恒压频比变频调速系统
- 格式:doc
- 大小:274.50 KB
- 文档页数:11
什么是变频调速系统的恒压频比控制?
恒压频比控制是变频调速系统中一种常用的控制方式,其目的是在变频调速过程中保持输出电压和频率之间的恒定比例关系。
在恒压频比控制中,通过调节变频器输出的电压和频率,以使输出电压与电网电压之间保持恒定的比例关系。
通常,以百分比的方式表示该比例关系,如电压百分比和频率百分比。
例如,如果恒压频比设置为80%,则在调速过程中,输出电压将与电网电压保持80%的比例,频率也与电网频率保持80%的比例。
恒压频比控制可以在变频调速系统中实现输出电压的稳定控制,具有以下优点:
1.稳定性:恒压频比控制可以实现输出电压稳定在一定的百
分比范围内,无论电网电压的变化,都可以保持恒定输出
电压。
这对于需要保持恒定电压的应用场景非常重要。
2.自适应性:恒压频比控制可以根据负载变化自适应地调整
输出电压和频率,以保持恒定压频比。
因此,无论负载增
加或减少,系统都能快速响应,确保稳定的工作。
3.能耗优化:通过恒压频比控制,可以根据实际需要调整输
出电压和频率,以实现能耗的优化。
通过降低输出电压和
频率,可以达到节省能源的效果。
总之,恒压频比控制在变频调速系统中通过调整输出电压和频
率的比例关系来实现恒定的输出电压,具有稳定性、自适应性和能耗优化的特点,适用于需要保持恒定电压的应用场景,如工业生产中的电机调速控制等。
电机的恒压频比控制原理
电机的恒压频比控制原理指的是在电机运行过程中,通过调节电压和频率的比值,来控制电机的转速和负载。
此控制原理一般适用于三相异步电机的变频调速系统。
具体原理如下:
1. 电机的转速与频率成正比关系,即转速随频率的增加而增加。
2. 电机的转矩与电压成正比关系,即转矩随电压的增加而增加。
3. 在恒压频比控制下,电机的电压和频率有固定的比例关系,即电压和频率的比值保持不变。
4. 通过改变电压和频率的比值,可以调节电机的转速和负载。
在实际应用中,恒压频比控制常常通过变频器来实现。
变频器可以根据用户需求设定所需的输出频率和电压,然后控制电机输出相应的转速和转矩。
具体实现方式包括:
1. 通过改变输出电压的幅值,达到调节电机转矩的目的。
2. 通过改变输出频率的大小,达到调节电机转速的目的。
3. 通过保持电压和频率的比值不变,实现恒压频比控制。
总之,电机的恒压频比控制原理是根据电压与转矩的关系、频率与转速的关系,通过调节电压和频率的比例,以实现对电机转速和负载的控制。
恒压频比变频调速原理恒压频比变频调速是一种常用的调速方式,广泛应用于工业生产中的电机调速控制系统中。
通过恒压频比变频调速,可以实现电机的高效率、高稳定性的运行,提高工作效率,降低能耗。
基本原理恒压频比变频调速的基本原理是利用变频器(频率转换器)对电机的供电频率进行调节,从而改变电机的转速。
为了实现恒压频比变频调速,需要知道以下几个基本参数:1.电网电压:供电变频器的输入电压。
2.电网频率:供电变频器的输入频率。
3.电机额定频率:电机的额定运行频率。
4.电机额定电压:电机的额定运行电压。
恒压频比变频调速的原理是将电机的供电频率与电压之间的比值(频比)保持恒定。
在调速的过程中,变频器会根据电机的负载要求,调整输出频率和电压,使得电机的转速能够保持在设定值附近。
恒压频比变频调速的主要步骤如下:1.测量电机的运行频率和电压。
2.根据电机的负载要求,调整变频器的输出频率和电压。
3.监测电机的运行状态,如电流、转速等。
4.根据监测结果,及时调整变频器的输出频率和电压,使电机的运行状态维持在设定范围内。
通过不断调整变频器的输出频率和电压,恒压频比变频调速可以使电机的转速精确控制在设定值附近,实现电机的高效率、稳定性运行。
恒压频比变频调速原理的优势恒压频比变频调速在工业生产中具有如下优势:1.灵活性高:恒压频比变频调速可以根据电机的负载要求,实时调整输出频率和电压,使得电机能够适应不同的工况需求,提高生产效率。
2.节能减排:恒压频比变频调速可以根据电机的负载变化,调整输出频率和电压,提高电机的运行效率,降低能耗,减少对环境的影响。
3.保护电机:恒压频比变频调速可以监测电机的运行状态,及时调整输出频率和电压,避免电机因过载、过热等原因损坏,延长电机的使用寿命。
