数列大题练习
- 格式:doc
- 大小:1015.00 KB
- 文档页数:17
1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。
有条件9可知a>0,故1q。
311a。
故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。
〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。
{ n} 1 1数列大题训练一、解答题1.设数列{ a n }的前 n 项和为 S n .已知 S 2 =4, a n +1 =2 S n +1, n ∈ N ∗ . (1)求通项公式 a n ;(2)求数列{| a n − n − 2 |}的前 n 项和.2.已知 a , a , a ,⋅⋅⋅, a为正整数且 a > a > a>⋅⋅⋅> a > 1 ,将等式 (1 − 1 ) + (1 − 1 ) + (1 − 1) +⋅⋅0 12n12na 1a 2a 3⋅ +(1 − 1 ) = 2(1 − 1) 记为 (∗) 式.a na 0(1)求函数 f (x ) = 1 − 1x, x ∈ [2, +∞) 的值域;(2)试判断当 n = 1 时(或 2 时),是否存在 a 0 , a 1 (或 a 0 , a 1 , a 2 )使 (∗) 式成立,若存在,写出对应 a 0 , a 1 (或 a 0 , a 1 , a 2 ),若不存在,说明理由;(3)求所有能使 (∗) 式成立的 a i ( 0 ≤ i ≤ n )所组成的有序实数对 (a 0, a 1, a 2,⋅⋅⋅, a n ) . 3.已知函数 f (x ) = log 3(x +1)(x > 0) 的图象上有一点列 P (x, y )(n ∈ N ∗),点P在 x 轴上的射影是x +1n n nnQ n (x n , 0) , 且 x n = 3x n−1 + 2 ( n ≥ 2 且 n ∈ N ∗ ),x 1 = 2 .(1)求证: {x n + 1} 是等比数列,并求出数列 {x n } 的通项公式;21 (2)对任意的正整数 n ,当 m ∈ [−1,1] 时,不等式 3t − 6mt + > y n 恒成立,求实数 t 的取值范3围.(3)设四边形 P Q QP1 1 的面积是 S ,求证: ++ ⋯ +1< 3 . n n n +1 n +1nS 1 2S 2nS n4.已知 n 为正整数,数列{a }满足 a >0, 4(n + 1)a2− na2= 0 ,设数列{b }满足 b= a n 2nnnn +1nnt na n (1)求证:数列 为等比数列;√(2)若数列{b n }是等差数列,求实数 t 的值;(3)若数列{b n }是等差数列,前 n 项和为 S n , 对任意的 n ∈N * , 均存在 m ∈N * , 使得 8a 2S n ﹣ a 4n 2=16b m 成立,求满足条件的所有整数 a 1 的值. a 2n5.已知数列 {a n } 和 {b n } 满足: a 1 = λ ,数, n 为正整数.n +1 = 3 a n + n − 4, b n = (−1)(a n − 3n + 21) 其中 λ 为实(1)对任意实数 λ ,证明数列 {a n } 不是等比数列; (2)对于给定的实数 λ ,试求数列 {b n } 的前 n 项和 S n ;(3)设 0 < a < b ,是否存在实数 λ ,使得对任意正整数 n ,都有 a < S n < b 成立?若存在,求 λ 的取值范围;若不存在,说明理由.6.已知数列 {a n } 满足 a 1 = 1,a n +1 = 1 − 14a n,其中 n ∈ N ∗ .1 1+a +1Ⅲ 3) (1)设 b n = 22an −1,求证:数列 {b n } 是等差数列,并求出 [a n } 的通项公式 ;(2)设 c n = 4a n n +1 ,数列 {c n c n +2 } 的前 n 项和为 T n ,且存在正整数 m ,使得 T n < 1 c m +1 对 于 n ∈ N ∗ 恒成立,求 m 的最小值.7.设各项均为正数的等比数列 {a n } 中, a 1 + a 3 = 10 , a 3 + a 5 = 40 ,数列 {b n } 的前 n 和 S n =n 2+7n .2(1)求数列 {a n } 、 {b n } 的通项公式;(2)若 c 1 = 1 , c n +1 = c n + b n −3a n,求证: c n< 3 .1(3)是否存在整数 k ,使得 a −b的最大值,若不存在,说明理由.+1a 2−b 2+⋅⋅⋅⋅⋅⋅ +1a n −b n>k 10对任意正整数 n 均成立?若存在,求出 k8.已知数列 {a } 的各项均为非零实数,其前 n 项和为 S,且S n a n .n(1)若 S 3=3 ,求 a 3 的值;nS n 1 = a n +2(2)若 a 2021=2021a 1 ,求证:数列 {a n } 是等差数列;(3)若 a 1=1 , a 2=2 ,是否存在实数 λ ,使得 |2a n − 2a m | ≤ λ|a 2 − a 2 | 对任意正整数 m ,n 恒成立,若存在,求实数 λ 的取值范围,若不存在,说明理由. a 2 −a+2anm9.已知数列 {a n } 和 {b n } , a 1 = 1, a 2 = 3 , a n +1= nn−1nn−1 ,( n ∈ N ∗且n ≥ 2 ), b n =1og 2(a n +1)2−5a n +1(I) 求 a 3, a 4 ;, (n ∈ N ∗) .(Ⅱ)猜想数列 {a n } 的通项公式,并证明;( )设函数 f (x ) = x + 1 x +2, 若 |f (b n ) − t | ≤ 16 35 对任意 n ∈ N ∗恒成立,求 t 的取值范围.210.已知数列 {a n } 满足: a 1 = − 3 , a n +1 =−2a n −3 (n ∈ N ∗ ).3a n+4(1)证明:数列 { 1} 是等差数列,并求 {a} 的通项公式;a n +1n(2)若数列 {b n } 满足: b n = 2 (a n + 1)(n ∈ N ),若对一切 n ∈ N ∗ ,都有 (1 − b 1)(1 − b 2). . . (1 −b n ) ≤λ√2n +1 成立,求实数 λ 的最小值.11.已知数列 {x n } ,如果存在常数 p ,使得对任意正整数 n ,总有 (x n +1 − p )(x n − p ) < 0 成立,那么我们称数列 {x n } 为“p -摆动数列”.(Ⅰ) 设 a n = 2n − 1 , b n = (− 由;1 n2, n ∈ N ∗ ,判断 {a n } 、 {b n } 是否为“p -摆动数列”,并说明理 (Ⅱ)已知“p -摆动数列” {c n} 满足 c n +1 = 1cn +1, c 1= 1 ,求常数 p 的值;∗} 1 2 (Ⅲ)设 d n = (−1)n ⋅ (2n − 1) ,且数列 {d n } 的前 n 项和为 S n ,求证:数列 {S n } 是“p -摆动数列”, 并求出常数 p 的取值范围.12.等差数列 {a n } 的前 n 项和为 S n .(1)求证:数列S n{ n }是等差数列;(2)若 a 1= 1, {√S n 是公差为 的等差数列,求使 S k +1⋅S k +2S k 2为整数的正整数 k 的取值集合;(3)记 b = t a n ( t 为大于 0 的常数),求证:b 1+b 2+⋯…+b n≤b 1+b 2.nn213.已知数列 {a n } 的前 n 项和为 S n ,且 S n = 2a n − 2 . (1)求 {a n } 的通项公式;(2)在 a n 与 a n +1 之间插入 n 个数,使这 n + 2 个数组成一个公差为 d n 的等差数列,在数列 {d n } 中是否存在 3 项 d m , d k , d p (其中 m , k , p 成等差数列)成等比数列?若存在,求出这样的 3 项;若不存在,请说明理由.14.已知递增的等比数列 {a n } 满足 a 2 + a 3 + a 4 = 28 ,且 a 3 + 2 是 a 2 , a 4 的等差中项. (1)求 {a n } 的通项公式;(2)若 b n = a n log 1a n , S n =b 1 + b 2 + b 3 + ⋯ + b n 求使 S n + n ⋅ 2n +1 > 30 成立的 n 的最小值. 15.已知数列 {a n } 中,已知 a 1 = 1 , a 2 = a , a n +1 = k (a n + a n +2) 对任意 n ∈ N ∗ 都成立,数列{a n }的前 n 项和为 S n .(1)若 {a n } 是等差数列,求 k 的值; (2) 若 a = 1 , k = − 12 , 求 S n ;(3)是否存在实数 k ,使数列 {a n } 是公比不为 1 的等比数列,且任意相邻三项 a m , a m +1 , a m +2 按某顺序排列后成等差数列?若存在,求出所有 k 的值;若不存在,请说明理由.16.一列火车从重庆驶往北京,沿途有 n 个车站(包括起点站重庆和终点站北京).车上有一邮政车厢,每停靠一站便要卸下火车已经过的各站发往该站的邮袋各 1 个,同时又要装上该站发往以后各站的邮袋各 1 个,设从第 k 站出发时,邮政车厢内共有邮袋 a k 个(k=1,2,…,n ).(1)求数列{a k }的通项公式;(2)当 k 为何值时,a k 的值最大,求出 a k 的最大值.17.已知等比数列 {a n } 的公比 q > 1 , a 2 , a 3 是方程 x 2 − 6x + 8 = 0 的两根. (1)求数列 {a n } 的通项公式; (2)求数列 {2n ⋅ a n } 的前 n 项和 S n .18.设数列 {a n } 满足 a n 2 = a n +1a n−1 + λ(a 2 − a 1)2 ,其中 n ⩾ 2 ,且 n ∈ N , λ 为常数. (1)若 {a n } 是等差数列,且公差 d ≠ 0 ,求 λ 的值;(2)若 a 1 = 1, a 2 = 2, a 3 = 4 ,且存在 r ∈ [3,7] ,使得 m ⋅ a n ≥ n − r 对任意的 n ∈ N ∗ 都成立,求m 的最小值;(3)若 λ ≠ 0 ,且数列 {a n } 不是常数列,如果存在正整数 T ,使得 a n +T = a n 对任意的 n ∈ N ∗均成立.求所有满足条件的数列{an } 中 T 的最小值.19.已知等差数列 {a n } 满足 a 2 = 5 , a 4 + a 5 = a 3 + 13 .设正项等比数列 {b n } 的前 n 项和为 S n , 且 b 2b 4 = 81 , S 3 = 13 .(1)求数列 {a n } 、 {b n } 的通项公式;(2)设 c n = a n b n ,数列 {c n } 的前 n 项和为 T n ,求 T n .20.公差不为零的等差数列 {a n } 中, a 1 , a 2 , a 5 成等比数列,且该数列的前 10 项和为 100,数列{b n } 的前 n 项和为 S n ,且满足 S n = 2b n − 1, n ∈ N ∗ .( Ⅰ ) 求数列 {a n } , {b n } 的通项公式;( Ⅱ ) 令 c n = 1+a n4b n,数列 {c n } 的前 n 项和为 T n ,求 T n 的取值范围.21.已知数列{a n }的前 n 项和为 S n , 且 S n +a n =4,n ∈N * . (1)求数列{a n }的通项公式;(2)已知 c n =2n+3(n ∈N *),记 d n =c n +log C a n (C >0 且 C≠1),是否存在这样的常数 C ,使得数列{d n }是常数列,若存在,求出 C 的值;若不存在,请说明理由. (3)若数列{b },对于任意的正整数 n ,均有 b a +b a +b a+…+b a =()n ﹣ n +2成立,求证:数n列{b n }是等差数列.1 n2 n ﹣13 n ﹣2n 1 2 222.已知数列 {a n } 满足 a 1 = 1, a n +1 = 1 −14a n,其中 n ∈ N ∗ .(1)设 b n = 22an −1,求证:数列 {b n } 是等差数列,并求出 {a n } 的通项公式;(2)设 c n = 4a nn +1 ,数列 {c n c n +2 } 的前 n 项和为 T n .23.已知数列{a n }的前 n 项和为 S n , 且满足 12S n ﹣36=3n 2+8n ,数列{log 3b n }为等差数列,且 b 1=3,b 3=27. (Ⅰ)求数列{a n }与{b n }的通项公式;(Ⅱ)令c =(﹣1)n (a − 5) + b ,求数列{c }的前 n 项和 T . nn12n n n24.已知 q 和 n 均为给定的大于 1 的自然数,设集合 M ={0,1,2,…,q -1},集合 A ={x|x =x 1+x 2q +…+x n q n -1 , x i ∈M ,i =1,2,…,n}.(1)当 q =2,n =3 时,用列举法表示集合 A.(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1, t =b 1+b 2q +…+b n q n-1, 其中a i ,b i ∈M ,i =1,2,…,n.证明:若 a n <b n , 则 s <t. ∗25.已知数列 {a n } 的首项 a 1 = a (a > 0) ,其前 n 项和为 S n ,设 b n = a n + a n +1(n ∈ N ) . (1)若 a 2 = a + 1 , a 3 = 2a 2 ,且数列 {b n } 是公差为 3 的等差数列,求 S 2n ; (2)设数列 {b n } 的前 n 项和为 T n ,满足 T n = n 2 . ①求数列 {a n } 的通项公式; ②若对 ∀n ∈ N ∗,且n ≥ 2 ,不等式 (a n−1 − 1)(a n +1 − 1) ≥ 2(1 − n ) 恒成立,求 a 的取值范围.12 Ⅱ26.是否存在一个等比数列{a }同时满足下列三个条件:①a +a =11 且 a a =;②a >a (n ∈N *);n163 49 n+1n③至少存在一个 m (m ∈N *且 m >4),使得 2a, a 2 , a + 4依次构成等差数列?若存在,求出通项公式;若不存在,说明理由.3m ﹣1mm+1927.设 {a n } 是等差数列, a 1 = −8 ,且 a 2 + 8 , a 3 + 6 , a 4 + 4 成等比数列. (1)求 {a n } 的通项公式;(2)求 {a n } 的前 n 项和 S n 的最小值;(3)若 {b n } 是等差数列, {b n } 与 {a n } 的公差不相等,且 b 5 = a 5 ,问: {a n } 和 {b n } 中除第 5 项外,还有序号相同且数值相等的项吗?(直接写出结论即可) 28.已知数列 {a } 满足 1a ≤ a≤ 3a , n ∈ N ∗ , a= 1 .n3 n n +1n1(1)若 a 2 = 3 , a 3 = x , a 4 = 6 ,求 x 的取值范围;(2)若 {a } 是公比为 q 的等比数列, S= a + a+ ⋯ + a , 1S ≤ S≤ 3S , n ∈ N ∗ , 求 qn的取值范围;n12n3 nn +1(3)若 a 1, a 2, ⋯ , a k 成等差数列,且 a 1 + a 2 + ⋯ + a k = 2020 ,求正整数 k 的最大值. 29.若数列 {a n } 是公差为 2 的等差数列,数列 {b n } 满足 b 1=1,b 2=2,且 a n b n +b n =nb n +1. (1)求数列 {a n } , {b n } 的通项公式;(2)设数列 {c n} 满足 c n= a n +1 b n +1,数列 {c n } 的前 n 项和为 T n ,若不等式 (-1)n λ < T n+ n 2n−1对一切 n ∈N *恒成立,求实数 λ 的取值范围.30.设 T n 是数列 {a n } 的前 n 项之积,且满足 T n = 3 − a n , n ∈ N ∗ .(1)求证:数列 { 13−a n1− } 是等比数列,并写出数列 {a n } 的通项公式;(2)设 S 是数列 {a } 是前 n 项之和,证明: n + 1 − 1< S< n + 2 − 2.nnT nnT n31.已知数列{a n }满足 a n+1+a n =4n ﹣3,n ∈N * (1)若数列{a n }是等差数列,求 a 1 的值; (2)当 a 1=﹣3 时,求数列{a n }的前 n 项和 S n ; (3)若对任意的n ∈N *, 都 有a n 2+a n +1 2a n +a n +1≥5 成立,求 a 1的取值范围.32.ΔABC 中,内角 A , B , C 的对边分别是 a , b , c ,已知 a , b , c 成等比数列,且B = 3.(Ⅰ)求1tan A+1tan B的值;cos 4( )设 B⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗A ⃗⃗⃗ ⋅ B ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗C ⃗⃗⃗ = 3 2,求 a + c 的值. 33.已知数列 {a n } 的前 n 和为 S n ,且满足 λS n = a n − 1 ,其中 λ ≠ 0 且 λ ≠ 1 . (1)证明:数列 {a n } 是等比数列;(2)当 λ = 12,令 c n= (n + 1)a n ,数列 {a n } 的前 n 项和为 T n ,若需 Tn> 2019 恒成立,求正整n数 n 的最小值.321+a 2 n a 2 n)34.已知数列 {a n} 满足 a 1 = 1 , a n +1=a n n, n ∈ N ∗, 记Sn, T n分别是数列 {a n} , {a 2} 的前 n 项和,证明:当 n ∈ N ∗ 时,(1)a n +1 < a n ;(2)T n = 1n +1− 2n − 1 ;(3)√2n − 1 < S n < √2n .35.设 q 为不等于 1 的正常数, {a n } 各项均为正,首项为 1 ,且 {a n } 前 n 项和为 S n ,已知对任意的正整数 n , m ,当时 n > m , S n − S m = q m · S n−m 恒成立. (1)求数列 {a n } 的通项公式;(2)若数列 {t n } 是首项为 1 ,公差为 3 的等差数列,存在一列数 k 1, k 2, ⋯ , k n , ⋯ :恰好使得 t k 1 = a 1, t k 2 = a 2, ⋯ , t k n = a n , ⋯, 且 k 1 = 1, k 2 = 2 ,求数列 {k n } 的通项公式;(3)当 q = 3 时,设 b n = na n ,问数列 {b n} 中是否存在不同的三项恰好成等差数列?若存在,求出所 有这样的三项,若不存在,请说明理由36.已知数列 {a} 满足aa− 3 ( n ≥ 2 , 且 n ∈ N ∗), 且 a= − 3, 设 b n + 2 = 3log 1(a n +n4 n = n−1 1441) , n ∈ N ∗,数列{c n } 满足 c n = (a n + 1)b n .(1)求证:数列 {a n + 1} 是等比数列并求出数列 {a n } 的通项公式; (2)求数列 {c n } 的前 n 项和 S n ; (3)对于任意 n ∈ N ∗,t ∈ [0,1], cn⩽ tm 2 − m − 12恒成立,求实数 m 的取值范围.37.