 两银,则( )A .{7x =y −78x =y +8B .{7x =y −75x =y +5。
2020年福建省南平市七年级第二学期期末达标检测数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.如图,如果∠D+∠EFD=180°,那么( )A .AD ∥BCB .EF ∥BC C .AB ∥DCD .AD ∥EF【答案】D【解析】【分析】 由,D EFD ∠∠是,AD EF 被DF 所截产生的同旁内角,结合已知条件可得答案.【详解】 解: ∠D+∠EFD=180°,∴ AD ∥EF ,故选D .【点睛】本题考查的是:平行线的判定,同旁内角互补,两直线平行,掌握这个判定定理是解题的关键. 2.一个三角形的两边长分别是3和7,则第三边长可能是( )A .2B .3C .9D .10 【答案】C【解析】设第三边长为x ,由题意得:7-3<x<7+3,则4<x<10,故选C .【点睛】本题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和. 3.不等式1-2x <5-12x 的负整数解有 ( ) A .1个 B .2个 C .3个 D .4个【答案】B【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集后按要求求出整数解即可.【详解】2(1-2x )<10-x ,2-4x<10-x ,-4x+x<10-2,-3x<8, x>-223, 所以不等式的负整数解有-1、-2,共2个,故选B.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤及注意事项是关键. 4.下列多项式相乘,可以用平方差公式直接计算的是( )A .(x +5y)(x -5y)B .(-x +y)(y -x)C .(x +3y)(2x -3y)D .(3x -2y)(2y -3x)【答案】A【解析】【分析】根据平方差公式的特点进行判断即可.【详解】A. (x +5y)(x -5y)能用平方差公式进行计算,故本选项正确;B. (-x +y)(y -x)=-(x -y)(y -x)不能用平方差公式进行计算,故本选项错误;C. (x +3y)(2x -3y)不能用平方差公式进行计算,故本选项错误;D. (3x -2y)(2y -3x)不能用平方差公式进行计算,故本选项错误;故选A.【点睛】本题考查平方差公式,解题的关键是熟练掌握平方差公式.5.若a b >,则下列各式中一定成立的是( )A .22a b +>+B .ac bc <C .22a b ->-D .33a b ->- 【答案】A【解析】【分析】根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A、若a>b,则a+2>b+2,故本选项正确;B、若a>b,当c>0时,ac>bc,当c<0时,ac<bc,故本选项错误;C、若a>b,则-2a<-2b,故本选项错误;D、若a>b,则-a<-b,则1-a<1-b,故本选项错误;故选A.【点睛】此题主要考查了不等式的性质,关键是注意不等式的性质1.6.在下列四项调查中,方式正确的是()A.对某类烟花爆竹燃放安全情况,采用全面调查的方式B.了解某班同学每周锻炼的时问,采用全面调查的方式C.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式D.了解某省中学生旳视力情况,采用全面调查的方式【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A.对某类烟花爆竹燃放安全情况,采用抽样调查的方式,A错误;B.了解某班同学每周锻炼的时间,采用全面调查的方式,B正确;C.为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,C错误;D.了解某省中学生的视力情况,采用抽样调查的方式,D错误;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,解题关键在于对于精确度要求高的调查,事关重大的调查往往选用普查.7.若m>n,则下列各式中一定成立的是()A.m-2>n-2 B.m-5<n-5 C.-2m>-2n D.4m<4n【答案】A【解析】【分析】根据不等式的基本性质逐一判断即可得.【详解】解:∵m >n ,∴m-2>n-2,m-5>n-5,-2m <-2n ,4m >4n ,故选:A .【点睛】本题考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.8.下列各点中,在第二象限的点是( )A .()3,2-B .()3,2--C .()3,2D .()3,2- 【答案】A【解析】分析:根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.详解:A 、(-3,2)在第二象限,故本选项正确;B 、(-3,-2)在第三象限,故本选项错误;C 、(3,2)在第一象限,故本选项错误;D 、(3,-2)在第四象限,故本选项错误.故选A .点睛:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 9.方程组632x y x y +=⎧⎨-=-⎩的解是( ). A .51x y =⎧⎨=⎩B .42x y =-⎧⎨=-⎩C .51x y =-⎧⎨=-⎩D .42x y =⎧⎨=⎩【答案】D【解析】【分析】 采用加减消元法解方程组即可.【详解】632x y x y +=⎧⎨-=-⎩①②①-②得:48y =∴2y =将2y =代入①得:26x +=∴4x =∴方程组的解为42x y =⎧⎨=⎩故选D .【点睛】本题考查解二元一次方程组,熟练掌握消元法是解题的关键.10.如图,宽为60cm 的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为( )A .60cmB .120cmC .312cmD .576cm【答案】B【解析】【分析】 设小长方形的长为x 厘米,宽为y 厘米,根据大长方形的长与宽与小长方形的关系建立二元一次方程组,求出其解就可以得出结论.【详解】设小长方形的长为x 厘米,宽为y 厘米,由题意,得6042x y x y x +=⎧⎨+=⎩, 解得:4812x y =⎧⎨=⎩, 所以一个小长方形的周长=2(x+y )=2×(48+12)=120(厘米),故选B.【点睛】本题考查了长方形的面积公式的运用,列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时运用大长方形的长与宽与小长方形的关系建立二元一次方程组是关键.二、填空题11.x 的12与5的和不大于3,用不等式表示为______________ 【答案】2x +5≤3 【解析】【分析】根据x 的12,即2x ,然后与5的和不大于3得出即可. 【详解】 解:又题意得:2x +5≤3 故答案为:2x +5≤3. 【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.若点(2,m ﹣3)在第四象限,则实数m 的取值范围是_____.【答案】3m <【解析】【分析】根据第四象限内点的坐标特点列出关于m 的不等式,求出m 的取值范围即可.【详解】∵点(2,m-1)在第四象限,∴m-1<0,解得m <1.故答案为:m <1.【点睛】本题考查的是解一元一次不等式,熟知第四象限内点的坐标特点是解答此题的关键.13.已知每件奖品价格相同,每件奖品价格相同,老师要网购两种奖品件,若购买奖品件、奖品件,则微信钱包内的钱会差元;若购买奖品件、奖品件,则微信钱包的钱会剩余元,老师实际购买了奖品件,奖品件,则微信钱包内的钱会剩余__________元.【答案】1610【解析】【分析】设A 奖品价格为x 元/个,B 奖品价格为y 元/个,微信钱包金额为z 元,根据题意可得9x+7y=z+230,7x+9y=z-230,从而得到8x+8y=z,x-y=230,从而得到结论.【详解】设A奖品价格为x元/个,B奖品价格为y元/个,微信钱包金额为z元,根据题意得:,由①+②得:16x+16y=2z,即8x+8y=z,则微信钱包金额刚好可以买8个A产品和8个B产品,由①-②得:2x-2y=460,即x-y=230,则A的价格比B的价格多230元,∴x+15y=8x+8y-7(x-y)=z-7=z-1610,∴微信钱包内的钱会剩余1610元.【点睛】考查了方程组的应用,解题关键是求得微信钱包金额刚好可以买8个A产品和8个B产品和A的价格比B的价格多230元,再将x+15y变形成=8x+8y-7(x-y)的形式.14.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.【答案】1【解析】【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥1,即甲队至少胜了1场.故答案是:1.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.15.如图,在.△ABC中,各边的长度如图所示,∠C=90°,AD平分∠CAB交BC于点D,则点D到AB的距离是__.【答案】1【解析】解:过点D作DE⊥AB于E,∵∠C=90°,AD平分∠CAB交BC于点D,∴DC=DE=1,即点D到AB的距离是1.故答案为116.如果2x-7y=5,那么用含y的代数式表示x,则x=______.【答案】7y5 2+【解析】【分析】把y看做已知数求出x即可.【详解】方程2x-7y=5,解得:x=7y52+,故答案为7y5 2+【点睛】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.17.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为_____.【答案】 (-505,505)【解析】【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1的坐标为(﹣n,n)(n为正整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,∴点A4n﹣1的坐标为(﹣n,n)(n为正整数).又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为(﹣505,505).【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1的坐标为(﹣n,n)(n 为正整数)”是解题的关键.三、解答题18.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=1.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).【答案】【应用】:(1)3;(4)(1,4)或(1,﹣4);【拓展】:(1)1;(4)t=±4;(3)d(P,Q)的值为4或4.【解析】【分析】(1)根据若y1=y4,则AB∥x轴,且线段AB的长度为|x1-x4|,代入数据即可得出结论;(4)由CD∥y轴,可设点D的坐标为(1,m),根据CD=4即可得出|0-m|=4,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(4)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB的长度为|﹣1﹣4|=3.故答案为:3.(4)由CD∥y轴,可设点D的坐标为(1,m),∵CD=4,∴|0﹣m|=4,解得:m=±4,∴点D的坐标为(1,4)或(1,﹣4).【拓展】:(1)d(E,F)=|4﹣(﹣1)|+|0﹣(﹣4)|=1.故答案为:1.(4)∵E(4,0),H(1,t),d(E,H)=3,∴|4﹣1|+|0﹣t|=3,解得:t=±4.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1|x|×3=3,解得:x=±4.2当点Q的坐标为(4,0)时,d(P,Q)=|3﹣4|+|3﹣0|=4;当点Q的坐标为(﹣4,0)时,d(P,Q)=|3﹣(﹣4)|+|3﹣0|=4综上所述,d(P,Q)的值为4或4.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.19.解方程组或不等式组:(1)()()42312322x y y x y ⎧--=--⎪⎨+=⎪⎩(2)()()323121x x x x +≥-⎧⎨-<+⎩【答案】(1)30112111x y ⎧==⎪⎪⎨⎪⎪⎩;(2)−12⩽x<5 【解析】【分析】(1)先把方程组整理成一般形式,再利用代入消元法求解即可.(2)分别求出各不等式的解集,再求出其公共解集,在x 的取值范围内找出符合条件的x 的整数值即可.【详解】(1)方程组可化为493212y x x y =-+=⎧⎨⎩①② ,①代入②得,3x+2(4x−9)=12,解得x=3011, 把x=3011代入①得,y=4×3011−9=2111 , 所以,方程组的解是30112111x y ⎧==⎪⎪⎨⎪⎪⎩ (2)()()323121x x x x +≥-⎧⎪⎨-<+⎪⎩①② 由①得x ⩾−12; 由②得x<5; ∴不等式组的解集为−12⩽x<5. 【点睛】此题考查解一元一次不等式组,解二元一次方程组,解题关键在于掌握运算法则.20.化简:()()()223+10x y x y x y y +---.【答案】6xy【解析】【分析】原式第一项利用完全平方公式化简,第二项利用平方差公式计算,去括号合并即可得到结果.【详解】原式()222226910x xy y x y y =++---222226910x xy y x y y =++-+-6xy =【点睛】题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.21.如图,在ABC ∆中,D 是BC 上一点,F 是AC 上的一点,//DE AC ,交AB 于点E ,AED AFD ∠=∠.(1)找出图中所有与A ∠相等的角;(2)求证://DF AB ;(3)若130B C ∠+∠=︒,求FDE ∠的度数.【答案】(1)BED ∠,DFC ∠,EDF ∠;(2)见解析;(3)50︒【解析】【分析】(1)根据平行线的性质解答;(2)根据平行线的性质定理和判定定理证明结论;(3)根据三角形内角和定理求出∠A ,根据平行线的性质定理和判定定理计算即可.【详解】解:(1)∵//DE AC ,∴∠A=∠BED ,∵AED AFD ∠=∠∴∠BED=∠CFD ,∴∠A=∠CFD=∠DEF ,∴与∠A 相等的角有∠BED 、∠CFD 、∠EDF ;(2)//DE AC ,180DEA A ∴∠+∠=︒,AED AFD ∠=∠,180AFD A ∴∠+∠=︒,//DF AB ∴.(3)130B C ∠+∠=︒,50A ∴∠=︒,//AB DF ,50DFC A ∴∠=∠=︒.//ED AC ,50FDE DFC ∴∠=∠=︒.【点睛】本题考查的是三角形内角和定理、平行线的性质,掌握三角形内角和等于180°是解题的关键. 22.随着经济的发展,私家车越来越多,为缓解停车矛盾,某小区投资30万元建成了若干个简易停车位,建造费用分别为顶棚车位15000元/个,露天车位3000元/个.考虑到实际因素,露天车位的数量不少于12个,但不超过顶棚车位的2倍,则该小区两种车位各建成多少个?试写出所有可能的方案.【答案】方案有三种:A.顶棚车位15个,露天车位25个;B 顶棚车位26个,露天车位20个;C. 顶棚车位1个,露天车位15个.【解析】【分析】设设建设室内车位x 个,露天车位y 个,根据露天车位的数量不少于12,但不超过室内车位的2倍,可列出不等式组求解,进而可求出方案情况.【详解】解:设建设顶棚车位x 个,露天车位y 个,由题意得150003000300000122x y y x +=⎧⎨≤≤⎩, 解得1008875x ≤≤. 因为x 取整数,所以x 取15、16、1. 所以方案有三种:【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.在下列括号内填理由:已知:如图,AC ∥DE ,CD 、EF 分别为∠ACB 、∠DEB 的平分线.求证:CD ∥EF证明:∵AC ∥DE 〔已知)∴ = ( )∵CD 、EF 分别为∠ACB 、∠DEB 的平分线.(已知)12DCB ∴∠= ,12FEB ∠= ( ) ∴∠DCB =∠FEB∴CD ∥EF ( )【答案】∠ACB ;∠BED ;两直线平行,同位角相等;∠ACB ;∠BED ;角平分线的定义;同位角相等,两直线平行【解析】【分析】根据平行线的性质和判定,以及角平分线的定义就进行证明即可.【详解】证明:∵AC ∥DE (已知)∴∠ACB =∠BED ( 两直线平行,同位角相等)∵CD 、EF 分别为∠ACB 、∠DEB 的平分线.(已知)11,22DCB ACB FEB BED ∴∠=∠∠=∠(角平分线的定义) ∴∠DCB =∠FEB∴CD ∥EF ( 同位角相等,两直线平行),故答案为:∠ACB ;∠BED ;两直线平行,同位角相等;∠ACB ;∠BED ;角平分线的定义;同位角相等,两直线平行.【点睛】本题主要运用了平行线的性质和判定:同位角相等,两直线平行;两直线平行,同位角相等.24.已知关于x ,y 二元一次方程组326x y n x y +=⎧⎨-=⎩. (1)如果该方程组的解互为相反数,求n 的值及方程组的解;(2)若方程组解的解为正数,求n 的取值范围.【答案】n>1【解析】【分析】(1)先根据题意求出n 的值,再求出方程组的解;(2)用含m 的代数式表示出x 、y ,根据x 的值为正数,y 的值为正数,得关于m 的一元一次不等式组,求解即可.【详解】(1)依题意得0x y +=,所以n=0026x y x y +=⎧⎨-=⎩解得2-2x y =⎧⎨=⎩ (2)由326x y n x y +=⎧⎨-=⎩解得222x n y n =+⎧⎨=-⎩∴20220n n +>⎧⎨->⎩ ∴n>1【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.会用代入法或加减法解二元一次方程组是解决本题的关键.25.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值. 【答案】12m m --;当0m =时,原式12= 【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:3212m m m 223121m m m m 243211m m m 11112m m m m21m m , ∵22m -≤≤且m 为整数, ∴当m=0时,原式011022【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.。
