02命题逻辑
- 格式:ppt
- 大小:488.50 KB
- 文档页数:26
1.联言命题的翻译推理(1)表现形式:p且q♦联言命题反映的是若干种情况或者性质同时存在(2)常用联结词表示并列关系:且、和、都、既...又...表示递进关系:不但...而且...、甚至、还表示转折关系:虽然...但是...、然而、却联言命题的推理规则:肯定一个联言命题,则可以分别肯定每个支命题,即(p且q)→p,(p且q)→q。
举例说明:在年底评优活动中,小张或小王获得最佳员工奖。
那么:小张获得员工奖→小王没有获得员工奖,小王获得员工奖→小张没有获得员工奖【例题】在一次班会上,老师问大家:“成功的心态应该是怎样的?”郑磊说:“要不断的努力,活到老学到老。
”刘连说:“要保持知足的心态,肯定自己已经取得的成绩”。
老师说:“你们的观点都是好的,结合起来才准确:成功的心态既要不断努力,也要知足常乐”。
根据老师说法不能推出的是()。
A.郑磊和刘连的观点都不全面B.一个具有知足常乐心态的人,可能是具有成功心态的人C.一个具有成功心态的人,必定是具有不断努力心态的人D.不断努力的心态和知足常乐的心态同等重要【解析】“成功的心态既要不断努力,也要知足常乐”可翻译为:成功的心态→努力且知足。
A项,“你们的观点都是好的,结合起来才准确”说明郑磊和刘连的观点都不全面,可以推出,排除;B项,知足→可能有成功的心态,肯定原命题的部分后件,只能得出可能性的前件,故可以推出,排除;C项,成功的心态→努力,肯定原命题的前件,可以得出后件即“努为且知足”,则“努力”这一支命题也必为真,故C项可以推出,排除;D项,题干中并未提到努力和知足这两种心态的重要性问题,所以不能推出,当选。
2.选言命题的翻译推理(1)相容选言命题♦概念:事物若干种情况或性质中至少有一种情况存在的命题,p 或者q♦翻译:p或q翻译为:-p→q或者-q→p♦常用关联词:...或者...、可能...也可能...、也许...也许、至少有一个【例题】苗苗是某少儿舞蹈班的学生,她喜欢民族舞。
第二章命题逻辑§2.2 主要解题方法2.2.1 证明命题公式恒真或恒假主要有如下方法:方法一.真值表方法。
即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。
真值表法比较烦琐,但只要认真仔细,不会出错。
例2.2.1 说明 G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。
解:该公式的真值表如下:表2.2.1由于表2.2.1中对应公式G所在列的每一取值全为1,故G恒真。
方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。
例2.2.2 说明 G= ((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)是恒真、恒假还是可满足。
解:由(P→R) ∨⌝ R=⌝P∨ R∨⌝ R=1,以及⌝ (Q→P) ∧ P= ⌝(⌝Q∨ P)∧ P = Q∧⌝ P∧ P=0知,((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)=0,故G 恒假。
方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。
方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。
例子参见书中例2.4.3。
方法五. 注意到公式G蕴涵公式H的充要条件是:公式G→H是恒真的;公式G,H等价的充要条件是:公式G↔H是恒真的,因此,如果待考查公式是G→H型的,可将证明G→H 是恒真的转化为证明G蕴涵H;如果待考查公式是G↔H型的,可将证明G↔H是恒真的转化为证明G和H彼此相蕴涵。
命题逻辑的语法与语法规则命题逻辑是逻辑学的一个分支,主要研究命题之间的关系和推理规则。
在命题逻辑中,逻辑语法和语法规则是非常重要的概念,它们帮助我们理解命题逻辑的基本结构和操作方式。
本文就命题逻辑的语法与语法规则展开讨论。
一、命题逻辑的基本要素在命题逻辑中,有几个基本要素需要明确,它们是命题、变元、逻辑符号和逻辑连接词。
下面分别介绍这些要素。
1. 命题命题是对某个陈述陈述的真假性进行判断的陈述句。
在命题逻辑中,命题是逻辑推理的基本单位,用大写字母P、Q、R等表示。
例如,命题P可以表示"今天天晴",命题Q可以表示"明天下雨"。
2. 变元变元是命题逻辑中的占位符,可以代表任意的命题。
通常用小写字母p、q、r等表示。
变元与具体的命题不同,它只表示一个抽象的命题。
例如,使用变元p表示"今天天晴或明天下雨",使用变元q表示"明天天晴"。
3. 逻辑符号逻辑符号是命题逻辑中的符号表示,用来表示逻辑操作和连接关系。
常见的逻辑符号有非(¬)、合取(∧)、析取(∨)、蕴含(→)和等价(↔)等。