已知 {a n } 是递增的等差数列, a 2 , a 4 是方程 x 2-5x +6=0 的根. (1)求 {a n } 的通项公式; a(2)求数列 {2n } 的前 n 项和.38.已知数列 {a } 的满足 a = 1 ,前 n 项的和为 S,且 a n +1−a n = 2 (n ∈ N *) .n1(1)求 a 2 的值;na n an +1 4S n−1(2)设 b n = a na n +1−a n ,证明:数列 {b n} 是等差数列;(3)设 c n = 2b n ⋅ a n ,若 1 ≤ λ ≤ √2 ,求对所有的正整数 n 都有 2λ2 − kλ + 3√2 < c n 成立的 k 的取值范围.39.数列 {a n } 是首项与公比均为 a 的等比数列( a > 0 ,且 a ≠ 1 ),数列 {b n } 满足 b n = a n ⋅ lg a n . (1)求数列 {b n } 的前 n 项和 T n ; (2)若对一切 n ∈ N ∗都有b n < b n +1 ,求 a 的取值范围.40.等差数列{a n }中,其前 n 项和为 S n , 且S n = (a n +1)22,等比数列{b n }中,其前 n 项和为 T n , 且 T n =(b n +1 2 ,(n ∈N *)2(1)求a n ,b n ; (2)求{a n b n }的前 n 项和 M n .n +1 41.已知函数 f (x ) = log 3(ax + b ) 的图象过点 A (2,1) 和 B (5,2 )记 a n = 3f (n ) , n ∈ N * .(1)求数列{ a n }的通项公式.(2)设 b n = a n2n , T n = b 1 + b 2 + ⋯ b n , T n< m ( m ∈ Z ),求 m 的最小值.42.已知公比 q > 0 的等比数列 {a n } 的前 n 项和为 S n ,且 a 1 = 1, S 3 = 13 ,数列 {b n } 中, b 1 = 1, b 3 = 3 .(1)若数列 {a n + b n } 是等差数列,求 a n , b n ; (2)在(1)的条件下,求数列 {b n } 的前 n 项和 T n .43.已知数列{b n }是首项 b 1=1,b 4=10 的等差数列,设 b n +2=3 log 1 4a n (n ∈n *).(1)求证:{a n }是等比数列;(2)记 c n =1 b n b n +1,求数列{c n }的前 n 项和 S n ;(3)记 d n =(3n+1)•S n , 若对任意正整数 n ,不等式的最大值.1n +d 1 1+ n +d 2 +…+ 1n +d nm> 24 恒成立,求整数 m 44.已知各项均不相等的等差数列 {a n } 的前五项和 S 5 = 20 ,且 a 1, a 3, a 7 成等比数列;(1)求数列 {a n } 的通项公式; (2)若 T n 为数列 { 1a n a n +1} 的前 n 项和,且存在 n ∈ N ∗,使得T n− λa n≥ 0 成立,求实数 λ 的取值范围。
高中数列大题20道高中数列大题20道1. 答案是多少?设定数列公式:an = 2n + 1,求第10项的值。
2. 判断数列是否等差数列:数列an = 3n + 1,若前5项都成等差数列,确定公差。
3. 求前n项和:已知数列an = 2^n,求前8项和的值。
4. 求数列的通项公式:已知数列的前两项分别为3和10,且数列成等差数列,求通项公式。
5. 判断数列是否等比数列:已知数列an = 3^n,判断该数列是否为等比数列,并求公比。
6. 运用递推关系:数列an的前两项为2和5,且满足递推关系an+1 = 3an - 1,求前10项的值。
7. 求前n项和:数列an = n^2 - 2n + 3,求前6项和的值。
8. 求通项公式:已知数列前三项为3、5、7,且数列成等差数列,求通项公式。
9. 运用递推关系:数列an的前两项为2和3,且满足递推关系an+1 = an^2 + an + 1,求前6项的值。
10. 判断数列性质:已知数列前两项为5和10,若数列满足an = a(n-1) - n,求数列的第4项。
11. 求数列的通项公式:已知数列前三项为2、6、18,且数列成等比数列,求通项公式。
12. 求前n项和:数列an = 2^n + 3^n,求前5项的和。
13. 求数列的通项公式:已知数列的前两项为2和8,且数列成等比数列,求通项公式。
14. 判断数列性质:已知数列前两项为1和2,若数列满足an = a(n-1) + n,求数列的第5项。
15. 运用递推关系:数列an的前两项为1和2,且满足递推关系an+1 = 2an + 3,求前8项的值。
16. 求前n项和:数列an = n^3 + n^2,求前4项的和。
17. 求通项公式:已知数列前三项为9、16、23,且数列成等差数列,求通项公式。
18. 判断数列性质:已知数列前两项为4和7,若数列满足an = a(n-1) + 2n,求数列的第6项。
19. 求数列的通项公式:已知数列前三项为5、10、20,且数列成等比数列,求通项公式。
数列大题训练50题及答案本卷含答案及知识卡片,同学们做题务必认真审题,规范书写。
保持卷板整洁。
一.解答题(共50题),2a n+1a n+a n+1−a n=0.1. (2019•全国)数列{an}中, a1=13(1)求{aₙ}的通项公式 ;(2)求满足a1a2+a2a3+⋯+a n−1a n<1的n的最大值 .72.( 2019•新课标Ⅰ )记 Sn为等差数列{aₙ}的前 n项和 .已知Sg= -a₅.(1)若 a₃=4,求{aₙ}的通项公式 ;(2)若 a₁>0, 求使得Sₙ≥aₙ的n的取值范围 .3.( 2019·新课标Ⅱ)已知数列aₙ和bₙ满足a₁=1,b₁=0,4aₙ₊₁=3aₙ−bₙ+4,4bₙ₊₁=3bₙ−aₙ−4.( 1) 证明 : aₙ+bₙ是等比数列,aₙ−bₙ是等差数列;(2)求{aₙ}和bₙ的通项公式 .4.( 2019•新课标Ⅱ)已知{ aₙ}是各项均为正数的等比数列, a₁=2,a₃=2a₂+16.(1)求{aₙ}的通项公式 ;(2)设bₙ=log₂aₙ,求数列bₙ的前n项和 .5.(2018•新课标Ⅱ)记 Sn为等差数列aₙ}的前 n项和 , 已知a₁= - 7 , S₃= -15 .(1)求{ aₙ}的通项公式;(2)求Sₙ,并求Sₙ,的最小值 ..6 .( 2018•新课标Ⅰ )已知数列{ aₙ满足a₁=1,naₙ₊₁=2(n+1)aₙ,设b n=a nn(1)求b₁,b₂,b₃;( 2) 判断数列{bₙ}是否为等比数列,并说明理由;(3)求{aₙ}的通项公式 .7.( 2018•新课标Ⅲ ) 等比数列{aₙ}中 ,a₁=1,a₅=4a₃·(1)求{aₙ}的通项公式 ;(2)记 Sn为{aₙ}的前 n项和 .若Sₙ=63,求m..8.(2017•全国)设数列{bₙ}的各项都为正数 , 且b n+1=b nb n+1}为等差数列;( 1) 证明数列{1b n(2)设 b₁=1,求数列{ bₙbₙ₊₁的前n项和Sₙ.9 .( 2017•新课标Ⅱ )已知等差数列{aₙ}的前 n项和为 Sₙ,等比数列{bₙ}的前 n项和为Tₙ,a₁=−1,b₁=1,a₂+b₂=2(1)若 a₃+b₃=5,又求{bₙ}的通项公式 ;(2)若 T₃=21, 求 S₃.10 .( 2017•新课标Ⅰ )记. Sₙ,为等比数列{aₙ}的前 n项和 .已知 S₂=2,S₃=-6.(1)求{aₙ}的通项公式 ;(2)求Sₙ,并判断Sₙ₊₁,Sₙ,Sₙ₊₂是否成等差数列 .11 .( 2017•新课标Ⅲ)设数列{aₙ}满足a1+3a2++(2n−1)a n=2n.(1)求{an}的通项公式 ;}的前 n项和 .(2)求数列{a n2n+112.( 2016·全国) 已知数列aₙ}的前 n项和Sₙ=n².( Ⅰ )求{aₙ}的通项公式 ;,求数列{bₙ}的前 n项和 .(Ⅱ)记b n=√a n+√a n+113 .( 2016•新课标Ⅲ ) 已知数列aₙ}的前n项和Sₙ=1+λaₙ,其中λ≠0.(1) 证明{aₙ}是等比数列,并求其通项公式;,求λ .(2)若S5=313214 .( 2016•新课标Ⅰ ) 已知{aₙ}是公差为 3 的等差数列 , 数列{ bₙ满足b₁=1,,a n b n+1+b n+1=nb n.b2=13( Ⅰ )求{aₙ}的通项公式 ;(Ⅱ)求{bₙ}的前n项和.15 .( 2016•新课标Ⅲ) 已知各项都为正数的数列aₙ满足a1=1,a n2−(2a n+1(1)aₙ−2aₙ₊₁=0.(1)求 a₂, a₃;(2)求{aₙ}的通项公式 .16 .( 2016•新课标Ⅱ ) 等差数列{aₙ}中 ,a₃+a₄=4,a₅+a₇=6.( Ⅰ )求{aₙ}的通项公式 ;数列全国高考数学试题 参考答案与试题解析一 . 解答题(共50 小题)1.( 2019•全国)数列{a ₙ}中 , a 1=13,2a n+1a n +a n+1−a n =0.(1)求{a ₙ}的通项公式 ;( 2)求满足 a 1a 2+a 2a 3+⋯+a n−1a n <17的n 的最大值 .【解答】解:(1) ∵2a n+1a n +a n+1−a n =0.∴1a n+1−1a n=2,∴a 1a 2+a 2a 3++a n−1a n =12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1),∵a 1a 2+a 2a 3++a n−1a n <17,∴12(13−12n+1)<17, ∴4n +2<42,∴n <10,∵n ∈N ∗, ∴n 的最大值为9.【点评】本题考查了等差数列的定义 ,通项公式和裂项相消法求出数列的前 n【分析】(1)由 2aₙ₊₁aₙ+aₙ₊₁−aₙ=0可得−=2,可知数列 {}是等差数列 ,求出- 的通项公式可得 an ;(2)由(1)知1a a =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),然后利用裂项相消法求出 a 1a 2+a 2a 3+⋯+a n−1a n 再解不等式可得n 的范围,进而得到n 的最大值 . 又1a =3,∴数列 {}是以3为首项 ,2 为公差的等差数列 , ∴1a =2n +1,∴a n =12n+1;(2)由(1)知 , a n−1a n =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),。
数列综合大题1、在数列中,已知(.(Ⅰ)求及;(Ⅱ)求数列的前项和.2、己知数列的前n项和为,,当n≥2时,,,成等差数列. (1)求数列的通项公式;(2)设,是数列的前n项和,求使得对所有都成立的最小正整数.3、已知等比数列中,求的通项公式;令求数列{}的前项和4、数列中,,(是不为零的常数,),且成等比数列.(1)求的值;(2)求的通项公式; (3)若数列的前n项之和为,求证∈。
5、四川省广元市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?(2)到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%吗?为什么(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)6、设S n为等差数列{a n}的前n项和,已知a 9 =-2,S 8 =2.(1)求首项a1和公差d的值;(2)当n为何值时,S n最大?并求出S n的最大值.7、设数列的前项和为,,.(Ⅰ)求数列的通项公式;(Ⅱ)设是数列的前项和,求.8、设数列{a n}是等差数列,数列{b n}的前n项和S n满足且(Ⅰ)求数列{a n}和{b n}的通项公式:(Ⅱ)设T n为数列{S n}的前n项和,求T n.9、已知数列的前项和(为正整数)。
(1)令,求证:数列是等差数列,并求数列的通项公式;(2)令,,求使得成立的最小正整数,并证明你的结论.10、已知等差数列满足:(1)求数列的前20项的和;(2)若数列满足:,求数列的前项和.11、数列{}的前n项和为,,.(1)设,证明:数列是等比数列;(2)求数列的前项和;(3)若,.求不超过的最大整数的值。
高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
数列大题训练20题1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2.已知数列{}n a 是首项为114a =,公比14q =的等比数列,设1423log n n b a +=()n *∈N ,数列{}n c 满足n n n c a b =⋅.(Ⅰ)求证:数列{}n b 成等差数列;(Ⅱ)求数列{}n c 的前n 项和nS ;(Ⅲ)若2114n c m m ≤+-对一切正整数n 恒成立,求实数m 的取值范围.3 .已知函数x ab x f =)( (,a b 为常数)的图象经过点11,8P ⎛⎫⎪⎝⎭和()4,8Q .(1) 求函数)(x f 的解析式;(2) 记()2log n a f n =,n 是正整数,n S 是数列}{n a 的前n 项和,求n S 的最小值.4 .已知()y f x =为一次函数,且(2)f 、(5)f 、(4)f 成等比数列,(8)15f =.求(1)(2)()n S f f f n =++⋅⋅⋅+的表达式.5.已知数列}{n a 的前n 项和)(n f 是n 的二次函数,)(n f 满足),2()2(n f n f -=+且.3)1(,0)4(-==f f(1)求数列}{n a 的通项公式; (2)设数列}{n b 满足21++=n n n a a b ,求}{n b 中数值最大和最小的项.6.已知数列{}n a 中,12a =,且当2n ≥时,1220n n n a a ---=(1)求数列{}n a 的通项公式; (2)若{}n a 的前n 项和为n S ,求n S .7.正数数列{}n a 的前n 项和n S ,满足1n a =+,试求:(I )数列{}n a 的通项公式;(II )设11n n n b a a +=,数列的前n 项的和为n B ,求证:12n B <.8.已知函数)(x f =157++x x ,数列{}n a 中, 11220n n n n a a a a ++-+=,11a =,且0n a ≠,数列}{n b 中,()1n n b f a =- (1)求证:数列{na 1}是等差数列; (2)求数列}{n b 的通项公式; (3)求数列{n b }的前n 项和n S .9.设正数数列{n a }的前n 项和n S 满足2)1(41+=n n a S . (I )求数列{n a }的通项公式; (II )设11+⋅=n n n a a b ,求数列{}n b 的前n 项和n T .10.在数列12,2,}{11+==+n nn n a a a a a 已知中 (I )求数列}{n a 的通项公式;(II )求证:3)1()1()1(2211<-++-+-n n a a a a a a11.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且(1)求证:数列{nna 2}是等差数列;(2)求数列{n a }的通项公式; (3)设数列{n a }的前n 项之和n S ,求证:322->n S n n. 12.设数列{}n a 的前n 项和为22n S n =,{}n b 为等比数列,且11a b =,()2211b a a b -=。
一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.(2011•重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.(2011•重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.4.(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n 与B n的大小.5.(2011•上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)写出c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.6.(2011•辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.7.(2011•江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值;(2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列?若存在,求{a n},{b n}的通项公式;若不存在,说明理由.8.(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;(II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.9.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(4)证明:对于一切正整数n,2a n≤b n+1+1.10.(2011•安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;(Ⅱ)设b n=tana n•tana n+1,求数列{b n}的前n项和S n.11.(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.12.(2010•四川)已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.13.(2010•四川)已知数列{a n}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2a m+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列;(3)设c n=(a n+1﹣a n)q n﹣1(q≠0,n∈N*),求数列{c n}的前n项和S n.14.(2010•陕西)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.15.(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列的前n项和S n.16.(2010•江西)正实数数列{a n}中,a1=1,a2=5,且{a n2}成等差数列.(1)证明数列{a n}中有无穷多项为无理数;(2)当n为何值时,a n为整数,并求出使a n<200的所有整数项的和.17.(2009•陕西)已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.18.(2009•山东)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n),均在函数y=b x+r(b>0)且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n∈N*求数列{b n}的前n项和T n.19.(2009•江西)数列{a n}的通项,其前n项和为S n,(1)求S n;(2),求数列{b n}的前n项和T n.20.(2009•辽宁)等比数列{a n}的前n项和为s n,已知S1,S3,S2成等差数列,(1)求{a n}的公比q;(2)求a1﹣a3=3,求s n.21.(2009•湖北)已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.22.(2009•福建)等比数列{a n}中,已知a1=2,a4=16(I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.23.(2009•安徽)已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和Tn=2﹣b n(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)设c n=a n2•b n,证明:当且仅当n≥3时,c n+1<c n.24.(2009•北京)设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)?如果存在,求p和q 的取值范围;如果不存在,请说明理由.25.(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.26.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.27.(2008•四川)在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.28.(2008•陕西)已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.29.(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列?证明你的结论;(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.30.(2008•辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.答案与评分标准一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.考点:数列递推式;数列的函数特性。