福建省南平市2019学年七年级下学期期末复习检测数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3) 块纸板的周长为Pn,则Pn-Pn-1的值为()A. B. C. D.2. 如图,小明作出了边长为的第1个正△A1B1C1,算出了正△A1B1C1的面积。
然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积。
用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第10个正△A10B10C10的面积是()A. B. C. D.二、选择题3. 如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A. 3B. 4C. 5D. 6三、单选题4. 如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A. B. C. D.5. 袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是()A. B. C. D.6. 如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A. 20°B. 30°C. 70°D. 80°7. 已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A. ∠BAC<∠ADCB. ∠BAC=∠ADCC. ∠BAC>∠ADCD. 不能确定参考答案及解析第1题【答案】第3题【答案】第4题【答案】第6题【答案】第7题【答案】。
南平市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图片中,哪些是由图片(1)分别经过平移和旋转得到的()(1) (2)(3) (4)A . (2)和(3)B . (3)和(4)C . (2)和(4)D . (4)和(3)2. (2分)若点P在第二象限,且到两条坐标轴的距离都是4,则点P的坐标为()A . (﹣4,4)B . (﹣4,﹣4)C . (4,﹣4)D . (4,4)3. (2分) (2019七上·来宾期末) 某厂生产上第世博会吉祥物:“海宝”纪念章10万个,质检部门为检测这批纪念章质量的合格情况,从中随机抽查500个,合格499个下列说法正确的是)A . 总体是10万个纪念章的合格情况,样本是500个纪念章的合格情况B . 总体是10万个纪念章的合格情况,样本是499个纪念章的合格情况C . 总体是500个纪念章的合格情况,样本是500个纪念章的合格情况D . 总体是10万个纪念章的合格情况,样本是1个纪念章的合格情况4. (2分) (2020八上·遂宁期末) 在实数,3,0,0.5中,最小的数是()A .B . 3C . 0D . 0.55. (2分)不等式组的解集是()A .B .C .D .6. (2分) (2017八下·北海期末) 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB上不与AB重合的一个动点,过点D分别作DE⊥AC于点E,DF⊥BC于点F,则线段EF的最小值为()A . 3B . 4C .D .7. (2分) (2018八上·临安期末) 如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A . (3,3)B . (4,3)C . (﹣1,3)D . (3,4)8. (2分)若关于x,y的方程组的解满足0<x+y<1,则k的取值范围是()A . -4<k<0B . -1<k<0C . 0<k<8D . k>-49. (2分)某商店有两个进价不同的计算器都以64元卖出,其中一个盈利60℅,另一个亏本20℅,则该商店在这次买卖中()A . 不赔不赚B . 赚了8元C . 赔8元D . 赚32元10. (2分)(2018·潘集模拟) 如图所示,为估算某河的宽度,在河对岸的边上选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB的长为()A . 60mB . 40mC . 30mD . 20m二、填空题 (共5题;共6分)11. (1分) (2019八上·揭阳期中) 已知点P(m,2)在第一象限,那么点B(3,﹣m)在第________象限.12. (1分)方程4(3x﹣y)=x﹣3y,用含x的代数式表示,则y=________.13. (1分) (2019·河南模拟) 如图,在矩形ABCD中,AB=4,BC=5,E,F分别是线段CD和线段BA延长线上的动点,沿直线EF折叠使点D的对应点D′落在BC上,连接AD′,DD′,当△ADD′是以DD′为腰的等腰三角形时,DE的长为________.14. (1分) (2016八上·县月考) 已知关于x的不等式组的整数解共有5个,则a的取值范围是________15. (2分)(2017·吴中模拟) 若2a﹣3b2=5,则6﹣2a+3b2=________.三、解答题 (共8题;共82分)16. (10分) (2017八下·江海期末)17. (10分)(2017·盐城) 解不等式组:.18. (2分) (2017七下·平塘期末) 如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB与CD之间有怎样的位置关系?并说明理由.19. (15分) (2017七下·台州期中) 如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.20. (15分)(2015·台州) 某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.21. (5分)(2018·汕头模拟) 解不等式组,并将解集在数轴上表示出来.22. (10分) (2019七下·隆昌期中) 某商场计划购进A , B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?23. (15分) (2017七上·路北期中) 如图,将边长为2的小正方形和边长为x的大正方形放在一起.(1)用x表示阴影部分的面积;(2)计算当x=5时,阴影部分的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共82分)16-1、17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、。
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.2.下列命题是真命题的是()A.相等的角是对顶角B.和为180°的两个角是邻补角C.两条直线被第三条直线所截,同位角相等D.过直线外一点,有且只有一条直线与已知直线平行3.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°4.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.6.如图,线段AD、AE、AF分别是△ABC的高线、角平分线、中线,比较线段AC、AD、AE、AF的长短,其中最短的是()A.AF B.AE C.AD D.AC7.下列说法正确的是()A.同位角相等B.两条直线被第三条直线所截,内错角相等C.对顶角相等D.两条平行直线被第三条直线所裁,同旁内角相等8.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是( )A.22cm B.23cm C.24cm D.25cm9.下列运算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 5C .(-a 2)3=a 6D .-2a 3b÷ab=-2a 2b10.下列计算正确的是( ).A .2233a a -=B .236a a a ⋅=C .()326a a =D .623+=a a a二、填空题题11.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.12.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.13.现有若干张卡片,分别是正方形卡片A ,B 和长方形卡片C,卡片大小如图所示,如果要拼一个长为(a+2b),宽为(a+b )的大长方形,则需要C 类卡片张数____张14.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,AB =6cm ,DE ⊥AB 于E ,则△DEB 的周长为_____.15.四个电子宠物捧座位,一开始,小鼠、小猴、小兔、小猫分别坐在1.2,3,4号座位上(如图所示).以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次上下两排交换,第四次再左右两列交换…这样一直下去,则第2018次交换位置后,小兔了坐在_____号位上.16.比较大小:7________50(填“>”、“<”或“=”)17.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 三、解答题18.(1)因式分解:x 2(x-y )+y 2(y-x )(2)用简便方法计算:1252-50×125+25219.(6分)某学校为加强学生的体育锻炼,曾两次在某商场购买足球和篮球.第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元.()1求足球和篮球的标价;()2如果现在商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?20.(6分)推理填空:如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1=∠2(已知),且∠1=∠4( )∴∠2=∠4 (等量代换)∴CE ∥BF ( )∴∠ =∠3( )又∵∠B =∠C (已知),∴∠3=∠B (等量代换)∴AB ∥CD ( )21.(6分)探索题:(x -1)((x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1.(1)观察以上各式并猜想:①(x-1)(x6+x5+x4+x3+x2+x+1)=________________________;②(x-1)(x n+x n-1+x n-2+…+x3+x2+x+1)=________________________;(2)请利用上面的结论计算:①(-2)50+(-2)49+(-2)48+…+(-2)+1②若x1007+x1006+…+x3+x2+x+1=0,求x2016的值.22.(8分)解方程组:(1)3238x yx y=-⎧⎨+=⎩;(2)203420x yx y+=⎧⎨-=⎩23.(8分)某商店决定购进A、B两种纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B 种纪念品可获利润30元,在(2)的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.(10分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元()1求购买1个篮球和1个足球各需多少元?()2若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?25.(10分)如图,在平面直角坐标系中,的顶点均在正方形的格点上,点D的坐标是,点A 的坐标是(1)将平移后使点C与点D重合,点A、B分别与点E、F重合,画出,并直接写出E、F的坐标.(2)若AB上的点M坐标为,则平移后的对应点的坐标为_______(用含x、y的代数式表示)(3)求的面积.参考答案一、选择题(每题只有一个答案正确)1.D【解析】根据命题的定义分别进行判断即可.A.画两条相等的线段为描叙性语言,不是命题,所以A选项错误;B.等于同一个角的两个角相等吗?为疑问句,不是命题,所以B选项错误;C.延长线段AO到C,使OC=OA为描叙性语言,不是命题,所以C选项错误;D.两直线平行,内错角相等为命题,所以D选项正确.故选D.2.D【解析】【分析】分别利用对顶角以及邻补角、平行线的性质分别分析得出答案.【详解】A. 相等的角不一定是对顶角,故此选项错误;B. 和为180°的两个角不一定是邻补角,故此选项错误;C. 两条平行直线被第三条直线所截,同位角相等,故此选项错误;D. 过直线外一点,有且只有一条直线与已知直线平行,正确.故选:D.【点睛】此题考查命题与定理,掌握定理是解题关键3.D【解析】【分析】利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.【详解】如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.4.B【解析】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.5.D【解析】【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.6.C【解析】【分析】根据垂线段的性质:垂线段最短可得答案.【详解】根据垂线段最短可得AD最短,故选:C.【点睛】此题主要考查了垂线段的性质,关键是掌握垂线段最短.7.C【解析】分析:根据平行线的性质对A、B、D进行判断;根据对顶角的性质对C进行判断.详解:A.两直线平行,同位角相等,所以A选项错误;B.两条平行直线被第三条直线所截,内错角相等,所以B选项错误;C.对顶角相等,所以C选项正确;D.两条平行直线被第三条直线所截,同旁内角互补,所以D选项错误.故选C.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.C【解析】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选C.9.B【解析】【分析】直接利用合并同类项法则以及整式的除法运算法则、积的乘方运算法则分别化简得出答案.【详解】解:A、a2+a3,无法合并,故此选项错误;B、a2•a3=a5,故此选项正确;C、(-a2)3=-a6,故此选项错误;D 、-2a 3b÷ab=-2a 2,故此选项错误;故选:B .【点睛】此题主要考查了合并同类项以及整式的除法运算、积的乘方运算,正确掌握相关运算法则是解题关键. 10.C【解析】【分析】根据整式的加减与幂的运算法则逐一解答判断.【详解】A. 22232a a a -=,故错误;B. 23235a a a a +⋅==,故错误;C. ()326a a =,该选项正确;D. 62a a ,不是同类项,不能相加减,故错误.故选:C.【点睛】本题主要考查了整式的加减与幂的运算,熟练运用法则进行计算是关键.二、填空题题11.(﹣5,13)【解析】【分析】设纵坐标为n 的点有n a 个(n 为正整数),观察图形每行点的个数即可得出n a =n ,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n 的点有n a 个(n 为正整数),观察图形可得,1a =1,2a =2,3a =3,…,∴n a =n ,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.12.32【解析】分析:依题意,设小长方形的长为a ,宽为b ,则大长方形长为2a ,宽为2b a +,则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.故答案为:32.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,找出合适的等量关系,列出方程组.13.3【解析】【分析】拼成的大长方形的面积是(a+2b)(a+b)=a 2+3ab+2b 2,即需要一个边长为a 的正方形,2个边长为b 的正方形和3个C 类卡片的面积是3ab【详解】(a+2b)(a+b)=a 2+3ab+2b 2则需要C 类卡片张数为3张。
