4纤维的吸湿性解析
- 格式:pptx
- 大小:999.83 KB
- 文档页数:21
纤维的吸湿性1. 引言纤维是我们日常生活中不可或缺的材料,它们可以用于制作衣物、家具和其他各种用品。
然而,纤维的吸湿性是纤维品质一个重要的性能指标之一。
本文将探讨纤维的吸湿性以及其重要性。
2. 纤维的吸湿性是什么?纤维的吸湿性是指纤维对空气中水汽的吸收能力。
在实际生活中,我们经常可以感受到一些衣物在潮湿的天气中会变得湿润,这正是纤维吸湿的结果。
纤维的吸湿性取决于其化学成分和结构。
3. 纤维吸湿性的重要性3.1 保持舒适纤维的吸湿性可以帮助调节人体的湿度,使人感觉更加舒适。
尤其在夏季高温天气中,具有良好吸湿性的纤维能够帮助人体散发出多余的热量,减轻炎热感。
3.2 防止静电在干燥的环境中,纤维摩擦会产生静电,使衣物或其他物品容易吸附灰尘等杂质。
具有较好吸湿性的纤维可以减少静电的产生,保持物品清洁。
4. 纤维吸湿性测试方法4.1 吸湿率测定通过将一定数量的纤维样品暴露在特定湿度的环境中,测量样品吸收水分的重量变化,计算吸湿率。
4.2 饱和吸湿量测定将纤维样品置于100%相对湿度的环境中,测量其吸收的最大水分量,即饱和吸湿量。
5. 常见具有良好吸湿性的纤维材料5.1 棉纤维棉纤维是一种天然吸湿性能优良的纤维材料,天然棉纤维内部有许多细小的毛细管,可以有效吸收水分。
5.2 麻纤维麻纤维也具有较好的吸湿性能,透气性好,适合夏季穿着。
6. 结论纤维的吸湿性是纤维重要的性能之一,对于衣物的舒适度和质量有着重要的影响。
通过适当的测试方法和选择具有良好吸湿性的纤维材料,可以制作出更加符合人体需求的产品。
7. 参考文献1.Smith, J. (2018). The importance of fiber moisture absorption. TextileJournal, 15(2), 45-56.2.Brown, A. et al. (2019). Testing methods for fiber moisture absorption.Materials Science Review, 28(3), 112-125.以上是关于纤维的吸湿性的文档内容,希望对您有所帮助。
第四章 纤维的吸湿性通常把纤维材料从气态环境中吸着水分的能力称为吸湿性。
对纤维的吸湿现象、作用机理、影响因素、表征方法,以及纤维吸湿后的性状变化给予基本介绍。
第一节 纤维的吸湿及吸湿机理一、纤维的吸湿与吸湿指标1. 回潮率与含水率100G G W G −=× (4-1) 0100G G M G−=× (4-2)其间相互关系为:100100M W M=− 或100100W M W=+ (4-3)2. 标准状态下的回潮率表4-1 标准温湿度及允许误差标准温度(℃) 级别A 类B 类标准相对湿度(%) 1 20±1 27±2 65±2 2 20±2 27±3 65±3 3 20±3 27±565±53. 公定回潮率a k a 0a 100100100100kW W G G G W ++==+ (4-4)多种纤维混合时的公定回潮率可按各自的混合比b i 的加权平均。
nk i i 1/100i W bW ==∑ (4-5)表4-2 几种常见纤维的公定回潮率纤维种类公定回潮率(%)纤维种类公定回潮率(%)纤维种类 公定回潮率(%)原棉 11.1(含水率10) 桑蚕丝 11 聚酯纤维 0.4棉纱 8.5 柞蚕丝 11 锦纶6/66/11 4.5 洗净毛同质 16 亚麻 12 聚丙烯腈纤维 2.0 异质 15 苎麻 16.28 聚乙烯醇纤维 5.0 毛条 干梳 18.25 洋麻 14.94 含氯纤维 0.5 油梳 19 黄麻 生麻 19.05 聚丙烯纤维 1.0 精梳落毛 16 熟麻 14.94 醋酯纤维 7.0 山羊绒 15 大麻 14.94 铜氨纤维 13.0 兔毛15粘胶纤维13玻璃纤维2.54. 平衡回潮率平衡回潮率是指纤维材料在一定大气条件下,吸、放湿作用达到平衡稳态时的回潮率。
二、吸湿等温和等压、等湿线相对湿度/%图4-1 纤维吸湿量-时间曲线图4-2 纤维的吸湿等温等压线图4-3 羊毛和棉的吸湿等湿等压线三、吸湿机理与理论Peirce 理论认为,纤维的吸湿包括直接吸收水分和间接吸收水分,见图4-4。
关于纤维的吸湿性及影响因素导语吸湿性指的是纺织材料从气态环境中吸着水分的能力。
或纺织材料在空气中吸收或放出气态水的能力。
吸湿状态会影响到纤维的性能,纺织工艺,织物舒适性,计重核价等。
纤维的吸湿指标回潮率W: 纺织材料中所含水分重量对纺织材料干重的百分比。
含水率M:纺织材料中所含水分重量对纺织材料湿重的百分比。
|标准状态下的回潮率:纺织材料在标准大气条件下,从吸湿达到平衡时测得的平衡回潮率。
公定回潮率:贸易上为了计重和核价的需要,由国家统一规定的各种纺织材料的回潮率。
以标准回潮率为依据,但不等于标准回潮率。
平衡回潮率:纤维材料在一定大气条件下,吸、放湿作用达到平衡稳态时的回潮率。