高考数列经典大题1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =.(1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .2.已知数列{}n a 满足:11a =,且对任意∈n N *都有++=L .(Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式;+L∈n N *).3.已知数列}{n a 满足且01=a *)(),1(2121N n n n S S n n ∈++=+(1)求23,,a a :并证明12,(*);n n a a n n N +=+∈(2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ;(3)求数列*)}({N n a n ∈的通项公式。
4.设b>0,数列}{n a 满足b a =1,)2(111≥-+=--n n a nba a n n n .(1)求数列}{n a 的通项公式;(2)证明:对于一切正整数n ,121+≤+n n b a .5: 已知数列{}n a 是等差数列,()*+∈-=N n a a c n n n 212(1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果()为常数k k a a a a a a 13143,130********-=+++=+++ΛΛ,试写出数列{}n c 的通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。
若存在,求出k 的取值范围;若不存在,说明理由。
6.已知各项均为正数的数列{}n a 满足12212+++=n n n n a a a a , 且42342+=+a a a ,其中*∈N n .(1)求数列{}n a 的通项公式;(2)设数列}{n b 满足nnn n na b 2)12(⋅+=,是否存在正整数,m n (1)m n <<,使得n m b b b ,,1成等比数列?若存在,求出所有的,m n 的值;若不存在,请说明理由.(3) 令1n nnc a =+,记数列}{n c 的前n 项积为n T ,其中*∈N n ,试比较n T 与9的大小,并加以证明.7.已知数列}{n a 的前n 项和为n S ,且满足1(n n S a n =-∈N *).各项为正数的数列}{n b 中, 对于一切n ∈N *,有nk ==且1231,2,3b b b ===.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n n a b 的前n 项和为n T ,求证:2n T <.8.已知函数213(),{},22n f x x x a =+n 数列的前n 项和为S 点(,)(n n S n N *∈)均在函数()y f x =的图象上。
1.已知n S 为数列{}n a 的前n 项和,且满足4133n n S a =-. ()1求数列{}n a 的通项;()2令112n n b log a +=,证明:1223341111111n n n nb b b b b b b b b b +++++⋯+=. 详解:()41133n n S a =-, 可得1114133a S a ==-,解得11a =,2n ≥时,1141413333n n n n n a S S a a --=-=--+,即有114n n a a -=,故数列{}n a 是以11a =为首项,以14为公比的等比数列,则11()4n n a -=;()2证明:2111221()22nn n b log a log n +===, ()11111122141n n b b n n n n +⎛⎫==- ⎪⋅++⎝⎭, 12231111111111142231n n b b b b b b n n +⎛⎫++⋯+=-+-+⋯+- ⎪+⎝⎭ ()1114141n n n ⎛⎫=-= ⎪++⎝⎭, ()()1122141n n n nb b n n +==⋅++, 则1223341111111n n n n b b b b b b b b b b +++++⋯+=.2.(12分)已知*N n ∈,数列{}n a 、{}n b 满足:11n n a a +=+,112n n n b b a +=+,记24n n n c a b =-. (1)若11a =,10b =,求数列{}n a 、{}n b 的通项公式; (2)证明:数列{}n c 是等差数列;(3)定义2()n n n f x x a x b =++,在(1)的条件下,是否存在n ,使得()n f x 有两个整数零点,如果存在,求出n 满足的集合,如果不存在,说明理由. 详解:(1)()11n a n n =+-=,1122n n n n nb b a b +=+=+,∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- 1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.(2)221114(4)n n n n n n c c a b a b +++-=---221(1)4()(4)12n n n n n a a b a b =+-+--=∴{}n c 是公差为1的等差数列.(3)由(1)(2)得24n n n c a b n =-=,函数的零点为x ==,要想为整数,则n 必为完全平方数,不妨设2(N )n m m =∈*,此时()2122m m m m x -±-±==, 又因为1m m ±与是连续的两个整数∴ (1)m m -±能被2整除,即函数的零点()2122m m m m x -±-±==为整数, ∴所求n 的集合为{}2|,N n n m m =∈*.3.已知数列{}n a 的前n 项和为n S ,且21n n S a =-. (1)求数列{}n a 的通项公式; (2)记12(1)(1)nn n n a b a a +=++,求数列{}n b 的前n 项和n T .【详解】(1)当1n =时,11121a S a ==-,得11a ,= 当2n ≥时,有1121n n S a --=-, 所以1122n n n n n a S S a a ,--=-=- 即12n n a a -=,满足2n ≥时,12nn a a -=, 所以{}n a 是公比为2,首项为1的等比数列, 故通项公式为12n n a -=.(2)()()()()111221121121212121n n n n nn n n n a b a a --+⎛⎫===- ⎪++++++⎝⎭, 123011223111111222212121212121n n T b b b b ⎛⎫⎛⎫⎛⎫=++++=-+-+-++⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11122121n n -⎛⎫- ⎪++⎝⎭ 2121n n-=+.4.已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠. (1)证明{}n a 是等比数列,并求其通项公式; (2)若53332S =,求λ.【详解】(1)∵1n n S a λ=+,0λ≠,∵0n a ≠. 当2n ≥时,111n n S a λ--=+,两式相减,得1111n n n n n a a a a a λλλλ--=+--=-,即()11n n a a λλ--=, ∵0λ≠,0n a ≠.∵10λ-≠.即1λ≠,即11n n a a λλ-=-,(2n ≥), ∵{}n a 是等比数列,公比1q λλ=-,当1n =时,1111S a a λ=+=,即111a λ=-, ∵1111n n a λλλ-⎛⎫=⋅ ⎪--⎝⎭;(2)若53332S =,则4513311132S λλλλ⎡⎤⎛⎫=+⋅=⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦,即5331113232λλ⎛⎫=-= ⎪-⎝⎭, 则112λλ=-,得13λ=5.已知等比数列{}n a 的各项均为正数,n S 为等比数列{}n a 的前n 项和,若223a =,3462a a a =.(1)n S t <恒成立,求t 的最小值; (2)设n nnb a =,求数列{}n b 的前n 项和n T . 【详解】(1)因为{}n a 为等比数列,所以3416a a a a =,所以341662a a a a a ==,60a ≠,所以12a =,又223a =,所以13q =,所以121313131313n n n S ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎛⎫⎝⎭⎛⎫⎝⎭==-< ⎪ ⎪ ⎪⎝⎭⎝⎭-,因为n S t <恒成立,所以3t ≥,即t 的最小值是3. (2)由(1)可知22123n n n a a q--=⋅=,所以132n n n b -⋅=,故01113233222n n n T -⨯⨯⨯=+++① ()112131323332222n n n n n T --⨯⨯⨯⨯=++++ ②① -②得:0111333322222n n n n T -⨯⨯-=+++-,()1313131322132n nn --⨯⨯+--=整理得,()21318n n n T -+=6.(本小题满分12分)记首项为1的数列{}n a 的前n 项和为n S ,且()12331n nn n S a +⋅=- .(1)求证:数列{}n a 是等比数列;(2)若()29(1)log nn n b a =-⋅,求数列{}n b 的前2n 项和.【解析】(1)依题意,11213n n n S a +⎛⎫=-⎪⎝⎭,1211213n n n S a +++⎛⎫=- ⎪⎝⎭, 两式相减可得,()21111303n n n a a +++⎛⎫--= ⎪⎝⎭,故213n n a a ++=, 而1222S 3a =,故213a a =,故数列{}n a 是以1为首项,3为公比的等比数列. (2)由(1)可13,n n a -=所以()()2212991(1)log (1)log 3(1)(1)4n n n n n n b a n -=-⋅=-⋅=⋅-⋅-,故2122221211(1)(22)(1)(21)(43)44n n n n b b n n n --⎡⎤+=⋅-⋅-+-⋅-=-⎣⎦, 记数列{}n b 的前2n 项和为2n T ,则22111(15943)424n T n n n =+++⋯+-=-.7.(本小题满分12分)已知等差数列{}n a 中,n S 为其前n 项和,2458,15a a S ⋅==;等比数列{}n b 的前n 项和21n n T =-(I )求数列{}{},n n a b 的通项公式;(II )当{}n a 各项为正时,设n n n c a b =⋅,求数列{}n c 的前n 项和. 【解析】(I )设等差数列{}n a 的首项为1a ,公差为d ,则()()()()21111383381115101532a d a d d d d d d a d a d ⎧⎧++=-+=⇔⇒=⇒==-⎨⎨+==-⎩⎩或, 11,1,n d a a n ∴==∴=,11,5,6n d a a n ∴=-=∴=-,当2n ≥时,112n nn n b T T --=-=;当1n =时,111b T ==也满足上式,∴12n n b -=.(II )由题可知,1,2n n n n n a n c a b n -===,()01221122232122n n n T n n --=⨯+⨯+⨯++-⨯+⨯, ()12312122232122n n n T n n -=⨯+⨯+⨯++-⨯+⨯,()111222121n n n n T n n --=+++-⨯=-⨯-,故()121n n T n =-⨯+.8.(本小题满分12分)已知数列{}n a 满足11a =,121n n a S +=+,其中n S 为{}n a 的前n 项和,*n N ∈. (1)求n a ;(2)若数列{}n b 满足31log n n b a =+,求122320172018111b b b b b b +++的值.【解析】(1)121n n a S +=+,121n n a S -=+,2n ≥,两式相减得112,3,2n n n n n a a a a a n ++-==≥,注意到11a =,2112133a S a =+==,于是11,3n n n a a +∀≥=,所以13n n a -=.(2)n b n =,于是()1111111n n b b n n n n +==-++, 所以1223201720181111111120171223201720182018b b b b b b +++=-+-++-=.9.(本小题满分12分)已知数列{}n a 的前n 项和为()122n n S n N ++=-∈.(1)求数列{}n a 的通项公式; (2)设22log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 【解析】 (1)由122n n S +=-可得:当2n ≥时,122n n S -=-,上述两式相减可得2n n a =.当1n =时:111112222a S +==-==成立,故所求()2n n a n N +=∈.(2)2nn a =,22log 2n nb a n ==,()11111122241n n b b n n n n +⎛⎫∴==- ⎪++⎝⎭, 故所求111111111141223141n T n n n ⎛⎫⎛⎫=⨯-+-+⋅⋅⋅+-=- ⎪ ⎪++⎝⎭⎝⎭()()41n n N n +=∈+.10.(12分)已知等差数列{}n a 的前n 项和为n S ,公差d 为整数,535S =,且2a ,31a +,6a 成等比数列.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解析】(1)由53535S a ==,得37a =,由2a ,31a +,6a 成等比数列,得()2263164a a a =+=,即()()33364a d a d -+=,整理得2314150d d -+=,又因为公差d 为整数,所以3d =,所以数列{}n a 的通项公式为32n a n =-. (2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以123n nT b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=⨯- ⎪+⎝⎭31nn =+.11.(12分)在公差为2的等差数列{}n a 中,11a +,22a +,34a +成等比数列. (1)求{}n a 的通项公式;(2)求数列{}2nn a -的前n 项和n S .【解析】(1)∵{}n a 的公差为2d =,∴212a a =+,134a a =+.∵11a +,22a +,34a +成等比数列, ∴()()()2111184a a a ++=+,解得18a =,从而()82126n a n n =+-=+.(2)由(1)得26n a n =+,2(26)2n nn a n ∴-=+-,()()281026222n n S n ∴=++⋅⋅⋅++-+++.()826222212nn n ++-⨯=--()()1722n n n +=+--21722n n n +=+-+12.(12分)已知首项为32的等比数列{}n a 的前n 项和为()*n S n N ∈,且22S -,3S ,44S 成等差数列.(1)求数列{}n a 的通项公式;(2)对于数列{}n A ,若存在一个区间M ,均有()1,2,3i A M i ∈=⋅⋅⋅,则称M 为数列{}n A 的“容值区间”.设1n n nb S S =+,试求数列{}n b 的“容值区间”长度的最小值. 【解析】(1)由题意可知:324224S S S =-+,即()()1231212342a a a a a a a a a ++=-+++++,∴4312a a =-,即公比12q =-,又132a =,∴13122n n a -⎛⎫=⋅- ⎪⎝⎭.(2)由(1)可知112n n S ⎛⎫=-- ⎪⎝⎭.当n 为偶数时112nn S ⎛⎫=- ⎪⎝⎭,易知n S 随n 增大而增大, ∴3,14n S ⎡⎫∈⎪⎢⎣⎭,根据勾型函数性质,此时1252,12n n n b S S ⎛⎤=+∈ ⎥⎝⎦.当n 为奇数时112nn S ⎛⎫=+ ⎪⎝⎭,易知n S 随n 增大而减小,∴31,2n S ⎛⎤∈ ⎥⎝⎦,根据勾型函数性质,此时1132,6n n n b S S ⎛⎤=+∈ ⎥⎝⎦.又1325612>, ∴132,6n b ⎛⎤∈ ⎥⎝⎦.故数列{}n b 的“容值区间”长度的最小值为16.13.(本小题满分12分)已知数列{}n a 满足11a =,()()111n n na n a n n +-+=+,设nn a b n=. (1)求数列{}n b 的通项公式;(2)若2n b n c n =-,求数列{}n c 的前n 项和. 【解析】(1)因为nn a b n=,所以n n a nb =, 又因为()()111n n na n a n n +-+=+,所以()()()1111n n n n b n nb n n ++-+=+,即11n n b b +-=, 所以{}n b 为等差数列,其首项为111b a ==,公差1d =. 所以()11n b n n =+-=.(2)由(1)及题设得,2n n c n =-, 所以数列{}n c 的前n 项和()()232222123n n S n =++++-++++()1222122n n n +-⨯=-- 21222n n n ++=--.14.(12分)等差数列{}n a 的前n 项和为n S ,21517a a +=,1055S =.数列{}n b 满足2log n n a b =.(1)求数列{}n b 的通项公式;(2)若数列{}n n a b +的前n 项和n T 满足3218n T S =+,求n 的值. 【解析】(1)设等差数列{}n a 的公差为d ,则有1121517104555a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,则n a n =.又2log n n a b =,即2n an b =,所以2n n b =.(2)依题意得:1212(...)(...)n n n T a a a b b b =+++++++23(123...)(222...2)n n =+++++++++()212(1)212nn n -+=+-1(1)222n n n ++=+-. 又3232(132)18185462S ++=+=,则1(1)25482n n n +++=, 因为1(1)()22n n n f n ++=+在*n N ∈上为单调递增函数,所以8n =.15.已知数列{}n a 的前n 项和n S 满足()()212n n n S a a =-+,且()*0n a n N >∈。