福建省2019-2020年七年级下学期期末测试数学试卷一、选择题:每小题2分,共24分.每小题只有一项是符合题目要求的.1.(2分)若代数式x+4的值是2,则x等于()A.2B.﹣2 C.6D.﹣62.(2分)画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.3.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.4.(2分)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等5.(2分)如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣26.(2分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.47.(2分)在△ABC中,若2∠A=∠B=∠C,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定8.(2分)方程3x﹣4y=2的一组解是()A.B.C.D.9.(2分)下列说法中不正确的是()A.线段有1条对称轴B.等边三角形有3条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴10.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.11.(2分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形12.(2分)在一次数学阅读课中,小红碰到一个问题:今有鸡兔同笼,上有十七头,下有五十二足,问鸡兔各几何?设x为鸡数,y为兔数,聪明的你请帮她算出x,y的值分别是()A.B.C.D.二、填空题:每小题3分,分值24分.13.(3分)如果5x=10﹣2x,那么5x+=10.14.(3分)请写出一个二元一次方程组,使它的解是.15.(3分)如果一个正多边形的内角和等于1440°,那么这个正多边形的每一个外角的度数为.16.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.17.(3分)定义新运算:对于任意实数a,b,都与a⊗b=a(a+b)﹣1,若3⊗x的值小于12,请列出不等式是.18.(3分)小明从镜子里看到镜子对面电子钟的像如图所示:,实际时间是.19.(3分)若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是边形.20.(3分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三、解答题:共7小题,满分52分.21.(10分)解方程或不等式.(1)2x+1=5x+7(2)求不等式:+2>x的非负整数解.22.(6分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.23.(6分)课外活动中一些学生分组参加活动,原来每组有8人,后来重新编组,每组6人,这样比原来增加2组,问这些学生共有几人?(用方程解)24.(6分)二元一次方程组的解满足方程x﹣4y=5,求k的值.25.(6分)如图,在△ABC中,∠CAB=95°,AB=3cm,BC=6.2cm,△ABC顺时针旋转一定角度得到△ADE,点D恰好落在BC边上,△ABD为等边三角形.(1)旋转中心是,旋转的角度是;(2)请求出∠E的度数和CD的长.26.(9分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?27.(9分)(1)如图①,你直到∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=°;x=°;x=°;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F=°.七年级下学期期末数学试卷参考答案与试题解析一、选择题:每小题2分,共24分.每小题只有一项是符合题目要求的.1.(2分)若代数式x+4的值是2,则x等于()A.2B.﹣2 C.6D.﹣6考点:解一元一次方程;代数式求值.专题:计算题.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.2.(2分)画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,也不是中心对称图形.故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2分)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等考点:全等三角形的判定与性质.专题:常规题型.分析:根据能够完全重合的两个图形叫做全等形,结合各项说法作出判断即可.解答:解:A、两个形状相同的图形大小不一定相等,故本项错误;根据能够完全重合的两个图形叫做全等形,可得:B、能够完全重合的两个三角形全等正确,故本项错误;C、全等图形的形状和大小都相同正确,故本项错误;D、根据全等三角形的性质可得:全等三角形的对应角相等,故本选项正确;故选:A.点评:本题考查了全等形的概念和三角形全等的性质:1、能够完全重合的两个图形叫做全等形,2、全等三角形的对应边相等;全等三角形的对应角相等;全等图形的形状和大小都相同,做题时要细心体会.5.(2分)如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣2考点:不等式的性质;不等式的解集.分析:根据不等式的解法,两边都除以(a+2),不等号的方向改变,a+2<0计算即可得解.解答:解:∵(a+2)x>a+2两边都除以(a+2)得x<1,∴a+2<0,∴a<﹣2.故选D.点评:主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(2分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.4考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.点评:考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.7.(2分)在△ABC中,若2∠A=∠B=∠C,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定考点:三角形内角和定理.分析:运用三角形的内角和定理求出∠A=36°,进而求出∠B=∠C=72°,即可解决问题.解答:解:在△ABC中,∵2∠A=∠B=∠C,且∠A+∠B+∠C=180°,∴5∠A=180°,∠A=36°,∴∠B=∠C=72°,∴△ABC是锐角等腰三角形.故选B.点评:本题主要考查了等腰三角形的定义、三角形的内角和定理及其应用问题;灵活运用三角形的内角和定理来解题是关键.8.(2分)方程3x﹣4y=2的一组解是()A.B.C.D.考点:二元一次方程的解.专题:计算题.分析:把各项中x与y代入计算检验即可得到结果.解答:解:把x=2,y=1代入方程左边得:6﹣4=2,右边=2,∴左边=右边,则是方程3x﹣4y=2的一组解.故选D.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(2分)下列说法中不正确的是()A.线段有1条对称轴B.等边三角形有3条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴考点:轴对称的性质.分析:根据轴对称图形的概念和具体图形确定各个选项中图形的对称轴,判断得到答案.解答:解:线段有本身所在的直线和垂直平分线2条对称轴,A错误;等边三角形有三条高所在的直线3条对称轴,B正确;角只有角平分线所在的直线1条对称轴,C正确;底与腰不相等的等腰三角形只有一条对称轴,D正确,故选:A.点评:本题考查的是轴对称图形的知识,掌握轴对称图形的概念、正确确定图形的对称轴的条数是解题的关键.10.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:求出不等式组的解集,表示在数轴上即可.解答:解:,由①得:x≥﹣1,由②得:x<1,则不等式组的解集为﹣1≤x<1,故选B点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.(2分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形考点:平面镶嵌(密铺).分析:本题意在考查学生对平面镶嵌知识的掌握情况.解答:解:由平面镶嵌的知识可知,只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形,故选项A、B、D不能够铺满地面.故选C.点评:本题意在考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.有部分考生根据直觉认为是正八边形,其实由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.12.(2分)在一次数学阅读课中,小红碰到一个问题:今有鸡兔同笼,上有十七头,下有五十二足,问鸡兔各几何?设x为鸡数,y为兔数,聪明的你请帮她算出x,y的值分别是()A.B.C.D.考点:二元一次方程组的应用.分析:根据等量关系:上有十七头,下有五十二足,即可列出方程组.解答:解:设x为鸡数,y为兔数,由题意得,解得:.故选:C.点评:此题考查了二元一次方程方程组的实际运用,解答本题的关键是仔细审题,根据等量关系得出方程组.二、填空题:每小题3分,分值24分.13.(3分)如果5x=10﹣2x,那么5x+2x=10.考点:等式的性质.分析:根据等式的性质进行填空.解答:解:在等式5x=10﹣2x的两边同时加上2x,得5x+2x=10.故答案是:2x.点评:本题考查了等式的性质.1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.14.(3分)请写出一个二元一次方程组,使它的解是.考点:二元一次方程组的解.专题:开放型.分析:由x=﹣1,y=1为解列出方程组即可.解答:解:的解为.故答案为:.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程值域中两方程成立的未知数的值.15.(3分)如果一个正多边形的内角和等于1440°,那么这个正多边形的每一个外角的度数为36°.考点:多边形内角与外角.分析:首先设此多边形为n边形,根据题意得:180(n﹣2)=1440,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.解答:解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36°.点评:此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.16.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.考点:二元一次方程的应用.分析:设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.解答:解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.点评:此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.17.(3分)定义新运算:对于任意实数a,b,都与a⊗b=a(a+b)﹣1,若3⊗x的值小于12,请列出不等式是3(3+x)﹣1<12.考点:由实际问题抽象出一元一次不等式.专题:新定义.分析:根据题目所给的运算法则列不等式.解答:解:由题意得,3(3+x)﹣1<12.故答案为:3(3+x)﹣1<12.点评:本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是解题的关键.18.(3分)小明从镜子里看到镜子对面电子钟的像如图所示:,实际时间是16:25:08.考点:轴对称图形.分析:利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.解答:解:根据镜面对称的性质,题中所显示的时刻与16:25:08成轴对称,所以此时实际时刻为:16:25:08.故答案为:16:25:08.点评:此题考查了镜面反射的原理与性质,得到相应的对称轴是解决本题的关键.19.(3分)若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是十边形.考点:多边形的对角线.分析:可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.解答:解:多边形一条边上的一点M(不是顶点)出发,连接各个顶点得到9个三角形,则这个多边形的边数为9+1=10.故答案为:十.点评:考查了多边形的对角线,多边形一条边上的一点(不是顶点)出发,连接各个顶点得到的三角形个数=多边形的边数﹣1.20.(3分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种考点:概率公式;轴对称图形.分析:根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解答:解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.点评:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.三、解答题:共7小题,满分52分.21.(10分)解方程或不等式.(1)2x+1=5x+7(2)求不等式:+2>x的非负整数解.考点:一元一次不等式的整数解;解一元一次方程.分析:(1)先移项、再合并同类项,然后系数化为1即可求解;(2)首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.解答:解:(1)2x+1=5x+7,移项得,2x﹣5x=7﹣1,合并同类项得﹣3x=6,系数化为1得x=﹣2;(2)x+6>3x,﹣2x>﹣6,x<3,故不等式:+2>x的非负整数解为0,1,2.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.同时考查了解一元一次方程.22.(6分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.23.(6分)课外活动中一些学生分组参加活动,原来每组有8人,后来重新编组,每组6人,这样比原来增加2组,问这些学生共有几人?(用方程解)考点:一元一次方程的应用.分析:设这些学生共有x人,根据“原来每组有8人,后来重新编组,每组6人,这样比原来增加2组”建立方程,解方程即可.解答:解:设这些学生共有x人,根据题意得﹣=2,解得x=48.答:这些学生共有48人.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.(6分)二元一次方程组的解满足方程x﹣4y=5,求k的值.考点:二元一次方程组的解.专题:计算题.分析:把k看做已知数求出方程组的解表示出x与y,代入方程计算即可求出k的值.解答:解:,①+②得:6x=12k,即x=2k,①﹣②得:2y=﹣2k,即y=﹣k,把x=2k,y=﹣k代入方程得:k+4k=5,解得:k=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程值域中两方程成立的未知数的值.25.