吸湿平衡回潮率:纤维吸湿达到相对平衡状态时的回潮率。
放湿平衡回潮率:纤维放湿达到相对平衡状态时的回潮率。
吸放湿等温线吸湿等温线:在一定大气压和温度条件下,纤维材料因吸湿达到的平衡回潮率与大气相对湿度的关系曲线。
放湿等温线:在一定大气压力和温度条件下,纤维材料因放湿达到的平衡回潮率与大气相对湿度的关系曲线。
常用纤维吸湿等温线:1-羊毛 2-黏胶纤维 3-蚕丝 4-棉 5-醋酯纤维6-锦纶 7-腈纶 8-涤纶纤维吸湿机理水分子在纤维中存在方式根据水分子在纤维中存在的方式不同,可分为以下三种一、(1)吸收水:由于纤维中极性基团的极化作用而吸着的水。
吸收水是纤维吸湿的主要原因。
(2)直接吸收水:由于纤维中亲水基团的作用而吸着的水分子。
结合力较强,主要是氢键力,放出热量较多。
(3)间接吸收水:其它被吸着的水分子。
由于水分子的极性再吸着的水分子。
纤维其他物质的亲水基团所吸引的水分子。
结合力较弱,主要是范德华力,放出热量较少。
二、粘着水:纤维因表面能而吸附的水分子。
毛细水喝粘着水属于物理吸着,是范德华力,没有明显的热反应,吸附也比较快。
三、(1)纤维无定形区或纤维集合体纤维间存在空隙,由于毛细管的作用而吸收的水分,与纤维结构和纤维集合体的结构有关。
纤维的吸湿指标及计算2012-05-17 来源: 印染在线纤维材料在大气中吸收或放出气态水的能力称为吸湿性。
一、吸湿平衡大气条件变化,纤维含湿量变化,一定时间后趋于稳定,这时进入纤维中的水分子数量等于从纤维内逸出的水分子数,这种现象称为吸湿平衡,其是一种动态平衡。
吸湿:进入纤维中的水分大于放出的水分。
放湿:进入纤维中的水分小于放出的水分。
二、吸湿指标1.回潮率与含水率(1)回潮率:纺织材料中所含水分重量对纺织材料干重的百分比。
(2)含水率:纺织材料中所含水分重量对纺织材料湿重的百分比。
式中:G—纺织材料湿重;G0—纺织材料干重。
2.平衡回潮率纤维材料在一定的大气条件下,吸、放湿作用达到平衡稳定的回潮率。
3.标准回潮率纺织材料在标准大气条件下放置一段时间后所达到的平衡回潮率。
材料测试必须在此回潮率下进行。
标准大气条件:温度-20℃±1℃;相对湿度-65%±2%4.公定回潮率(Wk)贸易上为了计重和核价的需要,由国家统一规定的各种纺织材料的回潮率。
(纯粹是为工作方便而选定的,接近但不是标准回潮率)。
5.标准重量Gk (公定重量)纺织材料在公定回潮率时的重量叫标准重量,也叫公定重量。
通常所说的,如65/35的涤棉混纺纱,是干重混纺比,即各种纤维的干重占两种纤维总干重的比例。
而两种纤维的实际回潮率不同,混纺纱吸湿后各纤维的湿重不同,故各湿重占混纺纱总湿重的比例不同。
混纺纱干重混纺比折算成湿重混纺比:纤维1:回潮率W1,湿重混比g1,干重混比g0纤维2:回潮率W2,湿重混比100-g1,干重混比100-g0计算公式例:T实际回潮率0.3%,粘胶实际回潮率12%,为使二者干重混纺比为65/35,求涤粘的湿重混纺比。
第4章纤维的吸湿性能3.应用(1)吸湿放热与保暖性(2)吸湿放热与纺织材料储存六、对电学性质的影响高聚物的特殊分子结构,赋予纤维具有高的电绝缘性能。
??纤维吸湿——绝缘性能下降,介电系数上升,介电损耗因素增大。
使纤维的比电阻下降,减缓静电现象。
??应用:电阻式和电容式电气测湿仪。
七、对光学性质的影响吸湿会影响纤维的折射、反射、透射和吸收性质,进而影响纤维的光泽、颜色,以及光降解和老化性能。
当纤维的回潮率升高时,纤维的光折射率、透射率和光泽会下降,光的吸收会增加,颜色会变深,光降解和老化会加剧等。
原因:由于水分子进人纤维后,引起分子结构作某些改变造成的。
综上所述,纤维的吸湿有利有弊,但赋予纤维适当吸湿利远大于弊,因为这可以提供使用的舒适性和抗静电性。
而分析吸湿后纤维性质的改变,也正是发扬吸湿优势,克服吸湿缺陷,获得更理想的纤维材料,或成为改进加工工艺的依据。
第四节?吸湿性的测试方法吸湿性的测试方法:分为直接法与间接法两大类。
一.直接测定法?——称得湿重Ga,去除水分后得干重G0,根据定义求得W。
?具体的测试方法有:1.烘箱法2.红外线辐射法3.高频加热干燥法4.吸湿剂干燥法5.真空干燥法烘箱法测试1.原理2.取样3.确定试验参数4.试验步骤优点:检验历史长,测得的结果比较稳定;缺点:耗电量大,时间长,并易损坏试样;纤维内的一些油脂或其他物质的挥发,影响测定结果的真实性;??干重不是绝对的干重。
红外线辐射法利用红外线灯泡发出来的红外线照射试样,能量高,穿透力强,使材料内部在短时间内达到很高的温度,将水分去除。
一般情况下只要5~20min即可烘干。
优点:烘干迅速、耗电量省、设备简单;缺点:试验结果不稳定(温度无法控制,能量分布也不均匀,局部过热而使材料烘焦变质)高频加热干燥法——利用高频电磁波在物质内部产生热量以去除水。
?高频介质加热法或电容加热法(频率范围为1~100MHZ);?微波加热法(频率范围是800~3000MHZ)。