Merged_Do_圆锥曲线知识整合1
- 格式:pdf
- 大小:371.72 KB
- 文档页数:17
圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
圆锥曲线知识点总结圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而得到的曲线。
在平面几何中,圆锥曲线可以用数学方程来进行描述。
一般来说,圆锥曲线的数学方程可以由二次方程来表示,它们的一般形式为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0(其中A、B、C、D、E和F是常数,且A和C不同时为0)。
根据二次方程的系数A、B和C的取值,我们可以将圆锥曲线分为椭圆、双曲线和抛物线三种类型。
椭圆是圆锥曲线的一种类型,它的数学方程一般形式为 Ax^2 + By^2 + C = 0(其中A和B不同时为0)。
椭圆在平面上呈现出闭合的轨迹,且其长度和宽度不同,这种特性使得椭圆在几何学和物理学中有着广泛的应用。
例如,在天文学中,行星的轨道就可以用椭圆来描述。
双曲线是圆锥曲线的另一种类型,它的数学方程一般形式为 Ax^2 - By^2 + C = 0(其中A和B不同时为0)。
双曲线在平面上表现出两个分离的开口,它的形状类似于一个倒置的U形。
双曲线在数学和物理学中有着丰富的应用,例如在电磁学中,电场和磁场的分布就可以用双曲线来描述。
抛物线是圆锥曲线的最后一种类型,它的数学方程一般形式为 Ax^2 + By = 0(其中A不为0)。
抛物线在平面上呈现出开口向上或向下的曲线轨迹,其特性在物理学和工程学中有着广泛的应用。
例如,在抛物线运动中,抛出的物体会沿着抛物线轨迹移动。
圆锥曲线的性质和特点除了不同类型的圆锥曲线有着各自不同的数学方程之外,它们还有许多共同的性质和特点。
在本节中,我们将分别对椭圆、双曲线和抛物线的性质进行探讨。
椭圆是圆锥曲线中最简单的一种类型,它具有许多重要的性质。
首先,椭圆在平面上呈现出闭合的轨迹,且其长度和宽度不同。
其次,椭圆上的任意一点到两个焦点的距离之和是一个常数,这个常数被称为椭圆的长轴长度。
另外,椭圆还满足反射定律,即光线从一个焦点射到椭圆上的一个点,然后被反射到另一个焦点。
圆锥曲线知识点总结圆锥曲线是高等数学中的一个重要概念,它涉及到许多重要的数学定理和应用。
本文将对圆锥曲线的知识点进行总结,以帮助读者更好地了解和掌握这一领域的知识。
1. 定义圆锥曲线是由一个平面依某种特定的方式与一个圆锥相交而形成的曲线。
根据平面与圆锥相交的位置和方式的不同,可以得到不同种类的圆锥曲线,包括椭圆、抛物线和双曲线。
2. 椭圆椭圆是圆锥曲线中最常见的一种形式,它由一个平面截取圆锥而得。
椭圆具有以下特点:- 椭圆是对称图形,它具有两个焦点和一个长轴和短轴。
两个焦点到椭圆上任意一点的距离之和是一个常数。
- 通过长轴和短轴的长度可以确定椭圆的形状和大小。
3. 抛物线抛物线是另一种常见的圆锥曲线,它由一个平面与圆锥的一个发电机相交而得。
抛物线具有以下特点:- 抛物线是对称图形,它具有一个焦点和一个直线(称为准线)。
抛物线上任意一点到焦点的距离与到准线的距离相等。
- 通过准线的斜率和焦点的坐标可以确定抛物线的形状和方向。
4. 双曲线双曲线是圆锥曲线中最复杂的一种形式,它由一个平面与圆锥的两个发电机相交而得。
双曲线具有以下特点:- 双曲线有两个焦点和两条渐近线。
双曲线上任意一点到两个焦点的距离之差是一个常数。
- 通过焦点的位置和渐近线的斜率可以确定双曲线的形状和方向。
5. 数学定理圆锥曲线涉及到许多重要的数学定理和关系,包括焦点到直线的距离公式、椭圆的离心率公式、极坐标方程等。
- 焦点到直线的距离公式:椭圆的焦点到直线的距离等于焦点到直线的切线的距离。
- 椭圆的离心率公式:椭圆的离心率是一个常数,它等于焦点到准线的距离与椭圆的长轴长度之比。
- 极坐标方程:圆锥曲线可以用极坐标方程来描述,其中径向距离和极角之间存在特定的关系。
6. 应用领域圆锥曲线在数学和物理学中有广泛的应用。
例如,椭圆的离心率在天文学中用来描述行星的轨道形状;抛物线的反射性质用于抛物面望远镜的设计;双曲线的双曲函数在物理学中有重要的应用等等。
圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
它们在数学和物理学等领域都有广泛的应用。
接下来,让我们详细了解一下圆锥曲线的相关知识点。
一、椭圆1、定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。
3、椭圆的性质(1)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(2)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(3)顶点:焦点在$x$轴上的椭圆顶点为$(±a, 0)$,$(0, ±b)$;焦点在$y$轴上的椭圆顶点为$(0, ±a)$,$(±b, 0)$。
(4)离心率:椭圆的离心率$e =\frac{c}{a}$($0 < e <1$),它反映了椭圆的扁平程度,$e$越接近$0$,椭圆越接近于圆;$e$越接近$1$,椭圆越扁。
二、双曲线1、定义平面内与两个定点$F_1$、$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$,其中$a > 0$,$b > 0$,$c^2 = a^2 + b^2$。
高中数学圆锥曲线知识点
圆锥曲线,渗透到平面解析几何的各个部分,是解决解析几何问题的重要工具之一,更是高考必考内容之一。
对于高中数学的学习,圆锥曲线是一大难点,也是一大重点,归纳结论和解题技巧对学生来说都是十分重要,事实上,运用解析法解决几何问题是一种解决问题的思路,为了体现这种思路,必须出现一些用传统几何方法无法解决或者很难解决的问题,而圆锥曲线就是最好的载体了——简单的方程和很多时候方便出题的性质。
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。
下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。
根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。
1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。
即|PF1| + |PF2| = 2a。
椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。
3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。
即|PF| = |PM|,其中M是直线L上的一点。
抛物线对应的方程为\(y^2 = 2px\)。
二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。
B. 椭圆的离心率e的范围为0<e<1。
C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。
3. 抛物线的性质:A. 抛物线的焦点为定点F。
B. 抛物线的离心率e=1。
C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。
三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。
2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。
3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。
圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a+=。
椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222b ac =-;②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。
(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。
所以,椭圆关于x 轴、y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。
在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。
同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。
圆锥曲线知识总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
例题讲解:①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是( )A. B.C. D.();②方程表示的曲线是__ __已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_____2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
例题讲解:①已知方程表示椭圆,则的取值范围为____②若,且,则的最大值是____,的最小值是___(①双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_______3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。