4. 逻辑连接词逻辑连接词是用来连接命题的逻辑符号。
常见的逻辑连接词有非(不)、且(并且)、或(或者)、如果...则...和当且仅当等。
它们分别对应着逻辑符号¬、∧、∨、→和↔。
二、命题逻辑的语法规则命题逻辑中的语法规则规定了命题如何通过逻辑连接词进行组合,从而构成复杂命题。
下面介绍几个常见的语法规则。
1. 合取的交换律和结合律合取的交换律指的是∧连接的命题可以交换位置,不改变命题的真值。
例如,对于命题P、Q和R,有P∧(Q∧R)等价于(Q∧R)∧P。
合取的结合律指的是多个命题合取时,可以任意改变结合的先后次序,不改变命题的真值。
例如,对于命题P、Q和R,有(P∧Q)∧R等价于P∧(Q∧R)。
2. 析取的交换律和结合律析取的交换律指的是∨连接的命题可以交换位置,不改变命题的真值。
【热点聚焦】常用逻辑用语主要从三个方面考查,分别为充分必要条件的判断、充要条件的探求、由充分条件和必要条件探求参数的取值范围以及全称量词与存在量词.由于充要条件知识载体丰富,因此题目往往具有一定综合性.【重点知识回眸】一、充要条件1.充分条件、必要条件与充要条件的概念p⇒q p是q的充分条件,q是p的必要条件p⇒q,且q p p是q的充分不必要条件p q,且q⇒p p是q的必要不充分条件p⇔q p是q的充要条件p q,且q p p是q的既不充分也不必要条件提醒:A是B的充分不必要条件是指:A⇒B且B A,A的充分不必要条件是B是指:B⇒A且A B,弄清它们区别的关键是分清谁是条件,谁是结论.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于q是p的充分不必要条件.其他情况依次类推.3.充分、必要条件与集合的子集之间的关系设A={x|p(x)},B={x|q(x)}.(1)若A⊆B,则p是q的充分条件,q是p的必要条件.(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若A=B,则p是q的充要条件.二、全称量词和存在量词1.全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.2.存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含有一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x0∈M,p(x0)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0)∀x∈M,p(x)提醒:含有一个量词的命题的否定的规律是“改量词,否结论”. 三、简单的逻辑联结词【新教材地区不含此内容!】 1.命题中的或、且、非叫做逻辑联结词. 2.命题p 且q 、p 或q 、非p 的真假判断pqp 且q p 或q 非p真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假假真3.提醒:“命题的否定”与“(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.4.含有逻辑联结词的命题真假的判断规律(1)p ∨q :“有真则真,全假才假”,即p ,q 中只要有一个真命题,则p ∨q 为真命题,只有p ,q 都是假命题时,p ∨q 才是假命题.(2)p ∧q :“有假则假,全真才真”,即p ,q 中只要有一个假命题,则p ∧q 为假命题,只有p ,q 都是真命题时,p ∧q 才是真命题. (3) p : p 与p 的真假相反.【典型考题解析】热点一 充分、必要条件的判定【典例1】(2022·天津·高考真题) “x 为整数”是“21x +为整数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不允分也不必要条件【典例2】(2022·浙江·高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【典例3】(2019·天津·高考真题(文))设x ∈R ,则“05x <<”是“11x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【典例4】(2018·北京·高考真题(理))设向量,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 【规律方法】充要条件的三种判断方法:(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据由p ,q 成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题. 热点二 充分条件、必要条件的探求与应用【典例5】(2023·全国·高三专题练习)“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m >B .14m <C .1m <D . 