(6分)如图,在△ABC中,∠CAB=95°,AB=3cm,BC=6.2cm,△ABC顺时针旋转一定角度得到△ADE,点D恰好落在BC边上,△ABD为等边三角形.(1)旋转中心是点A,旋转的角度是60°;(2)请求出∠E的度数和CD的长.考点:旋转的性质.分析:(1)根据旋转的定义进行解答;(2)先根据旋转的性质得到AD=AB,∠BAD的度数等于旋转角的度数,由于∠B=60°,则可判断△ADB为等边三角形,根据等边三角形的性质得∠BAD=60°,即旋转角的度数为60°,BD=AB=3cm所以CD=BC﹣BD.解答:解:(1)∵△ABC绕点A按顺时针旋转一定角度得到△ADE,∴旋转中心是点A,∠BAD的度数等于旋转角的度数,∵△ADB为等边三角形,∴∠BAD=60°,即旋转角的度数为60°.故答案是:点A;60°;(2)∵△ABD为等边三角形,∴AB=BD=3cm,∠B=60°,∴∠C=180°﹣∠CAB﹣∠B=180°﹣95°﹣65°=25°.∵△ABC顺时针旋转一定角度得到△ADE,∴∠E=∠C=25°,∴CD=BC﹣BD=6.2﹣3=3.2(cm).点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质.26.(9分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解.解答:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.27.(9分)(1)如图①,你直到∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=180°;x=180°;x=180°;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F=140°.考点:三角形内角和定理;三角形的外角性质.分析:(1)首先延长BO交AC于点D,可得BOC=∠BDC+∠C,然后根据∠BDC=∠A+∠B,判断出∠BOC=∠B+∠C+∠A即可.(2)a、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.b、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.c、首先延长EA交CD于点F,EA和BC交于点G,然后根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,再根据∠GFC+∠FGC+∠C=180°,可得x=∠A+∠B+∠C+∠D+∠E=180°,据此解答即可.(3)根据∠BOD=70°,可得∠A+∠C+∠E=70°,∠B+∠D+∠F=70°,据此求出∠A+∠B+∠C+∠D+∠E+∠F的度数是多少即可.解答:解:(1)如图①,延长BO交AC于点D,∠BOC=∠BDC+∠C,又∵∠BDC=∠A+∠B,∴∠BOC=∠B+∠C+∠A.(2)如图②,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图③,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和B C交于点G,,根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,∵∠GFC+∠FGC+∠C=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,,∵∠BOD=70°,∴∠A+∠C+∠E=70°,∴∠B+∠D+∠F=70°,∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.故答案为:180、180、180、140.点评:(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.。
福建省南平市2019-2020学年七年级第二学期期末联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.如图,AB ∥CD ,点E 在线段BC 上,若∠2=70°,∠3=30°,则∠1的度数是( )A .30°B .40°C .50°D .60°【答案】B【解析】 分析:先根据三角形外角的性质求出∠C 的度数,再由平行线的性质即可得出结论.详解:∵∠2=70°,∠3=30°,且∠2是△CDE 的外角.∴∠C=∠2-∠3=40°. ∵AB∥CD.∴∠1=∠C=40°.故选B.点睛:本题考查了平行线的性质.2.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表) 温度/C ︒-20 -10 0 10 20 30声速/(/m s ) 318 324 330 336 342 348 下列说法中错误..的是( ) A .在这个变化过程中,当温度为10C ︒时,声速是336/m sB .温度越高,声速越快C .当空气温度为20C ︒时,声音5s 可以传播1740mD .当温度每升高10C ︒,声速增加6/m s【答案】C【解析】【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【详解】∵在这个变化中,自变量是温度,因变量是声速,∴A正确;∵根据表格可得温度越高声速越快,∴B正确;∵3425=1710m,∴C错误;∵324-318=6(m/s),330-324=6(m/s),336-330=6(m/s).342-336=6(m/s),∴D正确,故选:C.【点睛】此题考查函数,常量与变量,正确理解表格中数据的变化是解题的关键.3π、0、0.101001⋯中,无理数个数为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据无理数的定义:无限不循环小数叫无理数,逐个数分析即可.【详解】=π是无理数、0是有理数、0.101001⋯是无3=4理数.∴有3个无理数,故选:C.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅2.01001000100001⋅⋅⋅(0的个数一次多一个).4.下面运算中,结果正确的是( )A .()235a a =B .325a a a +=C .236a a a ⋅=D .331(0)a a a ÷=≠【答案】D【解析】【分析】根据幂的乘方、合并同类项、同底数幂的乘法、同底数幂的除法逐项计算即可.【详解】A. ()236a a =,故不正确;B. a 3与a 2不是同类项,不能合并,故不正确;C. 235a a a ⋅=,故不正确;D. 331(0)a a a ÷=≠,正确;故选D.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5.某校初二(1)班组建了班级篮球队和足球队,已知篮球数量比足球数量的2倍少3个,且篮球数量与足球数量比是3:2,求篮球和足球各有多少个?若设篮球有x 个,足球有y 个,则下列正确的方程组是 A . B . C . D .【答案】B【解析】【分析】根据题意,列出关系式即可.【详解】解:根据题意,则可得故答案为B.【点睛】此题主要考查二元一次方程组的实际应用,根据题意,列出关系式即可.6.计算16的算术平方根为( )A .4±B .2±C .4D .2±【答案】C【解析】【分析】 根据算术平方根进行计算即可【详解】16的算术平方根是4.故选C.【点睛】此题考查算术平方根,难度不大7.某市举办画展,如图,在长14m ,宽10m 的长方形展厅中,划出三个形状大小完全一样的小长方形区域摆放水仙花,则每个小长方形的周长为( )A .8mB .13mC .16mD .20m【答案】C【解析】 设小长方形的长为xm ,宽为ym ,由图可得214210x y x y +=⎧⎨+=⎩, 两式相加可得x+y=8,所以每个小长方形的周长为8×2=16m . 故选C .8.如图,直线AB ,CD 相交于点O ,OE 平分AOC ∠,若AOD ∠比AOE ∠大75︒,则AOD ∠的度数是( )A .100︒B .102︒C .105︒D .110︒【答案】D【解析】【分析】设AOE x ︒∠=,根据OE 平分AOC ∠和AOD ∠比AOE ∠大75︒这两个条件用含x 的代数式表示出,AOC AOD ∠∠,然后由AOD ∠和AOC ∠互为邻补角列出一元一次方程,求出AOE ∠,即可求出AOD ∠的度数【详解】∵OE 平分AOC ∠∴2AOC AOE ∠=∠设AOE x ︒∠=,则2AOC x ︒∠=∵AOD ∠比AOE ∠大75︒75AOD x ︒︒∠=+又∵180AOC AOD ︒∠+∠=∴2+75=180x x +()∴x=35∴AOD ∠=753575110x ︒︒︒︒︒+=+=故选:D【点睛】本题考查的是邻补角的定义及角平分线的定义,理解定义、根据相应角之间的关系列出方程是解题的关键. 9.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a+c >b+cD .a+b >c+b【答案】B【解析】【分析】根据数轴判断出a 、b 、c 的正负情况,然后根据不等式的性质解答.【详解】解:由图可知,a <b <0,c >0,A 、ac <bc ,故本选项错误;B 、ab >cb ,故本选项正确;C 、a+c <b+c ,故本选项错误;D、a+b<c+b,故本选项错误.故选B.10.判断下列语句,不是命题的是()A.线段的中点到线段两端点的距离相等B.相等的两个角是同位角C.过已知直线外的任一点画已知直线的垂线D.与两平行线中的一条相交的直线,也必与另一条相交【答案】C【解析】【分析】根据命题的定义是判断一件事情的语句,由题设和结论构成,对各个选项进行分析,从而得到答案.【详解】A. 线段的中点到线段两端点的距离相等;是命题,B. 相等的两个角是同位角;是命题,C. 过已知直线外的任一点画已知直线的垂线;不是命题,D. 与两平行线中的一条相交的直线,也必与另一条相交;是命题,故选:C【点睛】本题考查命题的概念以及能够从一些语句找出命题的能力.二、填空题11.已知x,y满足2124x yx y-=-⎧⎨-=⎩,则x-y的值为______.【答案】1【解析】【分析】观察方程组两方程的系数与待求式的关系,将两个方程相加,得到两个位置数的系数之比为1:(-1),再把(x-y)看成一个整体即可解出.【详解】解:2124x yx y-=-⎧⎨-=⎩①②①+②得:3x-3y=3,则x-y=1,故答案为:1.【点睛】此题考查了二元一次方程组的解法与条件求值,掌握加减消元和代入消元是解题的基础,观察条件和目标之间的区别与联系,实现互相转化是解题的关键.12.关于x的不等式组352223x xx a-≤-⎧⎨+>⎩有且仅有4个整数解,则a的整数值是______________.【答案】1,1【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤1x-1,得:x≤3,解不能等式1x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a的值为1和1,故答案为:1,1.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.【答案】1【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=1°;故应填1.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.14.已知x ,y 30y -=,则点P ( x ,y )应在平面直角坐标系中的第_____象限.【答案】二【解析】【分析】根据二次根式和绝对值的非负性求出x 、y 的值,在判断点P 的象限即可.【详解】∵30y -=∴20,30x y +=-=解得2,3x y =-=∴点()2,3P -∴点P 在第二象限故答案为:二.【点睛】本题考查了坐标点象限的问题,掌握二次根式和绝对值的非负性、象限的性质是解题的关键. 15.在直角坐标系中,点()26,5P x x --在第四象限,则x 的取值范围是 .【答案】3<x <5【解析】【分析】【详解】试题分析:根据第四象限内点的坐标符号即可列出不等式组,解出即得结果.由题意得26050x x ->⎧⎨-<⎩,解得35x << 考点:本题考查了点的坐标,解一元一次不等式组点评:解答本题的关键是熟练掌握各象限内点的坐标符号:第一象限:(+,+);第二象限:(-,+);第三象限:(-,-);第四象限:(+,-).16.在△ABC 中, ∠A=70°,∠B,∠C 的平分线交于点 O ,则∠BOC=_____度.【答案】125°【解析】【分析】先利用角平分线定义求出24∠+∠的度数,再由三角形的内角和定理即可求出∠BOC 的度数.【详解】如图:12∠=∠,34∠=∠∴24∠+∠=12(180°-A ∠)=12(180°-70°)=55° ∴∠BOC=180°-(24∠+∠)=180°-55°=125°故答案为125°.【点睛】本题考查了角平分线的性质及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 17.如图,四边形纸片ABCD 中,75A ∠=,65B ∠=,将纸片折叠,使C ,D 落在AB 边上的'C ,'D 处,折痕为MN ,则''AMD BNC ∠+∠=______度.【答案】80【解析】【分析】先由四边形性质求出∠C+∠D=360〬-∠A-∠B=360〬-75〬-65〬=220〬.由折叠性质得∠MD 'C '+∠NC 'D '=∠C+∠D=220〬.再根据三角形内角和得:''AMD BNC ∠+∠=∠MD 'C '+∠NC 'D '-∠A-∠B.【详解】因为,四边形的内角和是360〬,所以,∠C+∠D=360〬-∠A-∠B=360〬-75〬-65〬=220〬.所以由折叠得,∠MD 'C '+∠NC 'D '=∠C+∠D=220〬.又因为,∠NC 'D '=∠B+∠BNC ', ∠MD 'C '=∠A+∠AMD ',所以,''AMD BNC ∠+∠=∠MD 'C '+∠NC 'D '-∠A-∠B=220〬-75〬-65〬=80〬.故答案为80.【点睛】本题考核知识点:折叠,三角形外角,四边形内角. 解题关键点:熟记三角形外角性质和折叠性质.三、解答题18.如图,AM∥BN,∠BAM 与∠ABN 的平分线交于点C ,过点C 的直线分别交AM 、BN 于E 、F 。
福建省南平市2020年七年级第二学期期末学业水平测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.下列命题中,是真命题的是( )A .三角形的一条角平分线将三角形的面积平分B .同位角相等C .如果a 2=b 2,那么a =bD .214x x -+是完全平方式 【答案】D【解析】【分析】利用三角形的中线的性质、平行线的性质、实数的性质及完全平方式的定义分别判断后即可确定正确的选项.【详解】解:A 、三角形的一条角中线将三角形的面积平分,故错误,是假命题;B 、两直线平行,同位角相等,故错误,是假命题;C 、如果a 2=b 2,那么a =±b ,故错误,是假命题;D ,D. 214x x -+=21()2x -,是完全平方式,正确,是真命题, 故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的中线的性质、平行线的性质、实数的性质及完全平方式的定义,难度不大.2.下列所叙述的图形中,全等的两个三角形是( )A .含有45°角的两个直角三角形B .腰相等的两个等腰三角形C .边长相等的两个等边三角形D .一个钝角对应相等的两个等腰三角形 【答案】C【解析】【分析】根据已知条件,结合全等的判定方法对各个选项逐一判断即可.【详解】解:A、含有45°角的两个直角三角形,缺少对应边相等,所以两个三角形不一定全等;B、腰相等的两个等腰三角形,缺少两腰的夹角或底边对应相等,所以两个三角形不一定全等;C、边长相等的两个等边三角形,各个边长相等,符合全等三角形的判定定理SSS,所以两个三角形一定全等,故本选项正确;D、一个钝角对应相等的两个等腰三角形的腰长或底边不一定对应相等,所以两个三角形不一定全等,故本选项错误.故选:C.【点睛】本题主要考查全等图形的识别,解题的关键是熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则4n﹣2m的算术平方根为( )A.2 B C.±2 D.【答案】B【解析】【分析】有题意可把x与y的值代入方程组求出m与n的值即可.【详解】把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩,解得:32mn=⎧⎨=⎩,则4n﹣2m=8﹣6=2,即2,故选B.【点睛】本题考查了解二元一次方程组及算术平方根的知识点,熟练掌握运算法则是解本题的关键.4.端午节放假后,赵老师从七年级650名学生中随机抽查了其中50名学生的数学作业,发现有5名学生的作业不合格,下面判断正确的是()A.赵老师采用全面调查方式B.个体是每名学生C.样本容量是650D.该七年级学生约有65名学生的作业不合格【答案】D【解析】【分析】根据抽样调查、个体、样本容量、样本估计总体的思想一一判断即可.【详解】A 、错误.采用抽样调查.B 、错误.个体是每个学生的作业.C 、错误.样本容量是1.D 、正确.估计该校七年级学生中约有61×550=65(名)作业不合格, 故选D .【点睛】本题考查样本估计总体、个体、样本容量等知识,解题的关键是熟练掌握基本概念5.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( ) A .B .C .D .【答案】C【解析】【分析】先解不等式组,然后根据不等式组的解集判断即可.【详解】 222x x ①②>⎧⎨-≥-⎩ 由①,得x >1,由②,得x≤2,∴不等式组的解集为1<x≤2,故选C .【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.6.如图直线a ∥b ,若∠1=70°,则∠2为 ( )A.120°B.110°C.70°或110°D.70°【答案】D【解析】【分析】根据平行线的性质得出∠1=∠2=70°.【详解】∵a∥b,∴∠1=∠2,∵∠1=70°,∴∠2=70°,故选D.【点睛】本题考查了平行线的性质,能根据平行线的性质得出∠1+∠2=180°是解此题的关键.7.若m<n,则下列不等式中一定成立的是()A.1m<1nB.m2<n2C.m-2<n-2 D.-m<-n【答案】C【解析】【分析】根据不等式的性质解答,【详解】A、如果mn>0,依据不等式基本性质2,在不等式m<n两边都除以mn,不等式方向不变,故mmn<nmn,即1n<1m,故A项错误。