4.控制精度高:恒压频比变频调速可以精确控制电机的转速,在不同的工况下保持稳定,提高产品质量和生产效率。
恒压频比变频调速的应用恒压频比变频调速广泛应用于各种工业生产中,特别是对于负载变化较大、对转速精度要求较高的设备,如风机、水泵、压缩机等。
在额定频率以下,如果电压一定而只降低频率,那么气隙磁通就要过大,造成磁路饱和,严重时烧毁电动机。
因此为了保持气隙磁通不变,就要求在降低供电频率的同时降低输出电压,保持u/f=常数,即保持电压与频率之比为常数进行控制。
这种控制方式为恒压频比控制方式,又称恒磁通控制方式。
在额定频率以下,磁通恒定时转矩也恒定,因此,属于恒转矩调速。
U/f控制方式有三点不足之处:一、这种控制方式很难根据负载转矩的变化恰当的调整电动机转矩。
特别是低速时,由于定子阻抗压降随负载转矩变化,当负载较重时可能补偿不足,当负载过轻时又可能造成过补偿,造成磁路饱和。
这都可能引起变频器过电流跳闸。
二、U/f控制方式无法准确控制交流电机的实际转速。
因为变频器的频率设定值均为定子频率,即电动机的同步频率,但是电动机的转差率随着负载的变化波动,所以电动机的实际转速也随之变化,故这种方式的速度静态稳定性不高,不适于对速度要求较高的拖动系统。
三、U/f控制方式在转速很低时,转矩不足。
基频向下调速,希望保持磁通不变。
从公式U=E=4.44*f*N*Φ看出,磁通正比与E/f(近似正比与U/f),所以保持E/f(U/f)的比值不变,就可以保证磁通不变。
基频向上调速时候,因为电压不能再升了,所以可以看成弱磁调速。
先来看一下异步电动机的电磁转矩公式:T em = CT1Φm I2 cosφ2式中CT1 ——转矩系数;Φm ——主磁通,T;I2 ——转子电流,A;cosφ2 ——转子侧功率因数。
可以看出,电动机的电磁转矩正比于磁通Φm和转子侧电流的有功分量I2cosφ2 。
但对于异步电动机来说,转子电流是非外部控制量,所以只能通过改变磁通Φm来改变异步电动机的电磁转矩。
对于拖动系统,最合理的利用电动机的出力是首先要考虑的,由异步电动机的额定电压和额定频率必然可以推导出一个电动机的额定磁通Φ。
根据公式:U ≈E = 4.44 f N Φ;式中N ——线圈匝数;f ——电源频率;E ——电源电势;Φ——线圈磁通。
恒压频比变频调速原理一、引言恒压频比变频调速是一种常用的电机调速方式,它通过调节电机的供电频率来控制电机的转速,从而实现对电机负载的控制。
本文将详细介绍恒压频比变频调速的原理及其应用。
二、恒压频比变频调速原理1. 电机转速控制原理电机转速与供电频率成正比,即在恒定的供电电压下,提高供电频率可以增加电机转速。
因此,通过改变供电频率可以实现对电机转速的控制。
同时,由于在不同负载下,所需的供电功率也不同,因此需要根据负载情况来调整供电功率。
2. 变频器工作原理变频器是实现恒压频比变频调速的关键设备。
它能够将输入的交流信号转换为可控直流信号,并通过PWM技术产生可变频率和幅度的交流信号输出到驱动电机。
具体来说,变频器包括三个部分:整流部分、逆变部分和控制逻辑部分。
3. 恒压频比变频调速实现原理在恒压状态下,改变输入信号的占空比可以改变输出的电压和频率,从而实现对电机转速的控制。
具体来说,变频器通过调整PWM波的占空比来控制输出电压和频率,从而实现对电机转速的调节。
同时,为了保证稳定性和效率,需要根据负载情况来调整输出功率。
三、恒压频比变频调速应用1. 工业生产恒压频比变频调速广泛应用于各种工业生产中,如风机、水泵、空气压缩机等设备。
它可以提高设备的效率和精度,并减少能源消耗和维护成本。
2. 家庭电器恒压频比变频调速也被应用于家庭电器中,如洗衣机、冰箱等。
它可以提高家电的使用寿命和节能效果,并带来更好的用户体验。
3. 新能源领域在新能源领域中,恒压频比变频调速也有广泛应用。
例如,在光伏发电系统中,可以通过恒压频比变频调速技术来控制光伏阵列输出功率,并优化系统效率。
四、总结恒压频比变频调速是一种常见的电机调速方式,它通过调节电机的供电频率来控制电机的转速,从而实现对电机负载的控制。
变频器是实现恒压频比变频调速的关键设备,它能够将输入的交流信号转换为可控直流信号,并通过PWM技术产生可变频率和幅度的交流信号输出到驱动电机。
