一种新型微带贴片天线的优化设计
- 格式:doc
- 大小:1.13 MB
- 文档页数:21
华中科技大学硕士学位论文微带帖片天线的仿真分析和优化姓名:***申请学位级别:硕士专业:电磁场与微波技术指导教师:***20070301华中科技大学硕士学位论文摘要微带帖片天线具有剖面低、重量轻、易制作和容易做到与飞行器共形等特有的优点,在实际当中得到了广泛的应用。
随着不同用途需求对天线性能的要求越来越高,准确分析微带天线的物理尺寸和性能参数的关系有越来越重要的作用。
对此,本文利用Ansoft HFSS软件研究了不同物理尺寸下微带天线性能的变化,并进行了优化。
论文论述了天线的基本概念和参数指标,重点对微带天线进行了研究,讨论了典型微带天线的特性和研究方法。
在了解软件Ansoft HFSS的天线仿真功能和仿真流程的基础上,对两种设计方案下的微带天线进行了仿真分析。
最后,针对含切角的微带帖片天线通过仿真优化,得到了天线性能的优化方案。
本文的工作,不仅为微带天线的工程优化设计提供了一种有效途径,而且证实了使用Ansoft HFSS软件的天线仿真功能,能够在其它更为复杂的天线的工程优化设计中,进行更多的方案比较并缩短设计周期,降低研制成本。
关键词微带天线 Ansoft HFSS 仿真分析优化华中科技大学硕士学位论文AbstractMicrostrip patch antenna has been widely used because of its own advantages, such as: low profile, light weight, easy fabrication, conformability to mounting hosts. But, with the increased demands of antenna quality for different purposes, how to analyze the physical sizes and performance parameters of microstrip antenna will be more and more important. So, this thesis used Ansoft HFSS software to optimization and do research about performance changes of microstrip antenna in several physical sizes.The thesis introduced basic concepts and parameters of antenna, focus on microstrip antenna, then the classical microstrip antenna and its methods are illustrated. Be familiar with simulation function and simulation process of Ansoft HFSS software, did simulation analysis about microstrip antenna in two design methods. Finally, simulated the microstrip patch antenna which includes cutting corner, acquired the optimization program of antenna performance.The thesis provided effective approach of engineering optimized design of microstrip antenna, confirmed that functional simulation of Ansoft HFSS software can do optimization design in more complex antenna projects, compared to more programs, it will ensure the precision and reduce the design cost.Key Words:Microstrip antenna; Ansoft HFSS; Simulation analysis; Optimization独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