福建省2019-2020年七年级下学期期末测试数学试卷一、选择题:(每小题2分,共14分)1.(2分)下列方程的根是x=0的是()A.=0 B.=1 C.﹣5x=0 D.2(x﹣1)=0 2.(2分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C.D.3.(2分)下列学习用具中,不是轴对称图形的是()A.B.C.D.4.(2分)如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度5.(2分)如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°6.(2分)已知,则a﹣b等于()A.2B.C.3D.17.(2分)若△ABC满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.∠A:∠B:∠C=1:4:3 D.∠A=2∠B=3∠C二、填空题:(每小题3分,共30分)8.(3分)一元一次方程2x﹣4=0的解是x=.9.(3分)若﹣2x+y=5,则y=(用含x的式子表示).10.(3分)不等式组的解集是.11.(3分)如图所示,该图形是对称图形.12.(3分)正六边形的每个外角是度.13.(3分)用同一种规格的正多边形地砖铺满地面,这种地砖的形状可能是.(写出一种即可)14.(3分)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.15.(3分)三元一次方程组的解是.16.(3分)若等腰三角形的一个外角是40°,则该等腰三角形的顶角是度.17.(3分)如图,点P是∠AOB内部的一定点.(1)若∠AOB=50°,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连结OP1、OP2,则∠P1OP2=°;(2)若∠AOB=α,点C、D分别在射线OA、OB上移动,当△PCD的周长最小时,则∠CPD=度(用含α的代数式表示).三、解答题:(共56分)18.(6分)解方程:7﹣3(x+1)=2(4﹣x)19.(6分)解方程组:.20.(6分)解不等式5(8﹣x)﹣2(3x+4)>10.21.(6分)解不等式组.22.(6分)如图,点D是△ABC的边BC上的一点,∠B=∠BAD=∠C,∠ADC=72°.试求∠DAC的度数.23.(6分)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,△ABC和△DEF 的三个顶点都在格点上.(1)画出△ABC沿水平方向向左平移1个单位长度得到的△A1B1C1;(2)画出△A1B1C1绕点O逆时针旋转180°后得到的△A2B2C2;(3)判断△DEF与△A2B2C2属于哪种对称?若是中心对称,试画出对称中心点Q;若是轴对称,试画出对称轴l(用加粗线表示)24.(6分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长AB是小刀长CD(小刀不打开时的最大长度)的倍,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC的长是2cm,铅笔盒内部的长AD为20cm,设小刀的长为xcm,求x的值.25.(7分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.26.(7分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨18吨及以下 a 0.80超过18吨不超过30吨的部分 b 0.80超过30吨的部分 2.40 0.80已知小张家2012年4月份用水20吨,交水费41元;5月份用水25吨,交水费53.5元.(水费=自来水费+污水处理费)(1)求a、b的值;(2)随着夏天的到来用水量将增加,为了节约开支,小张计划把6月份水费控制在家庭月收入的1%,若小张家月收入为9800元,则小张家6月份最多能用水多少吨?七年级下学期期末数学试卷参考答案与试题解析一、选择题:(每小题2分,共14分)1.(2分)下列方程的根是x=0的是()A.=0 B.=1 C.﹣5x=0 D.2(x﹣1)=0考点:方程的解.分析:根据方程的解满足方程,把方程的解代入,可得答案.解答:解;A、=≠0,故A错误;B、0不能作除数,故B错误;C、﹣5x=﹣5×0=0,故C正确;D、2(x﹣1)=2(0﹣1)≠0,故D错误;故选:C.点评:本题考查了方程的解,利用了方程的解满足方程.2.(2分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据数轴上的解集,大于﹣1小于等于2,可得答案.解答:解:数轴上表示的解集:﹣1<x≤2,B不等式组的解集是大于﹣,小于等于2,故选:B.点评:本题考查了在数轴上表示不等式组的解集,观察数轴上的表示的解集是解题关键.3.(2分)下列学习用具中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.解答:解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.点评:本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.4.(2分)如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度考点:平移的性质.分析:根据平移的性质,结合图形可直接求解.解答:解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,∴平移距离就是线段BE的长度.故选B.点评:本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(2分)如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°考点:旋转的性质.分析:此题根据给出的图形先确定出旋转中心,再确定出旋转的方向和度数即可求出答案.解答:解:根据图形可知:将△ABC绕点A逆时针旋转90°可得到△ADE.故选B.点评:本题主要考查旋转的性质,在解题时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.6.(2分)已知,则a﹣b等于()A.2B.C.3D.1考点:解二元一次方程组.专题:计算题.分析:方程利用加减消元法求出解确定出a与b的值,即可求出a﹣b的值.解答:解:,②×3﹣①得:14b=4,即b=,把b=代入①得:a=,则a﹣b=2.故选A.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.(2分)若△ABC满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.∠A:∠B:∠C=1:4:3 D.∠A=2∠B=3∠C考点:三角形内角和定理.分析:根据三角形内角和定理得出∠A+∠B+∠C=180°,根据选项中的条件求出三角形的最大角的度数,再判断即可.解答:解:A、∵∠A+∠B+∠C=180°,∠C=∠A+∠B,∴∠C=90°,即三角形是直角三角形,故本选项错误;B、∵∠A+∠B+∠C=180°,∠C=∠A﹣∠B,∴∠A=90°,即三角形是直角三角形,故本选项错误;C、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:4:3∴∠B=90°,即三角形是直角三角形,故本选项错误;D、∵∠A+∠B+∠C=180°,∠A=2∠B=3∠C,∴∠A≈98°,即三角形不是直角三角形,故本选项正确;故选D.点评:本题考查了直角三角形的判定,三角形内角和定理的应用,注意:三角形的内角和等于180°.二、填空题:(每小题3分,共30分)8.(3分)一元一次方程2x﹣4=0的解是x=2.考点:解一元一次方程.专题:计算题.分析:方程移项后,x系数化为1,即可求出解.解答:解:方程2x﹣4=0,移项得:2x=4,解得:x=2.故答案为:2.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.(3分)若﹣2x+y=5,则y=2x+5(用含x的式子表示).考点:解二元一次方程.专题:计算题.分析:将x看做已知数求出y即可.解答:解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.点评:此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.(3分)不等式组的解集是x≤3.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再求出不等式组的解集即可.解答:解:∵解不等式①得:x<4,解不等式②得:x≤3,∴不等式组的解集为x≤3,故答案为:x≤3.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.11.(3分)如图所示,该图形是中心对称图形.考点:中心对称图形;旋转对称图形.分析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此求解.解答:解:由图形可得,该图形是中心对称图形.故答案为:中心.点评:本题考查了中心对称图形概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(3分)正六边形的每个外角是60度.考点:多边形内角与外角.分析:正多边形的外角和是360度,且每个外角都相等,据此即可求解.解答:解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.点评:本题考查了正多边形的外角的计算,理解外角和是360度,且每个外角都相等是关键.13.(3分)用同一种规格的正多边形地砖铺满地面,这种地砖的形状可能是正三角形(答案不唯一).(写出一种即可)考点:平面镶嵌(密铺).专题:开放型.分析:利用正三角形的每个内角是60°,能整除360度.正方形的每个内角是90°,4个能密铺.正六边形的每个内角是120°,能整除360°,能密铺,即可得出答案.解答:解:用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是如:正三角形(答案不唯一);故答案为:正三角形(答案不唯一).点评:本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.14.(3分)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=120度.考点:多边形内角与外角.分析:三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD 即得∠α的度数.解答:解:如图:∵在四边形ABCD中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.点评:本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.15.(3分)三元一次方程组的解是.考点:解三元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,②+③得:x+y=5④,①+④得:2x=6,即x=3,将x=3代入①得:y=2,将y=2代入②得:z=1,则方程组的解为.故答案为:.点评:此题考查了解三元一次方程组,熟练掌握运算法则是解本题的关键.16.(3分)若等腰三角形的一个外角是40°,则该等腰三角形的顶角是140度.考点:等腰三角形的性质.分析:根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质解答.解答:解:∵等腰三角形的一个外角是40°,∴与这个外角相邻的内角为180°﹣40°=140°,∴该等腰三角形的顶角是140度.故答案为:140.点评:本题考查了等腰三角形的性质,邻补角的定义,是基础题,等腰三角形的钝角只能是顶角.17.(3分)如图,点P是∠AOB内部的一定点.(1)若∠AOB=50°,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连结OP1、OP2,则∠P1OP2=100°;(2)若∠AOB=α,点C、D分别在射线OA、OB上移动,当△PCD的周长最小时,则∠CPD=180°﹣2α度(用含α的代数式表示).考点:轴对称-最短路线问题;轴对称的性质.分析:(1)连接OP,根据轴对称的性质可得∠AOP=∠AOP1,∠BOP=∠BOP2,然后求出∠P1OP2=2∠AOB,再代入数据进行计算即可得解;(2)根据轴对称的性质可得∠OP1C=∠OPC,∠OP2D=∠OPD,然后求出∠CPD=∠OP1C+∠OP2D,再根据三角形的内角和定理列式计算即可得解.解答:解:(1)连接OP,∵点P关于OA的对称点P1,点P关于OB的对称点P2,∴∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP1+∠AOP+∠BOP+∠BOP2=2(∠AOP+∠BOP)=2∠AOB,∵∠AOB=50°,∴∠P1OP2=2×50°=100°;(2)∵∠AOB=α,∴∠P1OP2=2α,由轴对称的性质得,∠OP1C=∠OPC,∠OP2D=∠OPD,∵∠CPD=∠OPC+∠OPD,∴∠CPD=∠OP1C+∠OP2D,在△OP1P2中,∠OP1C+∠OP2D=180°﹣∠P1OP2=180°﹣2α.故答案为:100;180°﹣2α.点评:本题考查了轴对称确定最短路线问题,轴对称的性质,熟练掌握轴对称的性质是解题的关键.三、解答题:(共56分)18.(6分)解方程:7﹣3(x+1)=2(4﹣x)考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,将x系数化为1,即可求出解.解答:解:去括号得:7﹣3x﹣3=8﹣2x,移项合并得:﹣x=4,解得:x=﹣4.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.(6分)解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:6x=24,即x=4,将x=4代入②得:y=﹣3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(6分)解不等式5(8﹣x)﹣2(3x+4)>10.考点:解一元一次不等式.专题:计算题.分析:不等式去括号,移项合并,将x系数化为1,即可求出解集.解答:解:去括号得:40﹣5x﹣6x﹣8>10,移项合并得:﹣11x>﹣22,解得:x<2.点评:此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.(6分)解不等式组.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再求出不等式组的解集即可.解答:解:∵由①得:x>﹣2,由②得:x≤3,∴原不等式组的解集为﹣2<x≤3.