简述恒压频比控制方式一、引言恒压频比控制方式是一种常见的工业控制方法,它可以通过调节电机的转速来实现对工艺过程的精确控制。
在许多应用中,恒压频比控制方式已经成为了最为常用的控制方式之一。
本文将详细介绍恒压频比控制方式的原理、优点、缺点以及应用场景等方面。
二、恒压频比控制方式的原理恒压频比控制方式是基于变频器技术实现的。
变频器是一种能够将电源交流电转换为可调节直流电并进一步将其转换为可调节交流电的装置,它可以通过改变输出电压和频率来实现对电机转速和负载特性的调节。
在恒压频比控制方式中,变频器会根据设定的电机额定参数以及负载特性来自动选择最佳输出功率和转速,从而保证工艺过程稳定运行。
三、恒压频比控制方式的优点1. 精度高:由于恒压频比控制方式可以实时监测和调整电机转速和负载特性,因此其精度非常高。
2. 节能环保:与传统的调速方式相比,恒压频比控制方式可以大幅降低电机的能耗,从而实现节能环保的目的。
3. 可靠性高:由于恒压频比控制方式采用了先进的变频器技术,因此其稳定性和可靠性非常高。
4. 适应性强:恒压频比控制方式可以根据不同的工艺过程要求进行灵活调整,从而适应不同的应用场景。
四、恒压频比控制方式的缺点1. 成本较高:由于恒压频比控制方式需要使用变频器等先进设备,因此其成本相对较高。
2. 维护难度大:由于恒压频比控制方式涉及到多种复杂设备和系统,因此其维护难度也相对较大。
五、恒压频比控制方式的应用场景1. 工业生产:在许多工业生产领域中,如钢铁、化工、水泥等行业中都广泛采用了恒压频比控制方式来实现对生产过程的精确控制。
2. 交通运输:在地铁、高速公路等交通运输领域中,也可以采用恒压频比控制方式来实现对车辆的精确控制。
3. 能源管理:在能源管理领域中,可以利用恒压频比控制方式来实现对电力、水力等资源的高效利用。
六、结论通过以上分析,我们可以看出恒压频比控制方式具有精度高、节能环保、可靠性高等优点,并且适用于多种应用场景。
一、设计目的:通过对一个使用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。
二、设计要求:设计控制系统,根据控制磁通不变的方法,对恒压频比的系统设计方案进行论证。
画出系统原理图,进行元器件的选择和相关参数的计算。
三、总体设计:异步电动机变频调速系统在电动机调速时,一个重要的因素是希望保持每级的磁通量m Φ为额定值不变,磁通太弱没有充分利用电机的铁心,是一种浪费,若要增大磁通,又会使铁心饱和。
从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。
对于直流电机。
励磁系统是独立的,只要对电枢反应的补偿合适,保持磁通m Φ不变是很容易做到的。
在交流异步电机中,磁通是定子和转子磁势合成产生的。
我们知道,三相异步电机定子每相电动势的有效值是:1114.44g N m E f N k =Φ (1)式中g E ——气隙磁通和定子每相中感应电动势有效值,单位为V ;1f ——定子频率,单位为Hz ;1N ——定子每相绕组内联匝数;1N k ——基波绕组系数;m Φ——每极气隙磁通量,单位为Wb ;由式(1-1)可知,只要控制好g E 和1f ,便可达到控制磁通m Φ的目的,对此,需要考虑额定频率以下和额定频率以上两种情况。
1.1额定频率以下调速由式(1-1)可知,要保持m φ不变,当频率1f 从额定值1n f 向下调节时,必须同时降低g E ,使1gE f =常值,即采用恒定的电动势频率比的控制方式。
然而,绕组中的感应电动势是难以直接控制的,当电动势值较高时,可以忽略定子绕组的漏磁阻抗压降,而认定定子相电压1gU E≈则得:11Uf=常值,这是恒压频比的控制方式。
低频时,1U和gE都较小,定子阻抗压降所占的份量就比较显著,不再能忽略。
这时,可以人为地把电压1U抬高一些,以便近似地补偿定子压降,带定子压降补偿的恒压频比控制特性见图1。
图1 恒压频比控制特性a——不带定子压降补偿b——带定子压降补偿1.2基频以上调速在基频以上调速时,频率可以从1nf往上增高,但电压1U却不能增加得比额定电压1nU还要大,最多只能保持11nU U=。
由式(1-1)可知这将迫使磁通与频率成反比地降低,相当于直流电机弱磁升速的情况。