1m【典例6】(2017·上海·高考真题)已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A .0a ≥B .0b ≤C .0cD .20a b c -+=【典例7】【多选题】(2023·全国·高三专题练习)“关于x 的不等式220x ax a -+> 对R x ∀∈恒成立”的一个必要不充分条件是( ) A .01a << B .01a ≤≤C .103a <<D .0a ≥【总结提升】充分、必要条件的探求方法(与范围有关)先求使结论成立的充要条件,然后根据“以小推大”的方法确定符合题意的条件. 热点三 利用充分、必要条件求参数的取值范围【典例8】(2023·全国·高三专题练习)若“2340x x -->”是“223100x ax a -->”的必要不充分条件,则实数a 的取值范围是_________. 【总结提升】利用充要条件求参数的两个关注点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍. 热点四 全称命题、特称命题的否定与真假判断【典例9】(2020·山东·高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x >D .x R ∀∈,20x ≥【典例10】(2016·浙江·高考真题(理))命题“*,x R n N ∀∈∃∈,使得2n x ≥”的否定形式是 A .*,x R n N ∀∈∃∈,使得2n x < B .*,x R n N ∀∈∀∈,使得2n x < C .*,x R n N ∃∈∃∈,使得2n x <D .*,x R n N ∃∈∀∈,使得2n x <【典例11】(2022·全国·高三专题练习)已知命题p :0x R ∃∈,01x =-或02x =,则( ) A .p ⌝:x R ∀∈,1x ≠-或2x ≠ B .p ⌝:x R ∀∈,1x ≠-且2x ≠ C .p ⌝:x R ∀∈,1x =-且2x =D .p ⌝:0x R ∃∉,01x =-或02x =【典例12】(2021·全国·高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【典例13】(2023·全国·高三专题练习)已知命题p :[]21,2,1x x a ∀∈+≥,命题q :[]1,1x ∃∈-,使得210x a +->成立,若p 是真命题,q 是假命题,则实数a 的取值范围为 _____. 【总结提升】1.全称命题与特称命题的否定(1)改量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.(2)否结论:对原命题的结论进行否定. 2.全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题 真 所有对象使命题真 否定为假 假 存在一个对象使命题假 否定为真 特称命题真存在一个对象使命题真否定为假3.根据全(特)称命题的真假求参数的思路与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.【精选精练】一、单选题1.(2020·山东·高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2023·全国·高三专题练习)已知命题p :∀x >0,总有(x +1)ln x >1,则¬p 为( ) A .∃x 0≤0,使得(x 0+1)ln x 0≤1 B .∃x 0>0,使得(x 0+1)ln x 0≤1 C .∃x 0>0,总有(x 0+1)ln x 0≤1 D .∃x 0≤0,总有(x 0+1)ln x 0≤13.(2023·全国·高三专题练习)已知()sin f x x x =-,命题P : 0,2x π⎛⎫∀∈ ⎪⎝⎭,()0f x <,则( )A .P 是假命题,()0,02P x f x π⎛⎫∀∈≥ ⎪⎝⎭¬:,B .P 是假命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,C .P 是真命题,()0,02P x f x π⎛⎫∀∈ ⎪⎝⎭¬:,>D .P 是真命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,4.(2021·天津·高考真题)已知a ∈R ,则“6a >”是“236a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(2021·北京·高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6.(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件7.