角馈方形微带贴片阵列天线交叉极化的研究-概述说明以及解释1.引言1.1 概述概述本文主要研究了角馈方形微带贴片阵列天线的交叉极化特性。
随着通信技术的不断发展,对天线性能提出了更高的要求,其中交叉极化是天线设计中一个重要的研究方向。
角馈方形微带贴片阵列天线作为一种常见的微波天线,在实际应用中具有广泛的应用价值。
本文通过对该天线的设计原理和交叉极化机制进行分析,探讨了其在实验中的表现及可能的改进方向。
通过本研究,我们希望能够为微带天线的设计和优化提供一些参考,为未来的天线研究工作提供一定的启示。
1.2 文章结构文章结构部分旨在给读者一个整体的了解,告诉读者在本文中将会讨论哪些内容和展开哪些分析。
本文的结构主要包括引言、正文和结论三个部分。
在引言部分,我们将介绍本研究的背景和动机,并阐明本文的研究对象和研究目的。
正文部分将主要分为三个小节。
首先是角馈方形微带贴片阵列天线设计,我们将介绍天线的设计原理和具体的结构。
其次是交叉极化原理分析,我们将对天线的交叉极化机理进行深入探讨。
最后是实验结果与讨论,我们将展示实验结果,并对实验结果进行分析和讨论。
结论部分将从总结与回顾、研究意义和展望未来研究方向三个方面展开。
我们将总结本文的研究成果,探讨研究的意义,并展望未来在这个领域的研究方向和发展前景。
1.3 目的本文旨在研究角馈方形微带贴片阵列天线的交叉极化特性。
通过设计和分析不同参数下的天线结构,探讨其在交叉极化方面的性能表现,并进一步探讨其在通信系统中的应用潜力。
通过实验结果的验证和讨论,加深对该天线结构的理解,为其在实际工程应用中提供参考和指导。
同时,本研究也旨在为未来相关领域的研究提供一定的参考和启发,推动微波天线技术的发展。
2.正文2.1 角馈方形微带贴片阵列天线设计角馈方形微带贴片阵列天线是一种常用的微波天线,具有较好的指向性和辐射特性。
在本研究中,我们设计了一种新型的角馈方形微带贴片阵列天线,旨在实现更好的性能表现。
HFSS矩形微带贴片天线的仿真设计报告HFSS(High Frequency Structure Simulator)是一种常用于高频电磁场仿真的软件,可用于设计和优化天线等高频器件。
本文将对矩形微带贴片天线的仿真设计进行详细分析和报告。
1.研究目的本次仿真设计旨在设计一种结构简单、性能优越的矩形微带贴片天线。
希望通过HFSS软件的仿真分析,优化天线的频率特性、增益和辐射方向性。
2.设计细节首先,选择一种合适的基底材料和贴片形状。
常用的基底材料有FR-4、Rogers等,贴片形状一般选择矩形。
基于实际需求和设备限制,确定天线的工作频率范围和增益要求。
其次,根据工作频率计算出天线的尺寸。
根据微带天线的原理,通过公式计算出贴片的长度、宽度和介电常数。
可以利用尺寸调整和电气长度来调整频率响应和阻抗匹配。
然后,进行天线的仿真设计。
在HFSS软件中,建立仿真模型并进行电磁场分析。
可以通过调整尺寸、形状和介电常数等参数,优化天线的性能指标。
可以通过频率扫描和图形分析等方法,获得天线的频率响应、辐射特性、增益和辐射方向性等。
最后,评估和优化设计结果。
根据仿真结果对天线的性能进行评估,并进行合理的优化调整。
可以根据需求对天线的尺寸、形状和工艺参数进行调整,以达到最佳的性能指标。
3.仿真结果与分析通过分析仿真结果,可以总结出矩形微带贴片天线的设计优缺点:优点:1)结构简单,制造工艺成熟,易于实现和集成;2)在工作频率范围内具有较高的增益和辐射方向性;3)相对比较小的尺寸,适合应用于小型设备和多天线系统中。
缺点:1)工作频率受贴片尺寸和介电常数的影响较大,需要精确的尺寸控制和阻抗匹配设计。
4.结论与展望本文基于HFSS软件进行了矩形微带贴片天线的仿真设计和分析。
通过优化调整尺寸、形状和介电常数等参数,设计出了一种具有较高增益和辐射方向性的天线结构。
仿真结果表明,该设计满足了实际需求和性能指标。
然而,本文的仿真设计还存在一些改进空间。
2007年全国微波毫米波会议论文集308 一种新型的圆极化贴片天线的研究张继龙卢春兰钱祖平(解放军理工大学通信工程学院,江苏南京,210007)摘要:本文研究了圆极化微带贴片天线,通过在普通圆形贴片开槽,提出了一种结构新颖的圆极化贴片天线。
仿真以及实测结果表明,该天线具有较宽的3dB波瓣和良好的圆极化性能,并且新型贴片天线的尺寸要小于普通的圆形或圆环形贴片天线的尺寸。