把基频以下和基频以上两种情况合起来,可得图所示的异步电动机变频调速控制特性。
如果电动机在不同转速下具有额定电流,则电机都能在温升允许条件下长期运行,这时转矩基本上随磁通变化,按照电机拖动原理,在基频以下,属于“恒转矩调速”的性质,而在基频以上,基本上属于“恒功率调速”。
图2 异步电动机变频调速控制特性2.1 静止式变频装置上节讨论的控制方式表明,必须同时改变电源的电压和频率。
才能满足变频调速的要求。
现有的交流供电电源都是恒压恒频的,必须通过变频装置,以获得变压变频的电源。
这样的装置通称变压变频(VVVF)装置,其中VVVF是英文Variable Voltage Variable Frequency的缩写。
最早的VVVF装置是旋转变流机组,现在已经几乎无例外地让位给应用电力电子技术的静止式变频装置。
从结构上看,静止变频装置可分为间接变频和直接变频两类。
间接变频装置先将工频交流电源通过整流器变成直流,然后再经过逆变器将直流变换为可控频率的交流,因此又称有中间直流环节的变频装置。
直接变频装置则将工频交流—次变换成可控频率的交流,没有中间直流环节。
目前应用较多的还是间接变频装置。
2.1.1间接变频装置(交—直—交变频装置)图2绘出了间接变频装置的主要构成环节。
图3 间接变频装置(交——直——交变频装置)按照不同的控制方式,又可分为以下三种。
1.用可控整流器变压,用逆变器变频的交-直-交变频装置。
调压和调频分别在两个环节上进行,两者要在控制回路上协调配合。
这种装置结构简单.控制方便。
但是,由于输入环节采用可控整流器,当电压和频率调得较低时,电网端的功率因数较小;输出环节多用由晶闸管组成的三相六拍逆变器(每周换流六次),输出的谐波较大。
这就是这类变频装置的主要缺点。
2.用不控整流器整流,斩波器变压,逆变器变频的交-直-交变频装置。
整流环节采用二极管不控整流器,再增设斩波器,用脉宽调压。
这样虽然多了—个环节。
但输入功率因数高。
克服了用可控整流器变压,用逆变器变频的交-直-交变频装置的第一个缺点。
输出逆变环节不变,仍有谐波较大的问题。
3.用不控整流器整流,SPWM逆变器同时变压变频的交-直-交变频装置。
用不控整流,则功率因数高;用SPWM逆变,则谐波可以减少。
这样,用可控整流器变压.用逆变器变频的交-直-交变频装置的两个缺点都解决了。
谐波能够减少的程度取决于开关频率,而开关频率则受器件开关时间的限制。
如果仍采用普通晶闸管,开关频率比六拍逆变器也高不了多少,只有采用可控关断的全控式器件以后,开关频率才得以大大提高,输出波形几乎可以得到非常逼真的正弦波,因而又称正弦波脉宽调制(SPWM)逆变器。
成为当前最有发展前途的一种结构形式。
2.1.2直接变频装置(交-交-变频装置)直接变频装置只用一个变换环节就可以把恒压恒频(CVCF)的交流电源变换成VVVF电源,因此又称交交变频装置或周波变换器。
2.1.3电压源和电流源变频器从变频电源性质来看,无论是交—交变频,还是交—直—交变频,都可分为电压源变频器器和电流源变频器两大类,它们的主要区别在于用什么储能元件来缓冲无功能量。
1. 电压源变频器:对于交—直—交变频器,当中间直流环节主要采用大电容滤波时,直流电压波形比较平直,在理想情况下是一种内阻为零的恒压源,输出交流电压是矩形波或阶梯波,这叫做电压源变频器。
2. 电流源变频器:对于交—直—交变频器,当中间直流环节主要采用大电感滤波时,直流回路中电流波形比较平直,对负载来说基本是一个恒流源,输出交流电流是矩形波或阶梯波,这叫做电流源变频器。
2.2 正弦波脉宽调制(SPWM)逆变器在一般的交—直—交变频器供电的变压变频调速系统中,为了获得变频调速所要求的电压频率协调控制,整流器必须是可控的,调速时须同时控制整流器UR和逆变器UI,这样就带来了一系列的问题。
主要是:(1)主电路有两个可控的功率环节。
相对来说比较复杂;(2)由于中间直流环节有滤波电容或电抗器等大惯性元件存在,使系统的动态响应缓慢;(3)由于整流器是可控的,使供电电源的功率因数随变频装置输出频率的降低而变差,并产生高次谐波电流;(4)逆变器输出为六拍阶梯波交变电压(电流)。
在拖动电动机小形成较多的各次谐波,从而产生较大的脉动转矩。
影响电机的稳定工作,低速时尤为严重。