专题训练:数列综合运用大题1.(2022·江苏·盐城市第一中学高二阶段练习)有下列3个条件:①382a a +=-;②728S =-;③2a ,4a ,5a 成等比数列.从中任选1个,补充到下面的问题中并解答问题:设数列{}n a 的前n 项和为n S ,已知()*12N n n n S S a n +=++∈,.(1)求数列{}n a 的通项公式;(2)n S 的最小值并指明相应的n 的值.【答案】(1)212n a n =-;(2)n =5或者6时,n S 取到最小值30-.【解析】(1)因为12n n n S S a +=++,所以12n n a a +-=,即{}n a 是公差为2的等差数列,选择条件①:因为382a a +=-,所以1292a d +=-,则12922a +⨯=-,解得110a =-,所以212n a n =-;选择条件②:因为728S =-,所以1767282a d ⨯+=-,解得110a =-,所以212n a n =-;选择条件③:因为2a ,4a ,5a 成等比数列,所以()2425a a a =,即2111(3)()(4)a d a d a d +=++,解得110a =-,所以212n a n =-;(2)由(1)可知110a =-,2d =,所以22(1)1112110211224n n n S n n n n -⎛⎫=-+⨯=-=-- ⎪⎝⎭,因为*N n ∈,所以当5n =或者6时,n S 取到最小值,即min )0(3n S =-2.(2022·江苏·星海实验中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记1(1)(1)n n n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.【答案】(1)2n n a =;(2)1,3⎛⎫+∞ ⎪⎝⎭【解析】(1)选择①,由22n n S a =-①知,当2n ≥时,1122n n S a --=-②,由①-②,得122n n n a a a -=-,即()122n n a a n -=≥,当1n =时,11122a S a ==-,解得12a =,所以数列{}n a 是首项为2,公比为2的等比数列,故1222n n n a -=⨯=.选择②,由122222n na a a n ++⋯⋯+=①知,当2n ≥时,112211222n n a a an --++⋯⋯+=-②由①-②,得()()1122n nan n n =--=≥,在122222n na a a n ++⋯⋯+=中,令1n =,则112a=,满足上式,所以12n n a=,即2n n a =.选择③,由221232n nna a a a +⋯⋯=①知,当2n ≥时,()()22113122122n nn n n a a a a -+---⋯⋯==2②由①②,得()2222222n n n n n n a n +--==≥,在221232n n n a a a a +⋯⋯=中,令1n =,则12a =,满足上式,所以2n n a =.(2)由(1)知,2n n a =,所以()()111211(1)(1)22111122n n n n n n n n n a b a a +++===-------,所以数列{}n b 的前n 项和为111111113371711151122112n n n n T ++⎛⎫⎛⎫⎛⎫=-+-⎛⎫-=- ⎪⎝+-++ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎭,对于任意的*n ∈N ,1n k T n>-,所以111121n k n+->--,即121n n k +>-.设1(),21n nf n +=-所以()()()()22111111211(1)0222121n n n n n n n nf n f n +++++-⋅-++-=----=<-恒成立,即()(1)f n f n +<,所以()f n 单调递减,所以()()11max 111213f n f +===-,于是有13k >,故实数k 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭.3.(2022·福建·莆田第二十五中学高二阶段练习)从条件①()21n n S n a =+,②22,0n n n n a a S a +=>()2n a n =≥,中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为1,1n S a =,___________.(1)求{}n a 的通项公式;(2)设1112n n n a b +++=,记数列{}n b 的前n 项和为n T ,是否存在正整数n 使得83nT >.【答案】(1)答案见解析;(2)答案见解析【解析】(1)若选择①,因为()*21,N n n S n a n =+∈,所以112,2n n S na n --=≥,两式相减得()121n n n a n a na -=+-,整理得()11,2n n n a na n --=≥,即1,21n n a a n n n -=≥-,所以n a n ⎧⎫⎨⎬⎩⎭为常数列,而111n a a n ==,所以n a n =;若选择②,因为()2*2N n n n a a S n +=∈,所以()211122n n n a a S n ---+=≥,两式相减()221112222n n n n n n n a a a a S S a n ----+-=-=≥,得()()()1112n n n n n n a a a a a a n ----+=+≥,因为()1100,1,2n n n n n a a a a a n -->∴>∴+-=≥,所以{}n a 是等差数列,所以()111n a n n =+-⨯=;()2n a n =≥1n n S S --,=,由题意知0n S >1=,所以为等差数列,11a ==()21,,212n n n n n S n a S S n n -==∴=-=-≥,又1n =时,11a =也满足上式,所以21n a n =-;(2)若选择①或②,1111222n n n n n b +++++==,所以()234111113452,2222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()345211111345222222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得()2341211111132222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯++++-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()2121113148221142212n n n n n +-+⎛⎫- ⎪+⎛⎫⎝⎭=+-+⨯=- ⎪⎝⎭-,则1422n n n T ++=-,故要使得83n T >,即148223n n ++->,整理得,14223n n ++<-,当N*n ∈时,1402n n ++>,所以不存在*N n ∈,使得83n T >.若选择③,依题意,111122n n nn a n b ++++==,所以()23111123412222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()234111111234122222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()()23111111111111421111122222212n n n n n T n n ++-⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-+⨯=+-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-13322n n ++=-,则332n n n T +=-,令38323n n n T +=->,则3123n n +<,即2390n n -->,令239n n c n =--,则1100c =-<,当2n ≥时,()()112319239230n n nn n c c n n ++-=-+----=->,又450,0c c <>,故234560c c c c c <<<<<,综上,使得83n T >成立的最小正整数n 的值为5.4.(2022·河北·邢台市第二中学高二阶段练习)①{}2nn a 为等差数列,且358a =;②21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①②两个条件中任选一个,补充在下面的问题中,并解答.在数列{}n a 中,112a =,________.(1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由.【答案】(1)212n nn a -=;(2)存在,3p =,4q =,2r =﹒【解析】(1)若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,∴()1222121nn a a n n =+-=-,即212n n n a -=.若选②:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a ⨯-==⨯-,∴11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭,即212n n n a -=;(2)21321222n n n S -=+++,231113212222n n n S +-=+++,则两式相减得,23111111212222222n n n n S +-⎛⎫=+⨯+++- ⎪⎝⎭12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,∴2332n n n S +=-.∵()22221233343422n n n n n n S a +++-+=-=-⨯=-,∴存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.5.(2022·吉林·长春市第二中学高二阶段练习)已知数列{}n a ,其中前n 项和为n S ,且满足15a =,*123(N )n n a a n +=+∈.(1)证明:数列{3}n a +为等比数列;(2)求数列{}n a 的通项公式及其前n 项和n S .【答案】(1)证明见解析;(2)223n n a +=-,*n ∈N ,n S 3238n n +=--.【解析】(1)证明:由题意,123n n a a +=+两边同时加3,可得132332(3)n n n a a a ++=++=+,13538a +=+=,∴数列{3}n a +是以8为首项,2为公比的等比数列.(2)由(1)可得123822n n n a -++=⋅=,则223n n a +=-,*n ∈N ,故12n n S a a a =++⋅⋅⋅+342(23)(23)(23)n +=-+-+⋅⋅⋅+-342(222)3n n+=++⋅⋅⋅+-⋅3322312n n +-=--3238n n +=--.6.(2021·广西·钟山中学高二阶段练习)已知数列{}n a 为等比数列,22a =,516a =,2log n n b a =,n n n c a b =+.(1)求数列{}n a 、{}n b 的通项公式;(2)求数列{}n c 的前n 项和n S .【答案】(1)12n n a -=,1n b n =-;(2)121(1)2nn S n n =-+-【解析】(1)设数列{}n a 的公比为q ,则3521682a q a ===,所以2q =,所以2212222n n n n a a q ---=⋅=⋅=,所以22log log 2n n b a ==11n n -=-;(2)121n n n n c a b n -=+=+-,所以0121012120212221(2222)(0121)n n n S n n --=++++++⋯++-=+++⋯+++++⋯+-(12)(01)121(1)1222-+-=+=-+--n n n n n n .7.(2022·福建三明·高二阶段练习)已知数列{}n a 的前n 项和为n S ,满足()321n n S a =-,{}n b 是以1a 为首项且公差不为0的等差数列,237,,b b b 成等比数列.(1)求数列{}{},n n a b 的通项公式;(2)令n n n c a b =,求数列{}n c 的前n 项和n T .【答案】(1)()2nn a =-,35n b n =-;(2)()1834(2)3n n n T +---=.【解析】(1)由()321n n S a =-,取1n =可得()11321S a =-,又11S a =,所以()11321a a =-,则12a =-.当2n ≥时,由条件可得()()11321321n n n n S a S a --⎧=-⎪⎨=-⎪⎩,两式相减可得,12n n a a -=-,又12a =-,所以12nn a a -=-,所以数列{}n a 是首项为2-,公比为2-的等比数列,故()2nn a =-,因为112b a ==-,设等差数列{}n b 的公差为d ,则2372,22,26b d b d b d =-+=-+=-+,由237,,b b b 成等比数列,所以()()2(22)226d d d -+=-+-+,又0d ≠,所以解得3d =,故35n b n =-,(2)()35(2)nn n n c a b n ==--,()()1232(2)1(2)4(2)35(2)n n T n =-⨯-+⨯-+⨯-++-⨯-,()()()234122(2)1(2)4(2)38(2)35(2)n n n T n n +-=-⨯-+⨯-+⨯-++-⨯-+-⨯-相减得()2341343(2)(2)(2)(2)35(2)n n n T n +⎡⎤=+-+-+-++---⨯-⎣⎦,所以()()()114234335(2)12n n n T n ++--=+--⨯---,所以()13834(2)n n T n +=---所以()1834(2)3n n n T +---=.8.(2022·陕西·府谷县府谷中学高二阶段练习(文))已知数列{}n a 是公差不为零的等差数列,11a =且2514,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)求数列{}21nan a ++的前n 项和n S .【答案】(1)21n a n =-;(2)222433n n S n n =⋅++-【解析】(1)设等差数列的公差为d ,因为2514,,a a a 成等比数列,所以()()()2111413a d a d a d +=++,解得2d =或0d=(舍去).故()=1+2121n a n n -=-.(2)由(1)可得212122nn n aa n -++=+,故()22214222414233n n n S n n n n +⨯-=⨯+=⋅++--9.(2022·陕西·长安一中高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,10a ≠,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立.(1)求数列{}n a 的通项公式;(2)设10a >,100λ=,当n 为何值时,数列1lg n a ⎧⎫⎨⎬⎩⎭的前项n 和最大?【答案】(1)2nn a λ=;(2)6.【解析】(1)取1n =,得211122a S a λ==,()1120a a λ-=,10a ≠,则12a λ=,当2n ≥时,22n n a S λ=+,1122n n a S λ--=+,上述两个式子相减得:12n n a a -=,所以数列{}n a 是等比数列,当10a ≠,则1122n n n a a λ-=⋅=.(2)当10a >,且100λ=时,令1lgn n b a =,所以,1002lg 2lg 2n n b n =-=所以,{}n b 单调递减的等差数列(公差为lg 2-)则12366100100lglg lg10264b b b b ⋅>>>⋅⋅⋅>==>=当7n ≥时,77100100lg lglg102128n b b ≤==<=故数列1lg n a ⎧⎫⎨⎬⎩⎭的前6项的和最大.10.(2022·广东·饶平县第二中学高二阶段练习)已知n S 为等差数列{}n a 的前n 项和,若355a a +=,47S =.(1)求n a ;(2)记2221n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【答案】(1)n a =12n +;(2)469nn +【解析】(1)设等差数列{}n a 的公差为d ,则1126543472a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11,1,2a d =⎧⎪⎨=⎪⎩,故111(1)22n n a n +=+-=;(2)因为12n n a +=,所以22214112(21)(23)2123n n n b a a n n n n +⎛⎫===- ⎪⋅++++⎝⎭,故12111111112+++235572+12+4693323n n T b b b n n n n n ⎛⎫⎛⎫=+++=---=-= ⎪ ⎪+⎝⎭⎝⎭+.11.(2022·广东·南海中学高二阶段练习)已知数列{}n a 中,12325a =,112n n a a-=-(2n ≥,*n ∈N ),数列{}n b 满足()*11n nb n N a =∈-.(1)求数列{}n b 的通项公式;(2)求12320b b b b +++⋅⋅⋅+;(3)求数列{}n a 中的最大项和最小项,并说明理由.