关键词:贴片天线;圆极化;轴比A Novel Circular-polarized MicrostripPatch AntennaZhang Ji-long Lu Chun-lan Qian Zu-Ping(Communication Engineering Institute of Science Technology University PLA, jiangsu nanjing,21007)Abstract: In this paper a novel circular-polarized microstrip patch antenna is given based on the study of common circular microstrip patch antenna. This new type of patch looks like common circular patch with some slots. Numerical results and measured data indicate that the new patch antenna has a wide beam and good performance of axial ratio. The radiation pattern of the antenna is very good. Another property of the new patch antenna is that the size of new patch antenna is smaller than common circular patch or annular patch antenna.Key word: patch antenna; circular-polarization; axial ratio1 引言*微带贴片天线由于重量轻、体积小、剖面低,此外还具有良好的方向性、灵活的馈电方式且容易与其他印刷电路集成等优点,在许多领域有着广泛的应用前景。
0 引言20世纪70年代中期,微带天线理论得到重大发展。
微带天线由于体积小、重量轻、馈电方式灵活、成本低、易于目标共形等优点而深受人们亲睐,在移动通信、卫星通信、全球卫星定位系统(GPS)、无线局域网通信等领域得到了大力推广和广泛应用。
然而随着卫星通讯、运载火箭测控通讯技术的不断发展,雷达应用范围的扩大以及对高速目标在各种极化方式和气候条件下的跟踪测量需要,单一极化方式很满足要求,圆极化天线的应用研究就显得十分重要[1-2]。
圆极化天线具有旋向正交性,即圆极化波入射到对称目标(平面、球面等)具有旋向逆转的特性,这一特性在通信、电子对抗中得到广泛应用,尤其是在移动通信和GPS 领域中用来抗雨雾干扰和多径反射;圆极化天线能够接收任意极化的来波,其辐射波也可被任意极化的天线接收,这一特性在电子对抗中用来干扰侦察敌方的各种线极化、椭圆极化的无线电波,在微波探测领域用来减少信号漏失并提高探测灵敏度[3]。
基于微带圆极化天线的优点,为一谐波探测雷达设计了中心频率为2.4GHz 的圆极化微带贴片发射天线,使得谐波探测雷达在探测时不需考虑扫描角度的影响,提高了探测的速度和灵敏度,文中将给出天线的详细设计方案和实测性能。
1 微带贴片天线工作原理1.1 辐射机理微带天线是在带有导体接地板的介质基片上贴加金属薄片而形成的天线[4]。
通常介质基片的厚度与波长相比是很小的,属于电小天线。
微带天线结构比较简单,实际上就是一块印刷电路板,全部功率分配器、匹配网络、辐射器都可以刻在介质基片的一侧,另一侧为金属地板。
导体贴片一般是规则形状的面积单元,如矩形、圆形、三角形、椭圆形或其它形状,其中矩形贴片较为常用。
其馈电方式也是多种多样,除微带线馈电和同轴线馈电两种基本方式外,还有临近耦合馈电、口径耦合馈电、共面波导馈电等技术。
常用的微带天线是由微带传输线馈电的矩形贴片天线[5]。
在贴片和接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射,因此微带天线也可看作是一种缝隙天线。
微带贴片天线阵列的研究与设计随着无线通信技术的快速发展,天线作为无线通信系统的重要组件,其性能和设计受到了广泛。
微带贴片天线作为一种常见的平面天线,具有体积小、重量轻、易于集成等优点,被广泛应用于现代通信系统中。
本文将重点探讨微带贴片天线阵列的研究与设计。
微带贴片天线的基本原理是利用微带线来传输信号,并在贴片表面形成电磁场,从而实现电磁波的辐射和接收。
微带贴片天线的应用范围广泛,如移动通信、卫星通信、雷达等领域。
为了满足现代通信系统的需求,微带贴片天线阵列的研究与设计成为了关键。
微带贴片天线阵列的研究与设计方法包括理论分析、实验测试和数据分析。
理论分析是研究微带贴片天线阵列的基础,通过建立模型来分析天线的辐射特性和性能参数。