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.22.(6分)如图,点D是△ABC的边BC上的一点,∠B=∠BAD=∠C,∠ADC=72°.试求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:先根据三角形外角的性质得出∠ADC=∠B+∠BAD,再由∠B=∠BAD可知∠B=∠BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.解答:解:∵∠ADC是△ABD的外角,∠ADC=72°,∴∠ADC=∠B+∠BAD.又∵∠B=∠BAD,∴∠B=∠BAD=36°.∵∠B=∠BAD=∠C,∴∠C=36°.在△ADC中,∵∠DAC+∠ADC+∠C=180°∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣72°﹣36°=72°.点评:本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.23.(6分)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,△ABC和△DEF 的三个顶点都在格点上(1)画出△ABC沿水平方向向左平移1个单位长度得到的△A1B1C1;(2)画出△A1B1C1绕点O逆时针旋转180°后得到的△A2B2C2;(3)判断△DEF与△A2B2C2属于哪种对称?若是中心对称,试画出对称中心点Q;若是轴对称,试画出对称轴l(用加粗线表示)考点:作图-旋转变换;作图-轴对称变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1绕点O逆时针旋转180°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的性质解答.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△DEF与△A2B2C2属于轴对称,对称轴为y轴,如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,轴对称的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(6分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长AB是小刀长CD (小刀不打开时的最大长度)的倍,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC的长是2cm,铅笔盒内部的长AD为20cm,设小刀的长为xcm,求x的值.考点:一元一次方程的应用.分析:小刀的长为xcm.等量关系:AC+CD﹣2=20.解答:解:依题意,得:x+x﹣2=20解得x=7,经检验,符合题意.答:x的值是7cm.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(7分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.考点:平移的性质.分析:(1)根据平移的性质可得AD=BE=CF,BC=EF=3cm,然后根据AE、BD的长度求解即可;(2)根据平移的性质可得EF=BC,CF=AD,然后根据四边形的周长的定义列式计算即可得解.解答:解:(1)∵△ABC沿AB方向向右平移得到△DEF,∴AD=BE=CF,BC=EF=3cm,∵AE=8cm,DB=2cm,∴AD=BE=CF==3cm;(2)四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18cm.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.26.(7分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨18吨及以下 a 0.80超过18吨不超过30吨的部分 b 0.80超过30吨的部分 2.40 0.80已知小张家2012年4月份用水20吨,交水费41元;5月份用水25吨,交水费53.5元.(水费=自来水费+污水处理费)(1)求a、b的值;(2)随着夏天的到来用水量将增加,为了节约开支,小张计划把6月份水费控制在家庭月收入的1%,若小张家月收入为9800元,则小张家6月份最多能用水多少吨?考点:二元一次方程组的应用;一元一次不等式的应用.分析:(1)根据表格收费标准,及小张4、5两月用水量、水费,可得出方程组,解出即可;(2)先判断用水量超过30吨,继而再由水费不超过98,可得出不等式,解出即可.解答:解:(1)由题意,得,解得:,(2)当用水量为30吨时,水费为:18×2+12×2.5=66元,9800×1%=98元,∵66<98,∴小张家六月份的用水量超过30吨,设小张家6月份用水量为x吨,由题意得:18×1.2+12×1.7+2.4(x﹣30)+0.8x≤98,解得:x≤40,∴小张家六月份最多用水40吨.点评:本题考查了二元一次方程组及一元一次不等式的知识,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.。
福建省南平市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)电视台要在某地调查某节目的收视率,下列调查方式最合适的是()A . 当地每个看电视的人都调查B . 到当地实验小学调查小学生C . 在街头随机调查不同行业、不同年龄、不同阶层的几百名市民D . 调查当地的所有出租车司机2. (2分)(2016·漳州) 把不等式组的解集表示在数轴上,正确的是()A .B .C .D .3. (2分)(2019·河南) 如图,,,,则的度数为()A .B .C .D .4. (2分)(2016·浙江模拟) 直角坐标系中,点P(1,4)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2020七下·余姚月考) 方程组的解为,则方程组的解为()A .B .C .D .6. (2分)已知有含盐20%与含盐5%的盐水,若配制含盐14%的盐水200千克,设需含盐20%的盐水x千克,含盐5%的盐水y千克,则下列方程组中正确的是()A .B .C .D .7. (2分) (2020七下·复兴期末) 是由平移得到的,点的对应点为,点的对应点E、点的对应点F.则E、F的坐标分别为()A .B .C .D .8. (2分) (2016八上·腾冲期中) 如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为()A . 9B . 8C . 7D . 69. (2分) (2019八下·昭通期中) 已知,化简二次根式的正确结果为()A .B .C .D .10. (2分)不等式组的解集是()A . x>-3B . x<-3C . x>2D . 无解二、填空题 (共6题;共7分)11. (1分) (2020八上·五华期末) 如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是________.12. (2分)已知一个正数x的两个平方根是a+1和a﹣3,则a=________,x=________.13. (1分)若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是________14. (1分)(2017·通辽) 如图,CD平分∠ECB,且CD∥AB,若∠A=36°,则∠B=________.15. (1分) (2017七下·南江期末) 若不等式组的解集是x>3,则m的取值范围是________.16. (1分)将一副三角板如图放置。
南平市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单项选择题. (共10题;共20分)1. (2分)(2020·凉山州) 下列等式成立的是()A .B .C .D .2. (2分)(2017·和平模拟) 下列说法中正确的是()A . 了解一批日光灯的使用寿命适宜采用抽样调查B . “打开电视,正在播放《沈视早报》”是必然事件C . 数据1,1,2,2,3的众数是3D . 一组数据的波动越大,方差越小3. (2分)在实数﹣、0、﹣、2015、π、﹣、0.1 中,无理数的个数是()A . 2个B . 3个C . 4个D . 5个4. (2分)不等式组的解集在数轴上表示为()A .B .C .D .5. (2分)如图,不能作为判断AB∥CD的条件是()A . ∠FEB=∠ECDB . ∠AEC=∠ECDC . ∠BEC+∠ECD=180°D . ∠AEG=∠DCH6. (2分) (2017八上·雅安期末) 下列命题中,真命题有()①同旁内角互补;②三角形的一个外角等于它的两个内角之和;③一个三角形的最大角不会小于60°,最小角不会大于60°;④若函数y=(m+1)x 是正比例函数,且图象在第二、四象限,则m=﹣2.A . 1个B . 2个C . 3个D . 4个7. (2分) (2017八上·灯塔期中) 已知是二元一次方程4x+ay=7的一组解,则a的值为()A . ﹣5B . 5C .D . ﹣8. (2分)(2016·来宾) 一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A .B .C .D .9. (2分) (2019八上·利辛月考) 在平面直角坐标系中,若点M(3,n)在第四象限,则一次函数y=-x+n不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分) (2019七下·长春月考) 如图,AB∥CD∥EF ,AF∥CG ,则图中与∠A(不包括∠A)相等的角有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共13分)11. (1分)已知和互为相反数,求x+4y的平方根________。
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,△ABC 中,∠BAC=90°,AD ⊥BC ,∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC ,给出下列结论:①∠BAD=∠C ;②∠AEF=∠AFE ;③∠EBC=∠C ;④AG ⊥EF ;正确结论有( )A .4个B .3个C .2个D .1个2.下面运算中,结果正确的是( )A .()235a a =B .325a a a +=C .236a a a ⋅=D .331(0)a a a ÷=≠ 3.如图,在方格中作以为一边的,要求点也在格点上,这样的能做出( )A .个B .个C . 个D .个4.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四5.某次考试中,某班级的数学成绩统计图如图所示(每组含前一个边界值,不含后一个边界值).下列说法错误..的是( )A .得分在70~80分之间的人数最多B .该班的总人数为40C .得分在90~100分之间的人数最少D .及格(成绩≥60分)的人数是266.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A.15°B.30°C.45°D.60°7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠38.若关于x的不等式2x-a≤-1的解集是x≤-1,则a的值是()A.0 B.-3 C.-2 D.-19.若三角形两条边的长分别是3,5,第三条边的长是整数,则第三条边的长的最大值是()A.2 B.3 C.7 D.810.如图,边长为a,b的矩形的周长为14,面积为10,则22a b ab+的值为().A.140 B.70 C.35 D.24二、填空题题11.已知23x ky k=⎧⎨=⎩是二元一次方程214x y+=的解,则k的值是_____________.12.下列图案由边长相等的黑,白两色正方形按一定规律拼接而成,设第x个图案中白色小正方形的个数为y.(1)第2个图案中有______个白色的小正方形;第3个图案中有______个白色的小正方形;y与x之间的函数表达式为______(直接写出结果).(2)是否存在这样的图案,使白色小正方形的个数为2019个?如果存在,请指出是第几个图案;如果不存在,说明理由.13.根据长期积累的生活经验得知:甲种水果保鲜适宜的温度是2℃~10℃,乙种水果保鲜适宜的温度是5℃~12℃,将这两种水果放在一起保鲜.设最适宜的温度为x℃,则x的取值范围是______≤x≤______.14.一个n边形的内角和是360°,那么n=_______.15.以方程组x y2x y1+=⎧-=⎨⎩的解为坐标的点(x、y)在平面坐标系中的位置在第______象限.16.点P(2,m)在x轴上,则B(m-1,m+1)在第________________象限.17.不等式组211251xx x+>-⎧⎨-<-⎩的解集是_____.三、解答题18.某校的大学生自愿者参与服务工作,计划组织全校自愿者统一乘车去某地.若单独调配36座客车若干辆,则空出6个座位,若只调配22座客车若干辆,则用车数量将增加3辆,并有12人没有座位.(1)计划调配36座客车多少辆?该大学共有多少名自愿者?(列方程组解答)(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆? 19.(6分)如图所示表示王勇同学骑自行车离家的距离与时间之间的关系,王勇9点离开家,15点回家,请结合图象,回答下列问题:()1到达离家最远的地方是什么时间?离家多远?()2他一共休息了几次?休息时间最长的一次是多长时间?()3在哪些时间段内,他骑车的速度最快?最快速度是多少?20.(6分)如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.21.(6分)已知:如图,等边△ABC中,D、E分别在BC、AC边上运动,且始终保持BD=CE,点D、E始终不与等边△ABC的顶点重合.连接AD、BE,AD、BE交于点F.(1)写出在运动过程中始终全等的三角形,井选择其中一组证明;(2)运动过程中,∠BFD的度数是否会改变?如果改变,请说明理由;如果不变,求出∠BFD的度数,再说明理由.(3)直接写出运动过程中,AE、AB、BD三条线段长度之间的等量关系.22.(8分)在如图所示的正方形网格中,每个小正方形的边长都是1个单位长度,ABC ∆的顶点均在格点上.(画图要求:先用2B 铅笔画图,然后用黑色水笔描画)(1)①画出ABC ∆绕点A 按逆时针方向旋转90︒后的11AB C ∆;②连结1CC ,请判断1ACC ∆是怎样的三角形,并简要说明理由.(2)画出222A B C ∆,使222A B C ∆和11AB C ∆关于点O 成中心对称;(3)请指出如何平移11AB C ∆,使得222A B C ∆和11AB C ∆能拼成一个长方形.23.(8分)如图,在四边形ABCD 中,BD 平分ADC ∠,且,ABD ADB E ∠=∠为边AB 的延长线上一点(1)求证://AB CD .(2)若BC 平分DBE ∠,且//BC AD ,求A ∠的度数.24.(10分)如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形盘,被分成16等份,指针分别指向红、黄、蓝色区域,分别获一、二、三等奖,奖金依次为100、50、20元.(1)分别计算获一、二、三等奖的概率.(2)老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?25.(10分)(1)解方程组:4103235x y x y +=⎧⎨-=⎩; (2)解不等式组:()2151422x x ->-⎧⎪⎨+<⎪⎩.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据同角的余角相等求出∠BAD=∠C ,再根据等角的余角相等可以求出∠AEF=∠AFE ;根据等腰三角形三线合一的性质求出AG ⊥EF .【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C ,故①正确;∵BE 是∠ABC 的平分线,∴∠ABE=∠CBE ,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD ,又∵∠AFE=∠BFD (对顶角相等),∴∠AEF=∠AFE ,故②正确;∵∠ABE=∠CBE ,∴只有∠C=30°时∠EBC=∠C ,故③错误;∵∠AEF=∠AFE ,∴AE=AF ,∵AG 平分∠DAC ,∴AG ⊥EF ,故④正确.综上所述,正确的结论是①②④.故选B .