【答案】(1)272=-n b n ;(2)109;(3)()max 3=n a ,()min 1=-n a ,理由见解析【解析】(1)证明:111111111111121n n n n n n b b a a a a -----=-=-=-----,又1112512b a ==--,∴数列{}n b 是252-为首项,1为公差的等差数列.∴()127112n b b n n =+-⨯=-.(2)由2702n b n =-≥,得272n ≥,即13n ≤时,0n b <;14n ≥时,0n b >,∴()123201213141520b b b b b b b b b b +++⋅⋅⋅+=-++⋅⋅⋅++++⋅⋅⋅+251312277613171411092222⎡⎤⨯⨯⎛⎫⎛⎫=-⨯-+⨯+⨯-+⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(3)由12712n nb n a ==--,得()*21N 227n a n n =+∈-又函数()21227f x x =+-在27,2⎛⎫-∞ ⎪⎝⎭和27,2⎛⎫+∞ ⎪⎝⎭上均是单调递减.由函数()21227f x x =+-的图象,可得:()14max 3n a a ==,()13min 1n a a ==-.12.(2022·山西省浑源中学高二阶段练习)表示n S 等差数列{}n a 的前n 项的和,且49S S =,112a =-.(1)求数列{}n a 的通项n a 及n S ;(2)求和12n nT a a a =+++【答案】(1)214n a n =-,213n S n n =-;(2)2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩【解析】(1)设等差数列{}n a 的公差为d ,由49S S =可得1143984922a d a d ⨯⨯+=+,因为112a =-,解得2d =,所以,()()111221214n a a n d n n =+-=-+-=-,()()12122141322n n n a a n n S n n +-+-===-.(2)142,17214214,8n n n a n n n -≤≤⎧=-=⎨-≥⎩,当17n ≤≤且N n *∈时,()212142132n n n T n n +-==-;当8n ≥且N n *∈时,()()()()2722147426713842n n n T T n n n n +--=+=+--=-+.综上所述,2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩.13.(2021·江苏省灌南高级中学高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,()*4224, 21,N n n S S a a n ==+∈.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()()*123 21 N n b b n b n n +++-=∈,记数列14(1)n n n n b a +⎧⎫⋅-⎨⎬⎩⎭的前n 项和为n T ,求n T .【答案】(1)21n a n =-;(2)**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.【解析】(1)设等差数列{}n a 的公差为d ,由424S S =,可得()114642a d a d +=+,即12a d =;又因为221n n a a =+,取1n =,所以2121a a =+,即11a d +=;故可得11,2a d ==.故{}n a 的通项公式为21n a n =-.(2)由()12321n b b n b n +++-=,当2n ≥时,()1213231n b b n b n -+++-=-,上述两式作差可得()1221n b n n =≥-,又11b =满足上式,综上()*1N 21n b n n =∈-;所以14411(1)(1)(1)()(21)(21)2121n n nn n n b n a n n n n +⋅-=-=-+-+-+.当n 为偶数时11111(1)()(33557n T =-+++-++…1111((23212121n n n n -+++---+.∴1212121n nT n n =-+=-++.当n 为奇数时,1111111(1)(()()335572121n T n n =-+++-++-+-+∴12212121n n T n n +=--=-++.故**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.14.(2022·江苏省苏州实验中学高二阶段练习)已知数列{}n a 是首项为4的单调递增数列,满足()221111682n n n n n na a a a a a +++++=++(1)求证:14n n a a ++-=(2)设数列{}n b 满足πsin2n n n b a =,数列{}n b 前n 㑔和n S ,求20242024S 的值.【答案】(1)证明见解析;(2)4048-【解析】(1)证明:由题意得,()22111121684n n n n n n n n a a a a a a a a +++++++++=,即()()21118164n n n n n n a a a a a a ++++-++=,即()21144n n n n a a a a +++=-,∵数列{}n a 是首项为4的单调递增数列,4n a ≥,∴14n n a a ++-=(2)由(1)得14n n a a +-=,即24=,2-=,所以数列是首项为2,公差为22n =,则2ππsinsin 224n n n n b a n ==,()22222220244135720212023S =⨯-+-++-()()()()()()4131357572021202320212023⎡⎤=⨯-++-+++-+⎣⎦()84124044=-⨯+++()4404450682+⨯=-⨯44048506=-⨯⨯∴202444048506404820242024S =-=-⨯⨯15.(2022·陕西·白水县白水中学高二阶段练习)在数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=- ⎪⎝⎭.(1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)设21nn S b n =+,求{}n b 的前n 项和n T .【答案】(1)证明见解析;(2)21nn +【解析】(1)证明:∵当2n ≥时,1n n n a S S -=-,212n n n S a S ⎛⎫=- ⎪⎝⎭()22111111222n n n n n n n n n S S S S S S S S S ---⎛⎫∴=--=--+ ⎪⎝⎭,即:112n n n nS S S S ---=111112112n n n n n n n n n n S S S S S S S S S S ------∴-===,又11111S a ==∴数列1n S ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列(2)由(1)知:()112121nn n S =+-=-121n S n ∴=-∴()()1111212122121n b n n n n ⎛⎫==⨯- ⎪-+-+⎝⎭11111111112335212122121n n T n n n n ⎛⎫⎛⎫∴=⨯-++⋅⋅⋅+-=⨯-= ⎪ ⎪-+++⎝⎭⎝⎭16.(2022·山东潍坊·高二阶段练习)设数列{}n a 的前n 项和为n S ,且满足323n n a S -=.(1)求n a ;(2)设32log 1,21,,2,,n n n a n k k N b a n k k N **⎧+=-∈=⎨=∈⎩求数列{}n b 的前n 项和n T .【答案】(1)3n n a =;(2)()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩【解析】(1)当1n =时,13a =,当2n ≥时,因为323n n a S -=,所以11323n n a S ---=,得13n n a a -=,所以数列{}n a 为首项为3,公比为3的等比数列,得3n n a =;(2)21,21,3,2,n n n n k k N b n k k N**⎧+=-∈=⎨=∈⎩,当n 为偶数时,2463373113(21)3nn T n =+++++++-+()246[3711(21)]3333n n =++++-+++++()2919(321)9312(1)21928nn n n n n ⎛⎫- ⎪+--⎝⎭=+=++-,当n 为奇数时,24613373113(21)3(21)n n T n n -=+++++++-+++()2461[3711(21)]3333n n -=++++++++++()1211919(321)931(2)(1)221928n n n n n n --⎛⎫+- ⎪++-++⎝⎭=+=+-,所以()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩17.(2022·湖北·石首市第一中学高二阶段练习)已知数列{}n a 满足312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----.(1)证明:数列1n n a a ⎧-⎫⎨⎬⎩⎭为等比数列.(2)已知()11n n n b a a +=-,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)11121n n S +=--【解析】(1)证明:当1n =时,111211a a a =--,则12a =.因为312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----,①所以311212311211111n n n a a a a a a a a a ++++++⋅⋅⋅+-----,②由②-①得11122111n n n n a a a a +++=----,化简可得112n n n n a a a a ++-=,()()11111111121122n n n n n n n n n n n n n n n na a a a a a a aa a a a a a a a ++++++++----===----,所以数列1n n a a ⎧-⎫⎨⎬⎩⎭是一个公比为12的等比数列.(2)由(1)可知11111222n n n na a --=-⨯=-,化简可得221n n n a =-.()()()111211121212121n n n n n n n n b a a +++=-==-----.所以22334111111111111212121212121212121n n n n S ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪---------⎝⎭⎝⎭⎝⎭⎝⎭.18.(2022·湖北省罗田县第一中学高二阶段练习)设等差数列{}n a 的前n 项和为n S ,且634S S =,221n n a a =+,(1)求数列{}n a 的通项公式:(2)若数列{}n b 满足121221n nnb b ba aa +++=-,N n +∈,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =-;(2)()3232nn T n =+-⨯【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,由634S S =,221n n a a =+,则()()()111161543321211a d a d a n d a n d ⎧+=+⎪⎨⎡⎤+-=+-+⎪⎣⎦⎩,解得112a d =⎧⎨=⎩,所以21n a n =-;(2)因为121221n nnb b b a a a +++=-,当1n =时111211ba =-=,即11b =,当2n ≥时111212121n n n b b ba a a ---+++=-,所以()1121212n n n n nb a --=---=,即()1212n n b n -=-⋅,当1n =时()1212n n b n -=-⋅也成立,所以()1212n n b n -=-⋅,所以()0121123252212n n T n -=⨯+⨯+⨯++-⨯,()1232135222122n n T n =⨯+⨯+⨯++-⨯,所以()121022*********n nn T n --=⨯+⨯+⨯++⨯--⨯()()()1121121332222122n n n n T n n -⨯--=+--⨯=-+-⨯-,所以()3232nn T n =+-⨯.19.(2021·河北·邢台一中高二阶段练习)等差数列{}()*n a n N ∈中,123a a a ,,分别是如表所示第一、二、三行中的某一个数,且其中的任意两个数不在表格的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的123{}a a a ,,组合,并求数列{}n a 的通项公式.(2)记(1)中您选择的{}n a 的前n 项和为Sn ,判断是否存在正整数k ,使得12k k a a S +,,成等比数列?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)由题意可知,有两种组合满足条件.①12381216a a a ===,,,此时等差数列{}n a 中,18a =,公差d =4,所以数列{}n a 的通项公式为44n a n =+②123246a a a ===,,,此时等差数列{}n a 中,12a =,公差d =2,所以数列{}n a 的通项公式为2n a n =.(2)若选择①,226n S n n =+,则()()222226221420k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()2244821420k k k +=++,整理得2221710k k k k ++=++,即59.k =-此方程无正整数解,故不存在正整数k ,使12k k a a S +,,成等比数列.若选择②,2n S n n =+,则()2222256k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()222256k k k =++,整理得2560k k --=,因为k 为正整数,所以6k =.故存在正整数6k k =(),使得12k k a a S +,,成等比数列.20.(2022·广东·佛山一中高二阶段练习)已知数列{}n a 是公差d 不为0的等差数列,且数列{}nk a 是等比数列,其中13k =,25k =,39k =.(1)求12n k k k +++;(2)记1n n b k n =-+,求数列1122n n n b b ++⎧⎫-⎨⎬⎩⎭的前n 项和n T .【答案】(1)11222n n n k k k +++=-++;(2)122321n n T n +=--+【解析】(1)由已知可得2539a a a =,则()()()2111428a d a d a d +=++,0d ≠,所以,10a =,则()()111n a a n d n d =+-=-,所以,32a d =,54a d =,则数列{}n k a 的公比为532a a =,所以,()13221nn nk n a a d k d -=⋅==-,所以,21n n k =+,所以,()()21122122222212n nn n k k k n n n +-+++=++++=+=+--.(2)122n n n b k n n =-+=-+,则()()()()()()11111122122222222122221222n n n n n n n nn n n n b b n n n n ++++++⎡⎤-++--+--⎣⎦==⎡⎤⎡⎤-++⋅-+-++⋅-+⎣⎦⎣⎦()12222212n n n n +=--+-++,因此,()1223122222221222222223222212n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪ ⎪-+-+-+-+-+-++⎝⎭⎝⎭⎝⎭122321n n +=--+.21.(2022·湖北·十堰东风高级中学高二阶段练习)数列{}n a 满足:31232n a n a a a +++=+12(1)2n n ++-⋅,*n ∈N .(1)求数列{}n a 的通项公式;(2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m 的取值范围.【答案】(1)2n n a =,*n ∈N ;(2)2m ≤-或2m ≥【解析】(1)当2n ≥,12323n a a a na ++++L 12(1)2n n +=+-⋅,①1212(1)n a a n a -+++-2(2)2n n =+-⋅,2n ≥,②①-②得22(2)n n n n na n a n =⋅⇒=≥(*)在①中令1n =,得12a =,也满足(*),所以2n n a =,*n ∈N ,(2)由(1)知,()()1121121212121n n n n n n b ++==-----,故12112121n T ⎛⎫=- ⎪--⎝⎭23112121⎛⎫+-+ ⎪--⎝⎭1112121n n +⎛⎫+- ⎪--⎝⎭11121n +=--,于是,23n T m <-⇔2111321n m +-<--因为11121n +--随n 的增大而增大,所以231m -≥,解得2m ≤-或2m ≥所以实数m 的取值范围是2m ≤-或2m ≥.22.(2021·河北保定·高二阶段练习)已知数列{}n a 的前n 项和为n S ,且231n n S a =-.(1)求{}n a 的通项公式.(2)令34log 1n n b a =+,()111n n n n t b b ++=-,n T 为数列{}n t 的前n 项和,求2n T .(3)记()()14130n n n n c a l l +=+-⋅≠.是否存在实数λ,使得对任意的*n ∈N ,恒有1n n c c +>若存在,求出λ的取值范围;若不存在,说明理由.【答案】(1)13n n a -=;(2)22328n T n n =--;(3)存在,()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭.【解析】(1)当1n =时,有11231a a =-,解得11a =当2n ≥时,由231n n S a =-,得11231n n S a --=-,两式相减得1233n n n a a a -=-,整理得13n n a a -=,所以{}n a 是首项为1,公比为3的等比数列,故13n n a -=;(2)因为13n n a -=,所以43n b n =-,()()()114341n n t n n +=--+,所以()()()()21559913131787838381n T n n n n =⨯-⨯+⨯-⨯++----+()()()()58138883n =⨯-+⨯-++-⨯-()258383282n n n n +-=-⨯=--;(3)因为()1413n n n n c l +=+-⋅⋅,所以()1111413n n n n c l ++++=--⋅⋅,由10n n c c +->,得()1341430n n n l +⨯--⋅⋅>,即()1114130n n n l +----⋅⋅>,进一步化简得()11413n n l -+⎛⎫-⋅< ⎪⎝⎭.