常用的分析方法包括电磁场理论和有限元法等。
实验测试是研究微带贴片天线阵列的重要环节,通过测试数据来验证理论分析的正确性。
实验测试包括天线性能参数的测量和辐射特性的测试等。
数据分析是对实验测试结果进行处理和解释的过程,通过对比不同数据来优化天线阵列的设计。
实验结果表明,微带贴片天线阵列具有优良的性能特点和优势。
微带贴片天线阵列的辐射性能较强,能够实现方向性和增益的控制。
微带贴片天线阵列的带宽较宽,有利于实现多频段通信。
微带贴片天线阵列易于集成和制造,具有较低的成本和较高的可靠性。
这些优点使得微带贴片天线阵列在未来通信领域中具有广泛的应用前景。
本文通过对微带贴片天线阵列的研究与设计,总结了其性能特点和优势,并指出了微带贴片天线阵列在技术创新和应用推广方面的意义。
微带贴片天线阵列作为一种重要的平面天线,具有广泛的应用前景。
在未来的研究中,可以进一步探索微带贴片天线阵列的高效设计和优化方法,提高其性能和可靠性,以满足不断发展的无线通信需求。
随着无线通信技术的快速发展,天线作为通信系统中关键的组成部分,其性能和设计受到了广泛。
特别是高性能宽带双极化微带贴片天线,其在无线通信领域具有广泛的应用前景。
微带天线的设计和阻抗匹配微带天线是一种广泛应用于无线通信领域的新型天线。
它具有体积小、重量轻、易于集成等优点,因此特别适合于现代通信系统的应用。
本文将详细介绍微带天线的原理、设计思路、阻抗匹配方法以及实验验证等方面的内容。
微带天线是在介质基板上制作的一种天线。
它主要由辐射元和传输线组成,通过在介质基板上印制金属导带,形成辐射元和传输线,利用电磁波的辐射和传播特性实现天线的功能。
由于辐射元和传输线都印制在介质基板上,因此微带天线具有体积小、重量轻、易于集成等优点。
选择合适的介质基板,根据需要选择介电常数、厚度、稳定性等参数;在介质基板上印制金属导带,形成辐射元和传输线;根据设计要求,对金属导带进行形状和尺寸的调整;为提高天线的性能,需要进行阻抗匹配等调试;选取合适的材料:根据应用场景和设计要求,选择合适的介质基板和金属材料;设计形状和尺寸:根据天线设计的原理,设计合适的辐射元和传输线形状,以及其尺寸大小;考虑天线的抗干扰能力:为提高天线的性能,需要采取措施提高天线的抗干扰能力,如设置保护区、采用滤波器等。
微带天线的阻抗匹配是实现天线高效辐射的关键环节。
通常情况下,微带天线的阻抗不是纯电阻,而是具有一定的电抗分量。
为了使天线与馈线之间实现良好的阻抗匹配,通常采用以下方法:改变馈线的特性阻抗:通过调整馈线的几何形状、材料等参数,改变馈线的特性阻抗,使其与天线的阻抗相匹配;添加电阻、电容等元件:在馈线与天线之间添加适当的电阻、电容等元件,以调整天线的阻抗,实现阻抗匹配;采用分步匹配:通过在馈线与天线之间设置适当的阶梯状阻抗,逐渐接近天线的阻抗,从而实现良好的阻抗匹配。
为了验证微带天线的性能和阻抗匹配的效果,通常需要进行实验测试。
实验测试主要包括以下步骤:搭建测试平台:根据需要搭建测试平台,包括信号源、功率放大器、接收机等;连接测试平台:将微带天线与测试平台连接,确保稳定的信号传输;调整阻抗匹配:根据实验结果,对天线的阻抗匹配进行微调,以获得最佳的性能;进行测试:在不同的频率、距离等条件下进行测试,收集数据并进行分析;结果分析与讨论:根据实验数据进行分析和讨论,评估微带天线的性能和阻抗匹配的效果。
泉州师范学院毕业论文(设计)题目一种新型微带贴片天线的优化设计物理信息工程学院电子信息科学与技术专业 07 级 1班学生姓名何丽敏学号 070303041指导教师余燕忠职称副教授完成日期 2011年4月教务处制一种新型微带贴片天线的优化设计物理信息工程学院电子信息科学与技术专业 070303041 何丽敏指导教师:余燕忠副教授【摘要】:由于普通微带贴片天线效率低,为了提高贴片天线的效率,提出一种容易制作的新型微带贴片天线。
用HFSS 软件对它进行仿真,并对仿真的结果进行分析。
与普通贴片天线进行比较,该天线提高了增益、降低了天线回波损耗。
所提天线由于制作简单、性能优良,所以具有一定的实用价值。
【关键词】:微带贴片天线;HFSS;增益;回波损耗目录摘要 (1)0. 引言 (3)1. 微带天线的发展 .............................................................................................................................. 错误!未定义书签。