(2021·全国·高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.(2020·浙江·高考真题)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.(2017·山东·高考真题(文))已知命题p :x R ∃∈,210x x -+≥;命题q :若22a b <,则.a b <下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝11.(2021·陕西·西安中学高三期中)已知命题“R x ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .(,1)-∞- B .(1,3)- C .(3,)-+∞D .(3,1)-12.(2023·全国·高三专题练习)“2log (1)0x +<”成立的一个必要而不充分条件是( ) A .112x -<<-B .0x >C .10x -<<D .0x <二、多选题13.(2023·全国·高三专题练习)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( ) A .8- B .5- C .1 D .4三、填空题14.(2018·北京·高考真题(理))能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.15.(2023·全国·高三专题练习)若“对任意实数02,π⎡⎤∈⎢⎥⎣⎦x ,sin ≤x m ”是真命题,则实数m 的最小值为__.16.(2023·全国·高三专题练习)若命题“∃x ∈R ,使得x 2﹣(a +1)x +4≤0”为假命题,则实数a 的取值范围为__.17.(2020·全国·高考真题(理))设有下列四个命题: p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝ 四、解答题18.(2023·全国·高三专题练习)已知不等式102x x+≥-的解集为条件p ,关于x 的不等式222310x mx m m +---<(23m >-)的解集为条件q . (1)若p 是q 的充分不必要条件,求实数m 的取值范围; (2)若p 的充分不必要条件是q ,求实数m 的取值范围.。
2.2 命题逻辑的归结2.2.1 命题逻辑基础逻辑可分为经典逻辑和非经典逻辑,其中经典逻辑包括命题逻辑和谓词逻辑。
归结原理是一种主要基于谓词(逻辑)知识表示的推理方法,而命题逻辑是谓词逻辑的基础。
因此,在讨论谓词逻辑之前,先讨论命题逻辑的归结,便于内容上的理解。
本节中,将主要介绍命题逻辑的归结方法,以及有关的一些基础知识和重要概念,如数理逻辑基本公式变形、前束范式、子句集等。
描述事实、事物的状态、关系等性质的文字串,取值为真或假(表示是否成立)的句子称作命题。
命题:非真即假的简单陈述句在命题逻辑里,单元命题是基本的单元或作为不可再分的原子。
下面所列出的是一些基本的数理逻辑公理公式和一些有用的基本定义,如合取范式、子句集,这些公式和定义在归结法的推理过程中是必不可少的,也是归结法的基础,应该熟练掌握。
-数理逻辑的基本定义下面所列的是一些数理逻辑中重要的定义,在后面的分析中要用到:·合取式:p与q,记做p ∧q·析取式:p或q,记做p ∨q·蕴含式:如果p则q,记做p → q·等价式:p当且仅当q,记做p q·若A无成假赋值,则称A为重言式或永真式;·若A无成真赋值,则称A为矛盾式或永假式;·若A至少有一个成真赋值,则称A为可满足的;·析取范式:仅由有限个简单合取式组成的析取式·合取范式:仅由有限个简单析取式组成的合取式-数理逻辑的基本等值式下面这些基本的等式在归结原理实施之前的公式转化过程中是非常重要的。
只有将逻辑公式正确转换成为归结原理要求的范式,才能够保证归结的正常进行。
·交换律:p∨q q ∨p ;p ∧q q ∧p·结合律:(p∨q) ∨r p∨(q ∨r);(p ∧q) ∧r p ∧(q ∧r)·分配律:p∨(q ∧r) (p∨q)∧(p ∨r) ;p ∧(q ∨r) (p ∧q) ∨(p ∧r)·双重否定律:p ~~p·等幂律:p p∨p;p p∧p·摩根律: ~(p∨q) ~p ∧~q ;~(p ∧q) ~p ∨~q·吸收律: p∨(p∧q ) p ;p ∧(p∨q ) p·同一律: p∨0 p ;p∧1 p·零律:p∨1 1p∧0 0·排中律:p∨~p 1·矛盾律:p∧~p 0·蕴含等值式:p → q ~p∨q·等价等值式:p q (p → q)∧(q → p)·假言易位式: p → q ~p → ~q·等价否定等值式:p q ~p~q·归谬论:(p → q)∧(p → ~q) ~p-合取范式范式:范式是公式的标准形式,公式往往需要变换为同它等价的范式,以便对它们作一般性的处理。