当n 为奇数时,143n λ-⎛⎫< ⎪⎝⎭恒成立,因为()143n f n -⎛⎫= ⎪⎝⎭是增函数,所以0413l ⎛⎫<= ⎪⎝⎭;当n 为偶数时,143n l -⎛⎫-< ⎪⎝⎭恒成立,同理214433l -⎛⎫-<=⎪⎝⎭,所以43λ>-故413λ-<<且0λ≠,即存在实数()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭,使得对任意的*n ∈N ,恒有1n n c c +>.23.(2021·湖南·周南中学高二阶段练习)已知数列{}n a 中,11a =,121n n a S +=+(n *∈N ),n S 为数列{}n a 的前n 项和.(1)求{}n a 的通项公式;(2)设3log n n b a =,求数列{}n n a b 的前n 项和n T ;(3)在n a ,1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项m d ,k d ,p d ,(其中m ,k ,p 成等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【答案】(1)13n n a -=;(2)333244n n nT ⎛⎫=-⨯+ ⎪⎝⎭;(3)不存在,理由见解析.【解析】(1)当2n ≥时,()()1122222n n n n n a a S S a +--=+-+=,所以13n n a a +=2112133a S a =+==;又2112133a S a =+==,所以对*N n ∈,有13n n a a +=,故数列{}n a 是1为首项3为公比的等比数列,通项公式为13n n a -=.(2)由(1)知1n b n =-,112233n n n T a b a b a b a b =++++()012103132313n n -=⨯+⨯+⨯++-⨯…①()23303132313n n T n =⨯+⨯+⨯++-⨯…②①−②得:()212033313n nn T n --=++++--⨯()331313nn n -=--⨯-33322n n ⎛⎫=-+⨯- ⎪⎝⎭,∴333244nn n T ⎛⎫=-⨯+ ⎪⎝⎭.(3)在数列{}n d 不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.理由如下:由已知得1113323111n n n n n n a a d n n n --+--⨯===+++假设在数列{}n d 中存在m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列,则2km p d d d =,即2111232323111k m p k m p ---⎛⎫⨯⨯⨯=⨯ ⎪+++⎝⎭,化简得()()()22224343111k m p m p k -+-⨯⨯=+++,又因为m ,k ,p 成等差数列,所以2m p k +=,故上式可以化简为()()()2111k m p +=++,则k m p ==,与已知矛盾.故在数列{}n d 中不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.24.(2022·广东·饶平县第二中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,且3122n n S a =-,*N n ∈(1)求数列{}n a 的通项公式;(2)若不等式12(2703+⋅⋅-+≥n n k a n 对任意*N n ∈恒成立,求实数k 的取值范围.【答案】(1)13n n a -=;(2)3[,)32+∞【解析】(1)数列{}n a 的前n 项和为n S ,*N n ∀∈,3122n n S a =-,当2n ≥时,113322n n n n n a S S a a --=-=-,则13n n a a -=,而当1n =时,1113122a S a ==-,即得11a =,因此,数列{}n a 是以1为首项,3为公比的等比数列,则13n n a -=,所以数列{}n a 的通项公式是:13n n a -=(2)由(1)知,1227(270227032+-⋅⋅-+≥⇔⋅-+≥⇔≥n n n nn k a n k n k ,对任意*N n ∈恒成立设272n n n c -=,则()1112172792222n nn n n n n n c c ++++----=-=,当5n ≥,1n n c c +≤,{}n c 单调递减,当15n ≤<,1n n c c +>,{}n c 单调递增,显然有45131632c c =<=,则当5n =时,n c 取得最大值332,即272nn -最大值是332,因此,332k ≥,所以实数k 的取值范围是3[,)32+∞25.(2022·山东·兰陵四中高二阶段练习)已知数列{}n a 满足1=2a ,123n n a a n +=++.(1)证明:数列{}2n a n -为等差数列.(2)设数列(){}22nn a n -⨯的前n 项和为n S ,求n S ,并求满足610023n S n -≤-的n 的最大值.【答案】(1)证明见解析;(2)5【解析】(1)证明:因为数列{}n a 满足1=2a ,123n n a a n +=++,所以()()22221112123212n n n n a n a n a n n a n n n ++⎡⎤-+--=----+=+--=⎣⎦,因为1=2a ,所以2111a -=所以,数列{}2n a n -为等差数列,公差为2,首项为1.(2)由(1)知221n a n n -=-,所以()()22212n nn a n n -⨯=-⋅,所以,()()231123252232212n n n S n n -=⨯+⨯+⨯++-⨯+-⨯,()()23411232522232212n n n S n n +=⨯+⨯+⨯++-⨯+-⨯,所以,()23112222222212n n n S n +-=⨯+⨯+⨯++⨯--⨯L ()()()211121222212632212n n n n n -++-=+⨯-⨯=-+-⨯-,所以,()12326n n S n +=-⨯+,所以16210023n n S n +-=≤-,解得5n ≤,*N n ∈.所以,满足610023nS n -≤-的n 的最大值为526.(2022·湖南·安仁县第一中学高二阶段练习)已知数列{}n a 中,121,2a a ==,当2n ≥时,()112n n n a a a n +-+=+,记1n n n b a a +=-.(1)求数列{}n b 的通项公式;(2)设数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:2918n S <.【答案】(1)21n b n n =+-;(2)证明见解析【解析】(1)由题意得112n n n n a a a a n +--=-+,所以12n n b b n -=+,即12n n b b n --=.当2n ≥时,()()()11221122(1)221n n n n n b b b b b b b b n n ---=-+-++-+=+-++⨯+=2(24)(1)112n n n n +-+=+-.当1n =时,1211b a a =-=也符合.综上,21n b n n =+-.(2)证明:由(1)得2111nb n n =+-,当1n =时11129118S b ==<;当2n ≥时,2111112312n b n n n n ⎛⎫<=- ⎪+--+⎝⎭,故当2n ≥时,121111111111111113425364712n n S b b b n n ⎛⎫=+++<+-+-+-+-++-= ⎪-+⎝⎭291111291831218n n n ⎛⎫-++< ⎪++⎝⎭.综上,2918n S <.27.(2022·广东·佛山市第四中学高二阶段练习)已知等比数列{}n a 的各项均为正数,24a =,3424a a +=.(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .【答案】(1)2,n n a n N *=∈;(2)证明见解析【解析】(1)设等比数列{}n a 的公比为(0)q q >,因为24a =,3424a a +=,可得2344424a a q q +=+=,即260q q +-=,解得2q =或3q =-(舍去),所以数列{}n a 的通项公式为222422n n n n a a q --==⋅=.(2)由2n n a =,可得112n n a ++=因为n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,可得1(1)n n n a a n d +=++,所以1211nn n n a a d n n +-==++,所以111(1)()22nn nn n d +==+⋅,设数列{}n d 的前n 项和为n S ,可得2311111123()4(((1)()22222n n n S n n -=⋅+⋅+⋅++⋅++⋅,则23411111112()3()4()()(1)()222222n n n S n n +=⋅+⋅+⋅++⋅++⋅,两式相减231111111(()()(1)(22222n nn S n -=++++-+⋅211111()[1()]131221(1)()(3)()122212n n n n n -++-=++⋅=-+⋅-,所以13(3)(2n n S n =-+⋅,因为n N *∈,所以1(3)(02n n +⋅>,所以13(3)()32nn S n =-+⋅<,即12311113nd d d d ++++<L .28.(2022·广东·普宁市华侨中学高二阶段练习)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,+==S b S q b .(1)求n a 与n b ;(2)证明:121111233n S S S +++< .【答案】(1)3n a n =,13n n b -=;(2)证明见解析【解析】(1)设数列{}n a 的公差为d ,因为222212b S S q b +=⎧⎪⎨=⎪⎩,所以6126q d d q q ++=⎧⎪+⎨=⎪⎩,解得33q d =⎧⎨=⎩或410q d =-⎧⎨=⎩(舍),故()3313n a n n =+-=,13n n b -=.(2)因为()332n n n S +=,所以()122113331nS n n n n ⎛⎫==- ⎪++⎝⎭.故1211121111121113223131n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,因为1n ,所以11012n <+ ,所以111121n -<+ ,所以121213313n ⎛⎫-< ⎪+⎝⎭ ,即121111233n S S S +++< .29.(2022·福建省宁德第一中学高二阶段练习)设等比数列{}n a 的公比为q ,前n 项和为n S ,24a =,314S =.(1)求n a ;(2)若1q >,证明:12122nna a a ++⋅⋅⋅+<.【答案】(1)2n n a =或42n n a -=;(2)证明见解析.【解析】(1)据题意知:144410a q q q =⎧⎪⎨+=⎪⎩,解得122a q =⎧⎨=⎩或1812a q =⎧⎪⎨=⎪⎩,所以2n n a =或42n n a -=.(2)由(1)有:因为1q>,所以2n n a =,记1212n n n T a a a =++⋅⋅⋅+,则2311111232222n nT n =⨯+⨯+⨯+⋅⋅⋅+⋅①()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⋅+⋅②所以-①②得231111*********n n n T n +⎛⎫=+++⋅⋅⋅+-⋅ ⎪⎝⎭11111111221122212n n n n n n ++⎛⎫- ⎪⎝⎭=-⋅=--⋅-,∴2222222n n n n n n T +=--=-,因为n *∈N ,所以202n n +>,所以12122nn a a a ++⋅⋅⋅+<.30.(2022·福建省福安市第一中学高二阶段练习)已知数列{}n a 满足a 1=3,a 2=5,且2123n n n a a a ++=-,n ∈N *.(1)设bn =an +1-an ,求证:数列{}n b 是等比数列;(2)若数列{an }满足n a m ≤(n ∈N *),求实数m 的取值范围.【答案】(1)证明见解析;(2)7m ≥【解析】(1)因为2123n n n a a a ++=-,所以()2112n n n n a a a a +++-=-.即12n n b b +=,又因为12120b a a =-=≠,所以0n b ≠,则112n n b b +=,所以,数列{}n b 是等比数列(2)由(1)数列{}n b 是首项为2公比为12的等比数列,则22n n b -=.所以121321n n n a a a a a a a a --=-+-++-L 11211122(2)112n n b b b n --⎛⎫- ⎪⎝⎭=+++=⨯≥-L ,则131123272(2)112n n n a n --⎛⎫- ⎪⎝⎭=+⨯=-≥-.经检验1n =时也符合,则372n n a -=-.又因为3727n n a -=-<,所以7m ≥.。
数列大题综合1.(2022春·广东深圳·高二翠园中学校考期中)设等差数列{}n a 的前n 项和为n S ,且629S S =,3634a a -=.(1)求数列{}n a 的通项公式;(2)设12n n n b a a +=,求数列{}n b 的前n 项和n T .2.(2022春·广东广州·高二校考期中)记n S 是公差不为0的等差数列{}n a 的前n 项和,33a S =,244a a S =.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值3.(2022春·广东佛山·高二佛山一中校考期中)已知等差数列{}n a 满足:47a =,1019a =,其前n 项和为.n S (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .4.(2022春·广东江门·高二江门市第二中学校考期中)设{}n a 是首项为1的等比数列,且1a 、23a 、39a 成等差数列.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,求{}n S 的前n 项和n T .5.(2022秋·广东广州·高二校考期中)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,递增的等比数列{}n b 满足:1418b b +=,2332b b ⋅=.(1)求数列{}n a 、{}n b 的通项公式;(2)设{}n b 的前n 项和分别为n T ,求n T .6.(2022春·广东珠海·高二珠海市第二中学校考期中)设数列{}n a 的前n 项和为n S .已知11a =,()122N n n a S n *+=+∈(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()32log 1n n n b a a n *⎛⎫=⋅-∈ ⎪⎝⎭N ,求数列{}n b 的前n 项和nT.7.(2022春·广东广州·高二统考期中)已知等比数列{}n a 的各项均为正数,24a =,3424a a +=.(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .8.(2022春·广东佛山·高二校考期中)已知数列{}n a 、{}n b 满足1233= nbn a a a a ,若数列{}n a 是等比数列,且13,=a 434=+b b .(1)求数列{}n a 、{}n b 的通项公式;(2)令()21nn n b c n a =+,求{}n c 的前n 项和为n S .9.(2022春·广东佛山·高二校考期中)在等比数列{}n a 中,公比0q >,其前n 项和为n S ,且26S =,______.从①430S =,②6496S S -=,③3a 是3S 与2的等差中项这三个条件中任选一个,补充到上面问题中的横线上,并作答.(1)求数列{}n a 的通项公式;(2)设log 2n n a b =,且数列{}n c 满足11c =,11n n n n c c b b ++-=,求数列{}n c 的通项公式.10.(2022春·广东佛山·高二顺德市李兆基中学校考期中)已知数列{}n a 的前n 项和为n S ,且220n n S a -+=,数列{}n b 为等差数列,11b a =,523b b b =+.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n c 是由数列{}n b 的项删去数列{}n a 的项后按从小到大的顺序排列构成的新数列,求数列{}n c 的前50项和50T .11.(2022春·广东佛山·高二佛山市南海区九江中学校考期中)已知数列{}n a 的前n 项和为n S ,满足322n n S a =-,*n ∈N .(1)求数列{}n a 的通项公式;(2)设,2,n n a n b n n ⎧=⎨+⎩为偶数为奇数,求数列{}n b 的前2n 项和2n T .12.(2022春·广东深圳·高二校考期中)等差数列{}n a 前n 项和为n S ,且3616a a +=,981S =.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎩⎭的前n 项和为n T ,若715n T >,求n 的最小值.13.(2022春·广东深圳·高二深圳市建文外国语学校校考期中)已知数列{}n a 的前n 项和为n S ,且213n n S a +=.(1)证明数列{}n a 为等比数列,且求其通项公式;(2)若数列{}n b 满足n n a b n =,求数列{}n b 的前n 项和n T .14.(2022春·广东佛山·高二南海中学校考期中)已知数列{}n a 中,12a =,*121(N )n n a a n n +=-+∈.(1)求2a ,并证明{}n a n -为等比数列;(2)求数列{}n a 的前n 项和n S .15.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知数列{}n a 中,12a =,24a =,且()*2132n n n a a a n N ++=-∈.(1)设12n n n b a a +=-,证明数列{}n b 是常数列;(2)求数列{}n a 的通项公式,并求数列{}n a 的的前n 项和;(3)设2sin cos log 22n n n n c a ππ⎛⎫=+⋅ ⎪⎝⎭,求数列{}n c 的前2022项的和.16.(2022春·广东广州·高二执信中学校考期中)已知数列{}n a 是公差大于1的等差数列,前n 项和为n S ,11a =,且2,31a -,63a -成等比数列.(1)求数列{}n a 的通项公式;(2)若()2n n n n b S n a =+,数列{}n b 的前n 项和为n T ,求证12n T <.17.(2022春·广东汕头·高二校考期中)在①35a =,5722a a +=;②11a =,525S =;③2n S n =,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知n S 为等差数列{}n a 的前n 项和,若______.