1.1概况 (5)1.2发展趋势.......................................................................................................................................... 错误!未定义书签。
1.2.1小型化 (4)1.2.2宽频带 (4)1.2.3多功能 (4)1.3应用 (4)2. HFSS仿真软件 (5)2.1 HFSS仿真软件基本功能 (5)2.2HFSS仿真设计过程 (5)3. 方案设计 (6)4. 普通微带贴片天线设计过程 (6)5. 正方形环缝的微带贴片天线设计过程 (7)6. 圆形环缝的微带贴片天线设计过程........................................................................................... 错误!未定义书签。
7. 两种环缝的微带贴片天线的性能比较 ...................................................................................... 错误!未定义书签。
8.总结..................................................................................................................................................... 错误!未定义书签。
致谢.. (19)参考文献 (19)英文摘要 (20)0.引言微带天线具有结构设计简单,容易制作,成本较低,体积较小,重量较轻,能与有源器件、电路集成统一的整体等优点[1]。
微带天线在近二十年来得到了广泛的应用,已用于大约100MHz~100GHz的宽广频带上,包括卫星通信、雷达、遥感以及便携式天线电设备上,并在未来的二十年有更广泛应用的趋势。
但是在实际应用中,由于存在回波损耗,使得微带天线的效率不是很高,不适合阵列天线的应用。
所以研究出增益高,回波损耗低的新型微带天线是非常有意义的。
1.微带贴片天线的发展1.1 概况微带贴片天线是微带天线之中最常见的形式,是在七十年代初期研究成功的一种新型天线,如图1所示。
微带贴片天线是在一个薄介质基上,其中一面附上金属薄层作为接地板,而另一面贴上一定形状的金属导体贴片。
通常利用的是微带线或同轴线一类馈线进行馈电,使得导体贴片与接地板之间激励产生了射频电磁场,并且通过贴片四周与接地板之间的缝隙而向外辐射。
它的基片厚度与波长相比相对来说一般很小,因而它能实现一维小型化。
与常用的微波天线相比,它有以下一些优点:体积较小,重量轻,低剖面,能与载体共形,它制造简单,成本低;在电器上的特点是可以得到单方向的宽瓣方向图,它的最大辐射方向在平面的法线方向上,易于和微带线路集成起来,易于实现线极化或者圆极化。
相同结构的微带天线能组成微带天线阵,从而获得更高的增益以及更大的带宽。
所以微带贴片天线越来越得到广泛的应用与重视[2]。
图1 微带贴片天线1.2发展趋势1.2.1 小型化微电子技术以及大规模集成电路的快速发展,使天线成为了电子设备中庞大、笨重部件的问题变得更加突出了,对能与设备的大小相互协调且具有效电性能的小天线的需求更加的迫切。
微带天线小型化的方法非常多,但都各具优缺点[3]。
当前主要应用于微带天线的小型化方法多是采用表面开槽,它的突出特点是频带窄,增益小,效率低。
而新材料的应用也颇受重视,比如高温超导(HTS)、光电子带隙(PGB)及有机磁性材料[4]等。
需要指出的是,天线尺寸的缩减往往是以性能作为代价的。
1.2.2 宽频带微带天线属于一维小型化谐振式天线,它的Q值高,频带窄。
近些年来出现的U型槽贴片与双层贴片无论是在探针或者是槽孔耦合的馈电方式下都获能得高达40%的阻抗带宽[5]。
因为圆极化带宽一般大大低于阻抗带宽,常规的圆极化微带天线轴比带宽不足1%,因此制约圆极化微带天线频带的因素将会转化成增益和极化特性。
1.2.3 多功能由于无线通信的飞速发展,使得在雷达、通信及定位系统等领域都非常需要双频/双极化微带天线,以此实现频率复用、天线共用和收发双工[6]。
当前,双频天线主要的实现目的是获得可控双频比的双宽频带特性这方面来的,双极化天线主要考虑的是隔离度和每种极化的交叉极化电平[7]。
1.3 应用在许多实际应用中,微带天线的优点远远超过它的缺点。