因此,由第一代电力电子器件所组成的变频器已不能令人满意地适应近代交流调速系统对变频电源的需要。
随着第二代电力电子器件(如GTO,GTR,P—MOSFET)的出现以及微电子技米的发展,出现了解决这个问题的良好条件。
图4 常规交—直—交变频器原理图图5 SPWM交—直—交变频器原理图2.2.1 SPWM逆变器的工作原理名为SPWM逆变器,就是期望其输出电压是纯粹的正弦波形,那么,可以把一个正弦半波分作N等分,然后把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。
这样,由N个等幅而不等宽的矩形脉冲所组成的波形就与正弦的半周等效。
同样,正弦波的负半周也可用相同的方法来等效。
这样就可以得到所期望的逆变器输出SPWM波形的一系列脉冲波形就是所期望的逆变器输出SPWM波形。
可以看到,由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交—直—交变频器中的整流器采用不可控的二极管整流器就可以了。
逆变器输出脉冲的幅值就是整流器的输出电压。
当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为相似的一系列脉冲波形,这是很容易推断出来的。
从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。
但较为使用的办法是引用通讯技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波,而受它调制的信号称为载波。
在SPWM中常J用等腰三角波作为载波.因为等腰三角波上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。
2.2.2 工作原理图6 SPWM变频器电路原理框图图6是SPWM变频用的主电路,图中18VT VT→是逆变器的六个功率开关器件,各又一个续流二极管反并联接,整个逆变器由三相整流器提供的恒值直流电压供电。
它的控制电路,是由一组三相对称的正弦参考电压信号,,ra rb rcU U U由参考信号发生器提供,共频率决定逆变器输出的基波频率,应在所要求助输出频率范围内可调。
参考信号的幅值也在一定范围内变化,以决定输出电压的大小。
三角波载波信号是共用的,分别与每相参考电压比较后,给出“正”或“零”的饱和输出,产生SPWM脉冲序列波,,da db dcU U U,作为逆变器功率开关器件的驱动控制信号。
控制方式可以是单极式,也可以是双极式。
采用单极式控制时在正弦波的半个周期内每相只有一开关器件开通或关断,例如A相的1VT反复通断,三相SPWM逆变器工作在双极式控制方式的制方式和单级式相同,输出基波电压的大小和频率也是通过改变正弦参考信号的幅值和频率而改变的,只是功率开关器件通断的情况不一样。
双极式控制时逆变器同一桥臂上下两个开关器件交替同断,处于互补的工作方式。
2.3.1 恒压频比控制下的机械特性异步电动机带载稳态运行时,有()()21122222112112'3''l pl lU s RT nsR R s L Lωωω⎛⎫= ⎪+++⎝⎭(2)此式表明,对于同一负载要求,即以一定的转速An在一定的负载转矩lAT下运行时,电压和频率可以有多种组合,其中恒压频比(11/Uω=恒值)最容易实现的。
它的变频机械特性基本上是平行下移,硬度也较好,能满足一般的调速要求。
但是低速带载能力还较差,需对定子压降实行补偿为了近似的保持气隙磁通不便,以便充分利用电机铁心,发挥电机产生转矩的能力,在基频以下采用恒压频比控制,实行恒压频比控制时,同步转速自然也随着频率变化10602pn n ωπ= ()/min r (3) 因此带负载时的转速降落为 01602pn sn s n ωπ∆== ()/min r 在式(3)中所表示的机械特性近似直线段上。
可以导出21211'3e p R T s U n ωω≈⎛⎫ ⎪⎝⎭(4) 由此可见,当11/U ω为恒值时,对同一转矩T ,1s ω是基本不变的,因而n ∆也是基本不变的,也就是说,在恒压频比条件下改变频率时,机械特性基本上是平行下移的,它们和直流他激电机调速时特性变化情况近似,所不同的是,当转矩达到最大值以后,转速再降低,特性就折回来了。