(1)求数列{}n a 的通项公式;(2)若n 11n n C a a +=,求数列{}n c 的前n 项和n T .18.(2022春·广东·高二校联考期中)已知首项为2的数列{}n a 满足111,22,n n n a n a a n +⎧+⎪=⎨⎪⎩为奇数为偶数,记212,-==n n n n b a c a .(1)求证:数列{}n b 是一个等差数列;(2)求数列1⎧⎫⎨⎬⋅⎩⎭n n b c 的前10项和10S .19.(2022春·广东佛山·高二校考期中)已知等差数列{}n a 满足37a =,5726a a +=,()*211n nb n a =∈-N .(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n b 的前n 项和为n S ,求100S .20.(2022春·广东江门·高二校联考期中)已知数列{}n a 的前n 项和为n S ,且满足11a =,()1212n n S S n -=+≥.(1)求{}n a 的通项公式;(2)若()()111nn n n a b a a +=++,求数列{}n b的前n 项和n T .21.(2022春·广东揭阳·高二普宁市华侨中学校考期中)已知Sn 为等差数列{an }的前n 项和,若a 3+a 5=5,S 4=7.(1)求an ;(2)记bn =2221n n a a +⋅,求数列{bn }的前n 项和Tn .22.(2022春·广东佛山·高二校联考期中)“绿水青山就是金山银山”是时任浙江省委书记习近平同志于2005年8月15日在浙江湖州安吉考察时提出的科学论断,2017年10月18日,该理论写入中共十九大报告.为响应总书记号召,我国某西部地区进行沙漠治理,该地区有土地1万平方公里,其中70%是沙漠,从今年起,该地区进行绿化改造,每年把原有沙漠的16%改造为绿洲,同时原有绿洲的4%被沙漠所侵蚀又变成沙漠,记该地区今年绿洲的面积为1a 万平方公里,第n 年绿洲的面积为n a 万平方公里.(1)求第n 年绿洲的面积n a 与上一年绿洲的面积1n a -的关系;(2)证明:数列45n a ⎧⎫-⎨⎩⎭是等比数列,并求{}n a 的通项公式;(3)求第几年该地区的绿洲面积可超过60%?(参考数据:lg 20.3010=)23.(2022春·广东佛山·高二校考期中)已知等差数列{}n d 的前n 项和2n S n n =+,且2d ,4d 为等比数列数列{}n a 的第2、3项.(1)求{}n a 的通项公式;(2)设n nnb a =,求证:122n b b b +++< 24.(2022春·广东佛山·高二校联考期中)已知数列{}n a 的前n 项和为n S ,且342n n S a =-.(1)求{}n a 的通项公式;(2)若()221log n n b n a =+,求数列1n b ⎧⎫⎨⎩⎭的前n 项和n T .25.(2022秋·广东广州·高二校考期中)已知等差数列{}n a 满足,110a =,且210a +,38a +,46a +成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为2nn b =,求数列{}n n a b 的前n 项和.26.(2022春·广东江门·高二台山市华侨中学校考期中)已知数列{}n a 为单调递增的等比数列,且1432a a =,2312a a +=.(1)求数列{}n a 的通项公式;(2)记2log =n n n b a a ,求数列{}n b 的前n 项和n T .27.(2022春·广东韶关·高二校考期中)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.28.(2022春·广东广州·高二广州市协和中学校考期中)已知等差数列{}n a 中,前n 项和为n S ,11a =,{}n b 为等比数列且各项均为正数,11b =,且满足:22337,22b S b S +=+=.(1)求n a 与n b ;(2)记12n nn na cb -⋅=,求{}nc 的前项和;(3)若不等式1(1)2nn n n m T --⋅-<对一切n N *∈恒成立,求实数m 的取值范围.29.(2022春·广东广州·高二广州市育才中学校考期中)已知数列{}n a 的前n 项和为n S ,点(n ,()*)n S n N ∈在函数2y x =的图象上,数列{}n b 满足()1*1622,n n n b b n n N +-=+∈,且113b a =+(1)求数列{}n a 的通项公式;(2)证明列数12n nb ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列{}n b 的通项公式;(3)设数列{}n c 满足对任意的*312123123,2222n n nn c c c c n N a b b b b +∈=+++⋯+++++均有成立,求1232010c c c c +++⋯+的值.30.(2022春·广东广州·高二广州市禺山高级中学校联考期中)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .数列大题综合答案1.(2022春·广东深圳·高二翠园中学校考期中)设等差数列{}n a 的前n 项和为n S ,且629S S =,3634a a -=.(1)求数列{}n a 的通项公式;(2)设12n n n b a a +=,求数列{}n b 的前n 项和n T .n 0n 的前项和,33244(1)求数列{}n a的通项公式n a ;(2)求使n n S a >成立的n 的最小值,n 满足:4,10,其前项和为n (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .n 是首项为1的等比数列,且1、2、3成等差数列.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,求{}n S 的前n 项和n T .5.(2022秋·广东广州·高二校考期中)已知数列n a 的前n 项和为n S ,且222n S n n =+,递增的等比数列{}n b 满足:1418b b +=,2332b b ⋅=.(1)求数列{}n a 、{}n b 的通项公式;(2)设{}n b 的前n 项和分别为n T ,求n T .n 的前n 项和为n 1,()122N n n a S n *+=+∈(1)求数列{}n a 的通项公式;(2)数列{}nb 满足()32log 1n n n b a a n *⎛⎫=⋅-∈ ⎪⎝⎭N ,求数列{}n b 的前n 项和nT .n 的各项均为正数,2,34(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .n 、n 满足123nn n 是等比数列,且13,=a 434=+b b .(1)求数列{}n a 、{}n b 的通项公式;(2)令()21nn n b c n a =+,求{}n c 的前n 项和为n S .n 中,公比,其前n 项和为n ,且2,______.从①430S =,②6496S S -=,③3a 是3S 与2的等差中项这三个条件中任选一个,补充到上面问题中的横线上,并作答.(1)求数列{}n a 的通项公式;(2)设log 2n n a b =,且数列{}n c 满足11c =,11n n n n c c b b ++-=,求数列{}n c 的通项公式.n 的前项和为n ,且n n ,数列{}n b 为等差数列,11b a =,523b b b =+.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n c 是由数列{}n b 的项删去数列{}n a 的项后按从小到大的顺序排列构成的新数列,求数列{}n c 的前50项和50T .n 的前n 项和为n ,满足322n n Sa =-,*n ∈N .(1)求数列{}n a 的通项公式;(2)设,2,n n a n b n n ⎧=⎨+⎩为偶数为奇数,求数列{}n b 的前2n 项和2n T .n 前n 项和为n ,且36,9.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎩⎭的前n 项和为n T ,若715n T >,求n 的最小值.n 的前n 项和为n ,且213n n S a +=.(1)证明数列{}n a 为等比数列,且求其通项公式;(2)若数列{}n b 满足n n a b n =,求数列{}n b 的前n 项和n T .n 中,1,1n n +=-+∈.(1)求2a ,并证明{}n a n -为等比数列;(2)求数列{}n a 的前n 项和n S .n 中,1,2,且()*2132n n n a a a n N ++=-∈.(1)设12n n n b a a +=-,证明数列{}n b 是常数列;(2)求数列{}n a 的通项公式,并求数列{}n a 的的前n 项和;(3)设2sin cos log 22n n n n c a ππ⎛⎫=+⋅ ⎪⎝⎭,求数列{}n c 的前2022项的和.n 是公差大于1的等差数列,前项和为n ,11a =,且2,31a -,63a -成等比数列.(1)求数列{}n a 的通项公式;(2)若()2n n n n b S n a =+,数列{}n b 的前n 项和为n T ,求证12n T <.3,57;②1,5;③n 条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知n S 为等差数列{}n a 的前n 项和,若______.(1)求数列{}n a 的通项公式;(2)若n 11n n C a a +=,求数列{}n c 的前n 项和n T .18.(2022春·广东·高二校联考期中)已知首项为2的数列{}n a 满足11,22,n n n a n a a n +⎧+⎪=⎨⎪⎩为奇数为偶数,记212,-==n n n n b a c a .(1)求证:数列{}n b 是一个等差数列;(2)求数列1⎧⎫⎨⎬⋅⎩⎭n n b c 的前10项和10S .19.(2022春·广东佛山·高二校考期中)已知等差数列{}n a 满足37a =,5726a a +=,*21n n b n a =∈-N .(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n b 的前n 项和为n S ,求100S .n 的前项和为n ,且满足1,1n n -(1)求{}n a 的通项公式;(2)若()()111nn n n a b a a +=++,求数列{}n b 的前n 项和n T .35S 4=7.(1)求an ;(2)记bn =2221nn a a +⋅,求数列{bn }的前n 项和Tn .年8月15日在浙江湖州安吉考察时提出的科学论断,2017年10月18日,该理论写入中共十九大报告.为响应总书记号召,我国某西部地区进行沙漠治理,该地区有土地1万平方公里,其中70%是沙漠,从今年起,该地区进行绿化改造,每年把原有沙漠的16%改造为绿洲,同时原有绿洲的4%被沙漠所侵蚀又变成沙漠,记该地区今年绿洲的面积为1a 万平方公里,第n 年绿洲的面积为n a 万平方公里.(1)求第n 年绿洲的面积n a 与上一年绿洲的面积1n a -的关系;(2)证明:数列45n a ⎧⎫-⎨⎩⎭是等比数列,并求{}n a 的通项公式;(3)求第几年该地区的绿洲面积可超过60%?(参考数据:lg 20.3010=)n n S n n =+2,4列{}n a 的第2、3项.(1)求{}n a 的通项公式;(2)设n nnb a =,求证:122n b b b +++<n 的前项和为n ,且n n (1)求{}n a 的通项公式;(2)若()221log n n b n a =+,求数列1n b ⎧⎫⎨⎩⎭的前n 项和n T .n 12,3,4成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为2nn b =,求数列{}n n a b 的前n 项和.【答案】(1)28n a n =+(2)()116272n n S n +=-++⋅【详解】(1)等差数列{}n a 的首项110a =,公差设为d ,由210a +,38a +,46a +成等比数列,则()()()23248106a a a +=+⋅+,即()()()2111281036a d a d a d ++=++⋅++,即()()()218220163d d d +=+⋅+,解得2d =,所以()1128n a a n d n =+-=+.n 14,2312a a +=.(1)求数列{}n a 的通项公式;(2)记2log =n n n b a a ,求数列{}n b 的前n 项和n T .n 为等差数列,n 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.n 中,前项和为n ,1,n 为等比数列且各项均为正数,11b =,且满足:22337,22b S b S +=+=.(1)求n a 与n b ;(2)记12n nn na cb -⋅=,求{}nc 的前项和;(3)若不等式1(1)2nn n n m T --⋅-<对一切n N *∈恒成立,求实数m 的取值范围.29.(2022春·广东广州·高二广州市育才中学校考期中)已知数列n 的前项和为n ,点,n 在函数2y x =的图象上,数列{}n b 满足()1*1622,n n n b b n n N +-=+∈,且113b a =+(1)求数列{}n a 的通项公式;(2)证明列数12n n b ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列{}n b 的通项公式;(3)设数列{}n c 满足对任意的*312123123,2222n n nn c c c c n N a b b b b +∈=+++⋯+++++均有成立,求1232010c c c c +++⋯+的值.30.(2022春·广东广州·高二广州市禺山高级中学校联考期中)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .。
数列大题综合练习(含答案)1、在数列{an}中,a1=1,an+1=2an+2n。
1)设bn=an,证明数列{bn}为等差数列;2)求数列{an}的前n项和Sn。
2、已知数列{an}中,a1=11,且an-an+1=22an+1。
1)求数列{an}的通项公式;2)数列{bn}满足:b1=2,bn+1-2bn=22n+1,且{bn}是等差数列,求数列{bn}的通项公式及前n项和Sn。
3、已知数列{an}的前n项和为Sn,an=2,{bn}为首项是3的等差数列,且b3Sn/5=434。
1)求{bn}的通项公式;2)设{bn}的前n项和为Tn,求XXX的值。
4、设Sn是数列{an}的前n项和,点P(an,Sn)在直线y=2x-2上,(n∈N)1)求数列{an}的通项公式;2)记bn=2(1-1/n),求数列{bn}的前n项和XXX。
5、已知数列{an}满足a1=1,a2=2,an+2=an+an+1/2,n∈N1)令bn=an+1-an,证明{bn}是等比数列;2)求数列{an}的通项公式。
6、数列{an}的前n项和Sn满足:Sn=2an-3n,(n∈N)1)求数列{an}的通项公式an;2)令bn=31/n,数列{bn}的前n项和为Tn,求证:Tn<Sn+3n+92.7、正项数列{an}满足f(an)=an2,(1)求证{an}是等差数列;(2)若bn=an,求数列{bn}的前n项和为Tn。
8、已知数列{an}的前n项和为Sn,a1=1,数列各项均不为0,点Pn(an,Sn)在函数f(x)=x2+x上的图象上。
1)求数列{an}的通项an及前n项和Sn;2)求证:Pn+1≤Pn。
n1 an 1anan 1数列 an是等差数列。
2)bn3n an3n(n 121232 n 21 2 n 3n S n1 2 n 21 2 n 32n12n23n2)12n12n1)(n2) 12n12n232n 11.当$n=1$时,$a_1=S_1=1$,所以数列$\{a_n\}$是首项为1,公差为2的等差数列。
常见数列大题收集1.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-。
(Ⅰ)求{}n a 的通项公式;(公式法)(Ⅱ)求数列21211{}n n a a -+的前n 项和。
(裂项法) 1.(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+。
由已知可得111330,1, 1.5105,a d a d a d +=⎧==-⎨+=-⎩解得{}n =2-.n a a n 故的通项公式为(2)由(I )知212111111(),(32)(12)22321n n a a n n n n -+==-----从而数列21211n n n a a -+⎧⎫⎨⎬⎩⎭的前项和为1111111-+-++)2-1113232112nn n n-=---(. 2.在等比数列}{n a 中,*)(0N n a n ∈>,公比1>q , 1002534231=++a a a a a a , 且4是2a 与4a 的等比中项,⑴求数列}{n a 的通项公式;(公式法) ⑵设n nn a a b 22log +=,求数列}{n b 的前n 项和n S ,(分组求和法)解:(1)设等比数列{}n a 的公比为q ,则11n n a a q -=,由已知得⎩⎨⎧====∴>=+-∴===+>=+=++82,8,2101610164,10,0,100)(23114224224242242534231q a q a a a q x x a a a a a a a a a a a a a a a n 即的两根,为方程、,又则又 …………………………… 4分解得112a q =⎧⎨=⎩ 12n n a -∴=.…………………………… 7分(2)由(1)知,212log 4(1)n n n n b a a n -=+=+-21(1444)(1231)(1)41 32n n n T n n n -∴=+++++++++---=+…………………………… 12分3. 数列{a n }的前n 项和n S =2n ,数列{n b }满足112,32n a n n b b b +==+•。
数列专项练习题大题1. 一个等差数列的首项是1,公差是3。
求数列的第10项是多少?解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。
对于这个题目,a1=1,d=3,n=10。
代入公式计算,可得:a10 = 1 + (10-1) * 3 = 1 + 9 * 3 = 28所以数列的第10项是28。
2. 一个等比数列的首项是2,公比是5。
求数列的第6项是多少?解析:根据等比数列的通项公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。
对于这个题目,a1=2,r=5,n=6。
代入公式计算,可得:a6 = 2 * 5^(6-1) = 2 * 5^5 = 2 * 3125 = 6250所以数列的第6项是6250。
3. 一个递推数列的首项是1,规律是每一项都是前一项的平方。
求数列的第5项是多少?解析:根据递推数列的规律,可以列出数列的前几项:1, 1^2,(1^2)^2, ((1^2)^2)^2, (((1^2)^2)^2)^2可以观察到规律,每项都是前一项的平方。
所以第5项就是前一项的平方的平方的平方的平方。