同常规的微波天线相比,微带天线可以做成共形天线,并且由于不扰动装载的宇宙飞船的空气动力学性能,因此无需作大的变动,天线就能很容易地装在导弹、火箭和卫星上,另外微带天线适合于组合式设计(固体器件,如振荡器、放大器、可变衰减器、开关、调制器、混频器、移相器等可以直接加到天线基片上)。
在实际应用系统中,微带贴片天线已应用于移动通信、卫星通讯、多普勒及其它雷达、无线电测高计、指挥和控制系统、导弹遥测、武器信管、便携装置、环境检测仪表和遥感、复杂天线中的馈电单元、卫星导航接收机以及生物医学辐射器等领域,随着微带贴片天线技术的成熟,微带贴片天线将更加广泛的用于社会生活中的各个层次,为经济发展做出贡献。
2.HFSS仿真软件2.1 HFSS仿真软件基本功能高频结构仿真器( High Frequency Structure Simulator,HFSS)是一款界面非常友好、功能很完备、采用了有限元法的三维全波电磁场仿真软件。
它可以分析仿真任意一个三维无源结构的高频电磁场,可以直接得到特征阻抗、辐射场、S 参数及电磁场、传播常数、天线方向图等等结果。
它广泛的应用于航空、航天、计算机、电子、半导体以及通信等多个领域。
它具有如下功能:(1)用户可以通过交互式界面输入高频元件或者是电路的几何尺寸结构、材料的类型、端口的位置、端口的特性阻抗定义线等等参数。
(2)可以按用户所指定的精度计算出多端口结构端口处S 参数的值。
(3)能以磁场强度H和电场强度E作为基本的物理量, 由麦克斯韦( Maxwell) 方程出发, 求解出微波元件中的磁场和电场的分布,以及各种曲线和图形。
(4)能和频域/ 时域的电路仿真器Nexxim 和Ansoft Designer 实现了动态的链接, 拥有方便的原理图集成以及仿真数据的管理, 具备了功能强大且高效的电磁场设计流程。
(5)可以同时对多个微波元件进行分析, 即进行并行处理[9]。
2.2 HFSS 仿真设计的过程(1)设置HFSS 软件运行参数, 如设定解算类型、单位、是否复制它的几何图形边界、是否要打开各个工具窗口等等。
(2)打开新的工程, 并且在工程中插入一个也可以是多个HFSS 设计( insert HFSS design)。
(3)再根据天线设计的技术指标以及计算得到的各个天线参数, 比如天线的尺寸、材料、激励、边界等参数,获得仿真天线的模型[10]。
(4)设置仿真天线模型的各个分析参数, 比如插入远场设置、扫频模式、中心频率、起始频率、终止频率、扫描次数,然后进行校验分析。
( 5) 根据仿真出来的天线模型可以获得天线对应的特性图, 如方向图、S参数图、输入阻抗图等。
3.方案设计本文设计的是一种容易制作的新型微带贴片天线,在普通微带贴片天线的基础上,在金属的底板上开两个正方形环缝,对仿真结果进行分析;然后把正方形环缝更改为圆形环缝,进行结果分析并且给出比较分析结果。
4.普通微带贴片天线设计过程本文设计了一个右手圆极化天线,此天线是通过微带结构来实现的,中心频率设为2.45GHz。
选用Roger R04003介质板,它的相对介电常量为3.38,其厚度为5mm[11]。
先对微带贴片天线的贴片及馈电进行建模,其次设置端口和边界等条件,最后生成了如图4-1所示的三维方向图的仿真结果。
图4-1 普通微带天线结构仿真图天线的回波损耗曲线如图4-2所示,也即为S11的曲线图,由图可知在频率为2.38GHz时,得到了最小回波损耗,其值为-12.9dB。
图4-2天线的回波损耗图图4-3 3D增益方向图普通微带贴片天线的3D增益方向图如图4-3所示。
由图可以看出该微带贴片天线的辐射最大方向为平面方向,即正Z方向,增益可达到7.5dB,而且还可以得到该方向的宽方向图。
5.正方形环缝的微带贴片天线设计过程在图4-1的基础上,在金属底板上加开了两个正方形环缝,如图5-1所示,大正方形的边长为6mm,按一定的值改变小正方形的大小,形成不同大小的环缝。
图5-1正方形环缝的仿真图图5-2 正方形环缝为1.0mm的S11图图5-3 正方形环缝为1.5mm的S11图图5-4 正方形环缝为2.0mm的S11图图5-5 正方形环缝为2.5mm的S11图图5-2所示的S11的曲线图,正方形环缝为1mm时,它的谐振频率为2.35GHz,得到的最小回波损耗值为-13.84dB,比图4-2在没有进行底板开缝时的回波损耗值小了0.94dB。
图5-3所示的S11的曲线图,正方形环缝为1.5mm时,它的谐振频率为2.36GHz,得到的最小回波损耗值为-14.53dB,比图4-2在没有进行底板开缝时的回波损耗值小了1.63dB。
图5-4所示的S11的曲线图,正方形环缝为2mm时,它的谐振频率为2.35GHz,得到的最小回波损耗值为-14.56dB,比图4-2在没有进行底板开缝时的回波损耗值小了1.66dB。