【点睛】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.2.D【解析】【分析】根据幂的乘方、合并同类项、同底数幂的乘法、同底数幂的除法逐项计算即可.【详解】A. ()236a a =,故不正确;B. a 3与a 2不是同类项,不能合并,故不正确;C. 235a a a ⋅=,故不正确;D. 331(0)a a a ÷=≠,正确;故选D.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.3.D【解析】【分析】可以分A 、B 、C 分别是直角顶点三种情况进行讨论即可解决.【详解】解:当AB 是斜边时,则第三个顶点所在的位置有:C 、D ,E ,H 四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选:D.【点睛】正确进行讨论,把每种情况考虑全,是解决本题的关键.4.B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.5.D【解析】根据图形得:50~60分之间的人数为4人,60~70分之间的人数为12人,70~80分之间的人数为14人,80~90分之间的人数为8人,90~100分之间的人数为2人,则得分在70~80分之间的人数最多,得分在90~100分之间的人数最少,总人数为4+12+14+8+2=40人,不低于60分为及格,该班的及格率为(12+14+8+2)÷40=90%,故选D.6.D【解析】因为△ABC是等边三角形,所以∠ABD=∠BCE=60°,AB=BC.因为BD=CE,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE,所以∠2=60°.故选D.7.C【解析】试题解析:分式方程去分母得:m-1=x-1,解得:x=m-2,由方程的解为非负数,得到m-2≥0,且m-2≠1,解得:m≥2且m≠1.故选C.考点:分式方程的解.8.D【解析】试题解析:移项得:21x a ≤-,系数化为1,得:12a x -≤, ∵不等式21x a -≤-的解集1x ≤-,112a -∴=-, 解得:a=−1,故选D.9.C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【详解】解:5﹣3<第三边<3+5,即:2<第三边<8;所以最大整数是7,故选:C .【点睛】考查了三角形的三边关系,解答此题的关键是根据三角形的特性进行分析、解答.10.B【解析】【分析】根据题意得出2(a+b)=14,ab=10,再对22a b ab +进行因式分解,即可得出答案.【详解】根据题意可得:2(a+b)=14,ab=10则22=ab(a+b)=10770a b ab ⨯=+故答案选择:B.【点睛】本题考查的是因式分解,需要熟练掌握因式分解的方法.二、填空题题11.2【解析】【分析】将23x k y k =⎧⎨=⎩代入214x y +=,再解方程22314k k ⨯+=即可得到答案. 【详解】将23x k y k =⎧⎨=⎩代入214x y +=得到22314k k ⨯+=,解得2k =. 【点睛】本题考查二元一次方程组的解和解一元一次方程,解题的关键是掌握解一元一次方程.12.(1)13;18;53y x =+;(2)不存在这样的图案,使得白色正方形的个数是2019个.【解析】【分析】(1)依据图形中黑,白两色正方形的数量,即可得到答案,进而得出y 与x 之间的函数表达式; (2)解方程5x+3=2019,即可得到x 的值,进而得出结论.【详解】解:(1)第2个图案中白色的小正方形有3+5×2=13(个),第3个图案中白色的小正方形有3+5×3=18(个),y 与x 之间的函数表达式为y=5x+3,故答案为:13,18,y=5x+3;(2)依题意得,5x+3=2019,解得x=403.2(不是整数),∴不存在这样的图案,使白色小方形的个数为2019个.【点睛】本题主要考查了函数关系式,函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.13.5 1【解析】【分析】依据甲种水果保鲜适宜的温度是2℃~1℃,乙种水果保鲜适宜的温度是5℃~12℃,即可得出最适宜的温度x的取值范围是5≤x≤1.【详解】解:∵甲种水果保鲜适宜的温度是2℃~1℃,乙种水果保鲜适宜的温度是5℃~12℃,∴最适宜的温度x的取值范围是5≤x≤1,故答案为:5;1.【点睛】本题主要考查了不等式的解集,能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.14.4【解析】【分析】根据多边形的内角和公式即可求解.【详解】依题意得(n-2)×180°=360°,解得n=4【点睛】此题主要考查多边形的内角和公式,解题的关键是熟记公式及运用.15.一【解析】【分析】先求出方程组的解,再根据坐标的点(x,y)判定在平面直角坐标系中的位置是第一象限.【详解】解:解方程组21x yx y+=⎧⎨-=⎩,可得:3212xy⎧=⎪⎪⎨⎪=⎪⎩,∵31,22⎛⎫⎪⎝⎭在第一象限,∴(x,y)在平面直角坐标系中的位置是第一象限.故答案为:一【点睛】本题主要考查了解二元一次方程组及坐标中的象限,解题的关键是准确的求出方程组的解.16.二【解析】【分析】根据x轴上的点的坐标特征可得m=0,然后把m代入点B的坐标中,即可确定出点B的具体坐标,根据点B的坐标即判断所在的象限.【详解】∵点P(2,m)在x轴上,∴m=0,∵点B(m-1,m+1),∴B(-1,1),∴点B在第二象限,故答案为:二.【点睛】本题考查了点的坐标特征,熟练掌握点的坐标特征是解题的关键.坐标轴上的点的特征:x轴上的点的纵坐标为0,y轴上的点的横坐标为0;坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,各象限点的坐标的符号特征:一象限(+,+),二象限(-,+),三象限(-,-),四象限(+,-).17.﹣1<x<1.【解析】【分析】依次解不等式即可.【详解】解:211 251xx x+>-⎧⎨-<-⎩①②∵解不等式①得:x>﹣1,解不等式②得:x<1,∴不等式组的解集为﹣1<x<1,故答案为:﹣1<x<1.【点睛】本题考查的是不等式组,熟练掌握不等式组是解题的关键.三、解答题18.(1)计划调配36座客车6辆,该大学共有210名自愿者;(2)需调配36座新能源客车4辆,22座新能源客车3辆【解析】【分析】(1)设计划调配36座客车x辆,该大学共有y名志愿者,则需调配22座客车(x+3)辆,根据①志愿者人数=36×调配36座客车的数量-6,②志愿者人数=22×调配22座客车的数量+12,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.解:(1)设计划调配36座新能源客车x 辆,该大学共有y 名自愿者,则根据题意得36622(3)12x y x y -=⎧⎨++=⎩,解得:6210x y =⎧⎨=⎩. 答:计划调配36座新能源客车6辆,该大学共有210名自愿者。
福建省南平市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020七下·无锡期中) “碧玉妆成一树高,万条垂下绿丝绦”. 每到春天,人们流连于柳绿桃红之间的同时也被漫天飞舞的柳絮所烦扰.据测定,柳絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A . 1.05×105B . 1.05×10-5C . -1.05×105D . 105×10-72. (2分)(2017·成都) 下列图标中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分)(2017·陕西模拟) 下列运算正确的是()A . (﹣ab)2=﹣a2b2B . (a+b)(a﹣b)=a2﹣b2C . 3a2+2b=6a2bD . (a﹣b)2=a2+b24. (2分) (2019七下·安康期中) 观察图形,下列说法正确的个数是()①线段AB的长必大于点A到直线l的距离;②线段BC的长小于线段AB的长,根据是两点之间线段最短;③图中对顶角共有9对;④线段CD的长是点C到直线AD的距离.A . 1个B . 2个C . 3个D . 4个5. (2分) (2020七下·温州期中) 如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A . ∠2=∠4B . ∠4=∠5C . ∠1=∠3D . ∠1+∠4=180°6. (2分) (2020七下·西安月考) 己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值()A . 3B . 1C . -1D . -37. (2分)不一定能构成三角形的一组线段的长度为()A . 3,7,5B . 3x,4x,5x(x>0)C . 5,5,a(0<a<10)D . a2,b2,c2(a>b>c>0)8. (2分) (2018八上·东台月考) 如图,AB=AC,AD=AE,BE、CE相交于点F,则图中全等三角形共有()对.A . 2B . 3C . 4D . 59. (2分)下列各式能用平方差公式计算的是()A . (﹣3a﹣b)(﹣3a+b)B . (3a+b)(a﹣b)C . (3a+b)(﹣3a﹣b)D . (﹣3a+b)(3a﹣b)10. (2分)(2020·武汉模拟) 动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A .B .C .D .11. (2分) (2016八上·延安期中) 若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A . 80°B . 40°C . 60°D . 120°12. (2分)星期6,小亮从家里骑自行车到同学家去玩,然后返回,图是他离家的路程y(千米)与时间x (分钟)的函数图象。
福建省南平市2020年初一下期末学业水平测试数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.2.-64的立方根与16的平方根之和是()A.8 B.8或0 C.-2 D.-2或-6【答案】D【解析】【分析】首先求得-64的立方根与16的平方根,再求其和即可,此题考查了立方根与平方根的知识,解此题的关键是注意先求得16的值【详解】因为-64的立方根是-4,16=4,所以4的平方根是2±。
因此-4+2=-2,-4+(-2)=-6,即-64的立方根与16的平方根之和是-2或-6,答案选D。
【点睛】掌握立方根与平方根的定义,其中一定要注意16的平方根是4的平方根。
距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A.景点离亮亮的家千米B.亮亮到家的时间为时C.小汽车返程的速度为千米/时D.时至时,小汽车匀速行驶【答案】D【解析】【分析】根据图像提供的信息判断即可.【详解】解:由图像可得,小明8时出发10时到达旅游景点,走过的路程为180千米,所以景点离亮亮的家千米,A选项正确;14时开始回家,回家的行驶速度为千米/时,回家所用时间为时,所以亮亮到家的时间为时,B、C选项正确;时至时,路程没有发生变化,说明是在景点游玩,小汽车静止不动,D选项错误.故答案为:D【点睛】本题考查了函数图像,此类题要理解每个数据及每段函数图像所表达的含义,正确从函数图像获取信息是解题的关键.4.若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,﹣2)【答案】C【解析】【分析】解:∵M到x轴的距离为1,到y轴的距离为2,∴M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴M坐标为(2,﹣1).故选C.【点睛】考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.5.下列图形中能折叠成棱柱的是()A.B.C.D.【答案】B【解析】【分析】利用棱柱及其表面展开图的特点解题.三棱柱上、下两底面都是三角形.【详解】A、不能折叠成棱柱,缺少一个侧面,故A不符合题意;B、能折叠成四棱柱,故B符合题意;C、不能折叠成四棱柱,有两个面重叠,故C不符合题意;D、不能折叠成六棱柱,底面缺少一条边,故D不符合题意;故选:B.【点睛】本题考查展开图折叠成几何体,解题关键在于熟练掌握考查展开图折叠成几何体的性质.6.点P(x,y) 为平面直角坐标系xOy 内一点,xy>0 ,且点P 到x轴,y 轴的距离分别为2,5,则点P 的坐标为()A.(2,5)或(-2,-5)B.(5,2)或(-5,-2)【解析】【分析】根据同号得正判断出x、y同号,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解即可.【详解】解:∵xy>0,∴x、y同号,∵点P到x轴、y轴的距离分别为2和5,∴x=5,y=2或x=﹣5,y=﹣2,∴点P的坐标为(5,2)或(﹣5,﹣2).故选:B.【点睛】本题考查了点的坐标,有理数的乘法,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7.如图,AB//CD,且∠A=25°,∠C=45°,则∠E的度数是( )A.60°B.70°C.110°D.80°【答案】B【解析】【分析】过点E作一条直线EF∥AB,由平行线的传递性质EF∥CD,然后利用两直线平行,内错角相等进行做题.【详解】过点E作一条直线EF∥AB,则EF∥CD,∴∠A=∠1,∠C=∠2,∴∠AEC=∠1+∠2=∠A+∠C=70°.故选B.本题考查了平行线的性质,注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.8.二元一次方程组524x yx y+=⎧⎨-=⎩的解为( )A.14xy=⎧⎨=⎩B.23xy=⎧⎨=⎩C.32xy=⎧⎨=⎩D.41xy=⎧⎨=⎩【答案】C 【解析】解:524x yx y+=⎧⎨-=⎩①②,两式相加得:1x=9,解得:x=1.把x=1代入①得:y=2.故选C.9.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×109m B.0.34×1010m C.3.4×10-9m D.3.4×10-10m【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000034=3.4×10-10故选D.【点睛】本题考查科学记数法-表示较小的数,熟练掌握运算法则是解题关键.10.下列事件为必然事件的是()A.打开电视机,它正在播广告B.抛掷一枚硬币,一定正面朝上C.投掷一枚普通的正方体骰子,掷得的点数小于7 D.某彩票的中奖机会是1%,买1张一定不会中奖【答案】C【解析】根据事件的分类的定义及分类对四个选项进行逐一分析即可.解答:解:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、抛掷一枚硬币,正面朝上是随机事件,故本选项错误;C、因为枚普通的正方体骰子只有1-6个点数,所以掷得的点数小于7是必然事件,故本选项正确;D、某彩票的中奖机会是1%,买1张中奖或不中奖是随机事件,故本选项错误.二、填空题11.钠原子直径0.0000000599米,0.0000000599用科学记数法示为_____.【答案】5.99×10﹣1.【解析】【分析】直接利用科学计数法定义解题即可【详解】0.0000000599=5.99×10﹣1,故填5.99×10﹣1【点睛】本题考查科学计数法定义及表示,属于简单题型12.已知长方形的周长为28,面积为1.则分别以长方形的长和宽为边长的两个正方形的面积和是_____.【答案】2【解析】【分析】分别设出长方形的长与宽为a、b,则由题意可知a+b=14,ab=1,则a2+b2=(a+b)2﹣2ab=196﹣96=2,即为所求.【详解】解:设长方形的长为a,宽为b,∴a+b=14,ab=1,由题可知,两个正方形面积和为a2+b2=(a+b)2﹣2ab=196﹣96=2,故答案为2.【点睛】本题考查完全平方公式的应用;熟练掌握完全平方公式,并能灵活变形应用是解题的关键.13.在△ABC中,∠A≤∠B≤∠C,若∠A=20°,且△ABC能分为两个等腰三角形,则∠C=___________________。