计算过程如下:1^2 = 1(1^2)^2 = 1^2 = 1((1^2)^2)^2 = (1^2)^2 = 1(((1^2)^2)^2)^2 = ((1^2)^2)^2 = 1所以数列的第5项是1。
4. 一个等差数列的首项是3,末项是11。
求数列的公差和项数。
解析:对于这个题目,已知数列的首项和末项,可以使用公式an = a1 + (n-1)d来求解。
代入已知的值,即3 = 3 + (n-1)d,然后化简得到:0 = (n-1)d由于等差数列的公差是非零的常数,所以只有当n-1=0时,等式才成立。
也就是n=1。
所以数列的公差是0,项数是1。
5. 一个等比数列的首项是2,前三项的和是14。
求数列的公比。
数列大题 一、选择题1.数列{a n }的通项公式a n =,则该数列的前( )项之和等于9.2.数列1,211+,3211++,…,n 211+++ 的前n 项和为( )3.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为 4.数列2211,12,122,,1222,n -+++++++的前n 项和为 .5.数列 121, 241, 381, 4161, 5321, …n n 21+,…, 的前n 项之和等于 . 三、解答题6.设数列{a n }的前n 项和为S n ,()112,2*n n a a S n N +==+∈. (1)求数列{a n }的通项公式;(2)令()22log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和T n .7.已知数列{a n }满足111,1nn n a a a a +==+; (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{a n }的通项公式;(2)设1nn a b n =+,求数列{b n }前n 项和为S n .8.已知数列{a n }的前n 项和为S n ,满足112n n n S S a --=++,且13a =. (I)求数列{a n }的通项公式(Ⅱ)设11n n n b a a +=,求数列{b n }的前n 项和T n .9.设数列{a n }的前n 项和为S n ,已知13a =,133n n S S +=+ *()n N ∈,(1)求数列{a n }的通项公式;(2)若14n n nnb a a +=-,求数列{b n }的前n 项和为T n .10.已知{a n }是公差不为0的等差数列,满足37a =,且1a 、2a 、6a 成等比数列. (1)求数列{a n }的通项公式;(2)设11n n n b a a +=,求数列{b n }的前n 项和S n .11.已知公差不为零的等差数列}{n a 的前n 项和为n S ,若10110=S ,且124,,a a a 成等比数列。
(1)求数列}{n a 的通项公式; (2)设数列}{n b 满足)1)(1(1+-=n n n a a b ,若数列}{n b 前n 项和n T ,证明21<n T .12.已知数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有324n n a S =+成立. (1)记2log n n b a =,求数列{}n b 的通项公式; (2)设11n n n c b b +=,求数列{}n c 的前n 项和n T .13.已知数列a n 满足a 1+2a 2+22a 3+…+2n ﹣1a n =(n ∈N *).(Ⅰ)求数列{a n }的通项;(Ⅱ)若求数列{b n }的前n 项和S n .14.已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n •b n }的前n 项和T n .15.(本小题满分13分)已知数列{}n a 的前n 项和n n S n +=2,数列{}n b 满足121-=+n n b b ,且51=b ⑴ 求{}n a 、{}n b 的通项公式;⑵ 设数列{}n c 的前n 项和n T ,且()1log 12-⋅=n n n b a c ,证明21<n T16.(12分) 已知数列{a n }各项均为正数,其前n 项和为S n ,且满足4S n =(a n +1)2. (1)求{a n }的通项公式;(2)设b n =n n 11a a +⋅,数列{b n }的前n 项和为T n ,求T n 的最小值;17.数列{}n b 的前n 项和2n S n =(I )求数列{}n b 通项;(II )又已知n n a b 1= 若331613221>++++n n a a a a a a ,求n 的取值范围。
18.正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T 。
证明:对于任意的*n N ∈,都有564n T <19.设数列}{n a 的首项11=a ,前n 项和为n S ,且12+n a 、n S 、2a -成等差数列,其中*∈N n .(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n b 满足:)18)(18(21--=++n n nn a a a b ,记数列}{n b 的前n 项和为n T ,求n T 及数列}{n T 的最大项.20.数列{}n a 的前n 项和为n S ,满足22n S n n =+.等比数列{}n b 满足:143,81b b ==.(1)求证:数列{}n a 为等差数列; (2)若312123nn na a a a Tb b b b =++++,求n T .21.已知数列{}n a 是一个等差数列,且72=a ,15=a 。
(1)求{}n a 的通项n a ;(2)求数列{}n a 前多少项和最大.(3)若nn n a b 2+=,求数列{}n b 的前n 项的和n T22.已知等差数列{}n a 中,34a =,前7项和为35,数列{}n b 中,点(,)n n b S 在直线220x y +-=上,其中n S 是{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)求证:{}n b 是等比数列; (3)设n n n c a b =⋅,n T 是{}n c 的前n 项和,求n T 并证明:4532n T ≤<.23.已知等比数列}{n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列}{n a 的通项公式. (2)设31323log log log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.试卷答案1.B【考点】数列的求和.【分析】先将分母有理化,再利用叠加法可求和,进而可得结论 【解答】解:∵a n =,∴a n =,∴∴,∴n=99 故选B . 2.B【分析】求出通项公式的分母,利用裂项消项法求解数列的和即可. 【解答】解:===2().数列1,,,…,的前n 项和: 数列1+++…+=2(1++…)=2(1﹣)=.故选:B .【点评】本题考查数列求和的方法,裂项消项法的应用,考查计算能力. 3.C 4.122n n +--5.n n n 2112)1(-++ 6.(1)()12,*n n a S n N +=+∈,① 当1n =时,212a S =+,即24a =, 当2n ≥时,12n n a S -=+,② 由①-②可得11n n n n a a S S +--=-, 即12n n a a +=,∴2222,2n nn a a n -=⨯=≤, 当1n =时,1122a ==,满足上式,∴()2*n n a n N =∈(2)由(1)得()22log 2n n b a n ==, ∴()1111114141n n b b n n n n +⎛⎫==- ⎪⋅++⎝⎭∴1111111...42231n T n n ⎛⎫=-+-++- ⎪+⎝⎭1114144n n n ⎛⎫=-= ⎪++⎝⎭ 7.(1)由已知111111n n n n n na a a a a a +++=-⇒-= 故数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,1111(1),n n n n a a a n =+-==; (2)由1111(1)1n n a b n n n n n ===-+++1111111 (1223111)n nS n n n n ∴=-+-++-=-=+++8. (1)112n n n S S a ---=+()122n n a a n -∴-=≥{}n a ∴是等差数列21n a n ∴=+(2)1111122123n n n b a a n n +⎛⎫==- ⎪++⎝⎭1T 2n =11111135572123n n ⎛⎫-+-++- ⎪++⎝⎭1112323n ⎛⎫=- ⎪+⎝⎭11646n =-+ 9.(1)133n n S S +=+,当2n ≥时,133n n S S -=+,两式相减,得:13n n a a +=(2n ≥)又13a =,代入133n n S S +=+得29a = 3nn a ∴=()n N +∈………………………………6分(2)n n n T 366+-=10.解:(1)设等差数列{}n a 的公差为()0d d ≠;由题意有2216a a a =,即()()2333()23a d a d a d -=-+因为37a =,所以()()()277273d d d -=-+,解得3d =或0d =(舍) 所以32n a n =-. (2)由题意有1111(32)(31)33231n b n n n n ⎛⎫==- ⎪-+-+⎝⎭所以n 111111S 134********n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦11.(Ⅰ)2n a n =;(Ⅱ)见解析.分析:(1)利用等比数列的基本性质及等差数列的前n 项和求出首项和公差,进而求出数列{}n a 的通项公式;(2)利用裂项相消法求和,求得11112212n T n ⎛⎫=-< ⎪+⎝⎭(Ⅰ)由题意知: ()()222141111013{{1101045110a a a a d a a d S a d =+=+⇒=+=解12a d ==,故数列2n a n =; (Ⅱ)由(Ⅰ)可知()()1111212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则1111111...213352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 11112212n ⎛⎫=-< ⎪+⎝⎭ 点睛:本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,1n n n cc a a +=等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式相加除以2得到数列求和,(5)或是具有某些规律求和.12.(1) 12+=n b n ;(2))32(3+=n nT n .试题分析:(1)借助题设条件运用等比数列有关知识求解;(2)借助题设运用裂项相消法求和.考点:等比数列裂项相消求和等有关知识的综合运用. 13.【考点】数列递推式;数列的求和.【分析】(Ⅰ)利用,再写一式,两式相减,即可得到结论;(Ⅱ)利用错位相减法,可求数列{b n}的前n项S n和.【解答】解:(Ⅰ)n=1时,a1=∵a1+2a2+22a3+...+2n﹣1a n=.. (1)∴n≥2时,a1+2a2+22a3+…+2n﹣2a n﹣1=….(2)(1)﹣(2)得即又也适合上式,∴(Ⅱ),∴(3)(4)(3)﹣(4)可得﹣S n=1•2+1•22+1•23+…+1•2n﹣n•2n+1=∴14.【考点】数列的求和;等差关系的确定;等比关系的确定.【分析】(Ⅰ)由S n=2n2+n可得,当n=1时,可求a1=3,当n≥2时,由a n=s n﹣s n﹣1可求通项,进而可求b n(Ⅱ)由(Ⅰ)知,,利用错位相减可求数列的和【解答】解:(Ⅰ)由S n=2n2+n可得,当n=1时,a1=s1=3当n≥2时,a n=s n﹣s n﹣1=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1而n=1,a1=4﹣1=3适合上式,故a n=4n﹣1,又∵a n=4log2b n+3=4n﹣1∴(Ⅱ)由(Ⅰ)知,2T n =3×2+7×22+…+(4n ﹣5)•2n ﹣1+(4n ﹣1)•2n ∴=(4n ﹣1)•2n=(4n ﹣1)•2n ﹣[3+4(2n ﹣2)]=(4n ﹣5)•2n +5 15.16.(1)因为(a n+1)2=4S n,所以S n=()2n a 14+,S n+1=()2n 1a 14++.所以S n+1-S n =a n+1=()()22n 1n a 1a 1,4++-+即4a n+1=a n+12-a n 2+2a n+1-2a n , ∴2(a n+1+a n )=(a n+1+a n )(a n+1-a n ).因为a n+1+a n ≠0,所以a n+1-a n =2,即{a n }为公差等于2的等差数列.由(a 1+1)2=4a 1,解得a 1=1,所以a n =2n-1. (2)由(1)知b n =()()12n 12n 1-+=11122n 12n 1--+(),∴T n =b 1+b 2+…+b n =111111123352n 12n 1-+-+⋯+--+() 1111122n 1222n 1=-=-++()()∵T n+1-T n =11111110,222n 3222n 122n 122n 32n 12n 3---=-=>++++++[]()()()()()()∴T n+1>T n .∴数列{T n }为递增数列, ∴T n 的最小值为T 1=111263-=. 17.(I ) 12-=n b n ∴121-=n a n (II )∵)121121(21)12)(12(11+--=+-=+n n n n a a n n∴)12112151313111(2113221+--++-+-=++++n n a a a a a a n n 11(1)22121nn n =-=++ ∴162133n n >+ 解得16n > 解得n 的取值范围:*{|16,}n n n N >∈ 18.19.(Ⅰ) 由12+n a 、n S 、2a -成等差数列知,2122a a S n n -=+,………………………1分 当2≥n 时,2122a a S n n -=-,所以n n n n a a S S 222211-=-+-,n n a a 21=+ ……………………………………4分 当1=n 时,由22122a a a -=得122a a =, ……………………………………5分综上知,对任何*∈N n ,都有n n a a 21=+,又11=a ,所以0≠n a ,21=+nn a a .…6分 所以数列}{n a 是首项为1,公比为2的等比数列,所以12-=n n a . ……………7分(Ⅱ))182)(182(2)18)(18(112!--=--=+-++n n n n n n n a a a b )18211821(211---=+n n ……10分)182118211821182118211821(2113221---++---+---=+n n n T )1821161(21)18211821(21111---=---=++n n ,……………………………12分 )182)(92(2)18211821(21111211--=---=-++-+++n n n n n n n T T , 当2≤n 时,n n T T >+1,即3210T T T <<<;当4≥n 时,也有n n T T >+1,但0<n T ;当3=n 时,01<-+n n T T ,n n T T <+1,即34T T <. 所以数列}{n T 的的最大项是3273=T . ……………………………………………15分 20.(1)由已知得:13a =, ………………2分2n ≥且*n N ∈时,221(2)[(1)2(1)]21n n n a S S n n n n n -=-=+--+-=+经检验1a 亦满足21n a n =+ ∴21(*)n a n n N =+∈ ………………5分 ∴1[2(1)1](21)2n n a a n n +-=++-+=为常数∴{}n a 为等差数列,且通项公式为21(*)n a n n N =+∈ ………………7分 (2)设等比数列{}n b 的公比为q ,则34127b q b ==, ∴3q =,则1333n n n b -=⨯=,*n N ∈ ∴213n n n a n b += ……………9分 23357213333n nn T +∴=++++① 234113572121333333n nn n n T +-+=+++++ ② ①-②得:2123411111(1)2111121214243312()12133333333313n n n n n n n n n T -+++-+++=++++-=+⨯-=--…13分22,*3n nn T n N +∴=-∈ ………………15分 21.(1)2d =-,7(2)(2)211n a n n =+-⋅-=-+ ……3分 (2)560,0a a ><,5S ∴最大……6分(3)2112nn b n =-++1212()(222)n n n T a a a =++++++211022n n n +=-+-……10分22.23.(1)设数列{an}的公比为q ,由23269a a a =得32349a a=所以219q =.由条件可知c>0,故13q =.由12231a a +=得12231a a q +=,所以113a =.故数列{an}的通项式为an=13n.(2 )31323nlog log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++12111111112...2((1)()...())22311n nb b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+数列大题一分组求和1. a n =22n-1+n,设数列{a n }的前n 项和为S n ,求S n ,2.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为3数列 121, 241, 381, 4161, 5321, …n n 21+,…, 的前n 项之和等于 . 4.数列2211,12,122,,1222,n -+++++++的前n 项和 .5. S n =9+99+999+…+99…9, 求S n6 S n=1-2+3-4+……+(-1)n+1n , 求S n7.求S=12-22+32-42+……+992-1002,求S n二裂项相法)2(1531421311.1+++⨯+⨯+⨯=n n sn求,141.22-=n a n 已知若数列{a n }的前n 项和为S n ,求S n .3a n =1+2+3+…+n, 若数列{ na 1}的前n 项和为S n ,求S n .,)1(41.4+=n n a n 若数列{a n }的前n 项和为S n ,求S n .,)23)(21(1.5n n a n --=若数列{a n }的前n 项和为S n ,求S n .22)2(41.6+=n n a n ,若数列{a n }的前n 项和为S n ,求S n .)182)(182(2.711--=+-n nn n a ,若数列{a n }的前n 项和为S n ,求S n .8.数列{a n }的通项公式a n =,则该数列的前n 项之和.。