福建省2019-2020学年七年级数学下学期期末模拟试卷及答案(一)一、选择题(共10小题,每小题4分,满分40分)1.下列调查中,适合进行普查的是()A.《新闻联播》电视栏目的收视率B.我国中小学生喜欢上数学课的人数C.一批灯泡的使用寿命D.一个班级学生的体重2.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>3.9的平方根是()A.±81 B.±3 C.﹣3 D.34.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.5.为分析2000名学生的数学考试成绩,从中抽取100份.在这个问题中,下列说法正确的是()A.每名学生是个体B.从中抽取的100名学生是总体的一个样本C.2000名学生是总体D.样本的容量是1006.不等式组的解集是()A.x<﹣3 B.x<﹣2 C.﹣3<x<﹣2 D.无解7.在﹣3.14、、0,π、,0.101001…中,无理数的个数有()A.3个B.2个C.1个D.4个8.若m<0,则点P(3,2m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如果关于x的不等式(m﹣1)x<m﹣1的解集为x>1,那么m的取值范围是()A.m≠1 B.m<0 C.m>1 D.m<110.如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A.B.C.D.二、填空题:(本大题共6小题,每小题4分,共24分)11.若是方程ax﹣y=3的解,则a=.12.如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是.13.若的整数部分为a,小数部分为b,则a=,b=.14.﹣1的相反数是.15.如图,把矩形ABCD沿EF对折后两部分重合,若∠1=50°,则∠AEF=.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是.三、解答题(共10小题,满分86分)17.计算:﹣32+|﹣3|+.18.解方程组.19.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.20.解不等式组:,并把解集在数轴上表示出来.21.福建省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1)m=%,这次共抽取名学生进行调查;并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有6000名学生,请你估计该校骑自行车上学的学生有多少名?22.如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.23.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′;(2)写出A′,B′的坐标;(3)求三角形ABC的面积.24.已知关于x、y的二元一次方程组的解都大于1,试求m的取值范围.25.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?26.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP+S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列调查中,适合进行普查的是()A.《新闻联播》电视栏目的收视率B.我国中小学生喜欢上数学课的人数C.一批灯泡的使用寿命D.一个班级学生的体重【考点】V2:全面调查与抽样调查.【分析】适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.据此即可作出判断.【解答】解:A、B、C、《新闻联播》电视栏目的收视率、我国中小学生喜欢上数学课的人数,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可;了解一批灯泡的使用寿命,会给被调查对象带来损伤破坏,适用于采用抽样调查;D、了解一个班级学生的体重,要求精确、难度相对不大、实验无破坏性,应选择普查方式.故选D.2.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>【考点】C2:不等式的性质.【分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.3.9的平方根是()A.±81 B.±3 C.﹣3 D.3【考点】21:平方根.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选B4.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.【考点】Q5:利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.5.为分析2000名学生的数学考试成绩,从中抽取100份.在这个问题中,下列说法正确的是()A.每名学生是个体B.从中抽取的100名学生是总体的一个样本C.2000名学生是总体D.样本的容量是100【考点】V3:总体、个体、样本、样本容量.【分析】解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本这三个概念时,考查的对象是一致的,都为学生成绩,而非学生.【解答】解:∵总体、个体、样本这三个概念考查的对象是一致的,都为学生成绩,而非学生,而(A)(B)(C)都说的是学生,而非成绩,所以都是错误的.故选(D).6.不等式组的解集是()A.x<﹣3 B.x<﹣2 C.﹣3<x<﹣2 D.无解【考点】CB:解一元一次不等式组.【分析】根据不等式的解集找出不等式组的解集即可.【解答】解:不等式组的解集是﹣2<x<3.故选C.7.在﹣3.14、、0,π、,0.101001…中,无理数的个数有()A.3个B.2个C.1个D.4个【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、π、0.101001…是无理数,故选:A.8.若m<0,则点P(3,2m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:∵m<0,∴2m<0,∴点P(3,2m)在第四象限.故选D.9.如果关于x的不等式(m﹣1)x<m﹣1的解集为x>1,那么m的取值范围是()A.m≠1 B.m<0 C.m>1 D.m<1【考点】C3:不等式的解集.【分析】根据不等式的基本性质3,两边都除以m﹣1后得到x>1,可知m﹣1<0,解之可得.【解答】解:∵不等式(m﹣1)x<m﹣1的解集为x>1,∴m﹣1<0,即m<1,故选:D.10.如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故选:B.二、填空题:(本大题共6小题,每小题4分,共24分)11.若是方程ax﹣y=3的解,则a=5.【考点】92:二元一次方程的解.【分析】把x、y的值代入,即可得出关于a的方程,求出方程的解即可.【解答】解:∵是方程ax﹣y=3的解,∴代入得:a﹣2=3,解得:a=5,故答案为:5.12.如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线断的性质解答即可.【解答】解:计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是垂线段最短,故答案为:垂线段最短.13.若的整数部分为a,小数部分为b,则a=3,b=﹣3.【考点】2B:估算无理数的大小.【分析】根据3<<4首先确定a的值,则小数部分即可确定.【解答】解:∵3<<4,∴a=3,则b=﹣3.故答案是:3,﹣3.14.﹣1的相反数是1﹣.【考点】28:实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.15.如图,把矩形ABCD沿EF对折后两部分重合,若∠1=50°,则∠AEF=115°.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】根据翻折的性质可得∠2=∠1,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:∵矩形ABCD沿EF对折后两部分重合,∠1=50°,∴∠3=∠2==65°,∵矩形对边AD∥BC,∴∠AEF=180°﹣∠3=180°﹣65°=115°.故答案为:115°.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是.【考点】D2:规律型:点的坐标.【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【解答】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2011次运动后,动点P的横坐标为2011,纵坐标为1,0,2,0,每4次一轮,∴经过第2011次运动后,动点P的纵坐标为:2011÷4=502余3,故纵坐标为四个数中第三个,即为2,∴经过第2011次运动后,动点P的坐标是:,故答案为:.三、解答题(共10小题,满分86分)17.计算:﹣32+|﹣3|+.【考点】2C:实数的运算.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用算术平方根定义计算即可得到结果.【解答】解:原式=﹣9+(3﹣)+6=﹣9+3﹣+6=﹣.18.解方程组.【考点】98:解二元一次方程组.【分析】方程组利用代入消元法求出解即可.【解答】解:,①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.19.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.【考点】24:立方根;21:平方根.【分析】(1)开平方求出(x﹣1)的值,继而求出x的值;(2)将x3的系数化为1,开立方求出x的值.【解答】解:(1)开平方得:x﹣1=±2,解得:x1=3,x2=﹣1;(2)系数化为1得,x3=﹣27,开立方得:x=﹣3.20.解不等式组:,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x>﹣,由②得:x≤4,∴不等式组的解集为﹣<x≤4,21.福建省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1)m=26%,这次共抽取50名学生进行调查;并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有6000名学生,请你估计该校骑自行车上学的学生有多少名?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)扇形统计图中各部分的百分比之和为1,数据总数=频数÷百分比,频数=总数×百分比;(2)根据统计图即可得出答案;(3)用总人数乘以骑自行上学的人数的百分比.【解答】解:(1)m=1﹣14%﹣40%﹣20%=26%,∴m=26%.…13÷26%=50…50×20%=10并补全条形图(2)乘公交车人数最多.(3)6000×20%=1200(人).故骑自行车上学的学生大约1200人.22.如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.【考点】JB:平行线的判定与性质.【分析】根据题意可知a∥b,根据两直线平行同位角相等可知∠1=∠2,再根据对顶角相等即可得出∠3.【解答】解:∵c⊥a,c⊥b,∴a∥b,∵∠1=70°∴∠1=∠2=70°,∴∠2=∠3=70°.23.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′;(2)写出A′,B′的坐标;(3)求三角形ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)分别画出A、B、C的对应点A′、B′、C′即可;(2)观察图象即可解决问题;(3)根据三角形的面积公式计算即可;【解答】解:(1)△A′B′C′如图所示.(2)A′(0,4),B′(3,1).(3)S△ABC=•4×3=6.24.已知关于x、y的二元一次方程组的解都大于1,试求m的取值范围.【考点】97:二元一次方程组的解.【分析】把m看做已知数表示出方程组的解,根据方程组的解都大于1,求出m的范围即可.【解答】解:,①+②×2,得5x=5m+6,解得,x=m+1.2,把x=m+1.2代入②,得y=m+0.9,∵关于x、y的二元一次方程组的解都大于1,∴,解得,m>0.2,即m的取值范围是m>0.2.25.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B种纪念品6件需要钱数=800;(2)关系式为:用于购买这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可.【解答】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b 元,根据题意得方程组得:,解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;(2)设该商店购进A种纪念品x个,则购进B种纪念品有个,∴,解得:50≤x≤53,∵x 为正整数,x=50,51,52,53∴共有4种进货方案,分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.26.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP+S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】(1)根据点的平移规律易得点C,D的坐标;(2)先计算出S平行四边形ABOC=8,设M坐标为(0,m),根据三角形面积公式得×4×|m|=8,解得m=±4,于是可得M点的坐标为(0,4)或(0,﹣4);(3)①先计算出S梯形OCDB=7,再讨论:当点P运动到点B时,S△BOC的最小值=3,则可判断S△CDP+S△BOP<4,当点P运动到点D时,S△BOC的最大值=4,于是可判断S△CDP+S△BOP >3,所以3<S△CDP+S△BOP<4;②分类讨论:当点P在BD上,如图1,作PE∥CD,根据平行线的性质得CD∥PE∥AB,则∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;当点P在线段BD的延长线上时,如图2,同样有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO﹣∠EPC=∠BOP﹣∠DCP,于是∠BOP﹣∠DCP=∠CPO;同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO.【解答】解:(1)由平移可知:C(0,2),D(4,2);(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);(3)①S梯形OCDB=×(3+4)×2=7,当点P运动到点B时,S△BOC最小,S△BOC的最小值=×3×2=3,S△CDP+S△BOP<4,当点P运动到点D时,S△BOC最大,S△BOC的最大值=×4×2=4,S△CDP+S△BOP>3,所以3<S△CDP+S△BOP<4;②当点P在BD上,如图1,作PE∥CD,∵CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;当点P在线段BD的延长线上时,如图2,作PE∥CD,∵CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠EPO﹣∠EPC=∠BOP﹣∠DCP,∴∠BOP﹣∠DCP=∠CPO;同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO.。
第 1 页 共 18 页 2019-2020学年福建省南平市建阳区七年级下学期期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.下列图案中,可以利用平移来设计的图案是( )
A .
B .
C .
D .
2.下列计算正确的是( )
A .√4=±2
B .±√16=4
C .√(−4)2=−4
D .√−273
=−3 3.下列调查方式,你认为最合适的是( )
A .日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式
B .旅客上飞机前的安检,采用抽样调查方式
C .了解南平市居民日平均用水量,采用全面调查方式
D .了解南平市每天的平均用电量,采用抽样调查方式
4.下列各组数值是二元一次方程x ﹣3y =4的解的是( )
A .{x =1y =−1
B .{x =2y =1
C .{x =−1y =−2
D .{x =4y =−1
5.如图所示的四个图形中,∠1和∠2不是同位角的是( )
A .
B .
C .
D .
6.已知a <b ,下列式子不成立的是( )
A .a +1<b +1
B .4a <4b
C .−13a >−13b
D .如果c <0,那么a c <b c 7.面积为6的正方形边长为a ,下列错误的是( )
A .a 2=6
B .a >2
C .a ﹣3<0
D .a 是分数。