02命题逻辑
- 格式:ppt
- 大小:488.50 KB
- 文档页数:26
1.联言命题的翻译推理(1)表现形式:p且q♦联言命题反映的是若干种情况或者性质同时存在(2)常用联结词表示并列关系:且、和、都、既...又...表示递进关系:不但...而且...、甚至、还表示转折关系:虽然...但是...、然而、却联言命题的推理规则:肯定一个联言命题,则可以分别肯定每个支命题,即(p且q)→p,(p且q)→q。
举例说明:在年底评优活动中,小张或小王获得最佳员工奖。
那么:小张获得员工奖→小王没有获得员工奖,小王获得员工奖→小张没有获得员工奖【例题】在一次班会上,老师问大家:“成功的心态应该是怎样的?”郑磊说:“要不断的努力,活到老学到老。
”刘连说:“要保持知足的心态,肯定自己已经取得的成绩”。
老师说:“你们的观点都是好的,结合起来才准确:成功的心态既要不断努力,也要知足常乐”。
根据老师说法不能推出的是()。
A.郑磊和刘连的观点都不全面B.一个具有知足常乐心态的人,可能是具有成功心态的人C.一个具有成功心态的人,必定是具有不断努力心态的人D.不断努力的心态和知足常乐的心态同等重要【解析】“成功的心态既要不断努力,也要知足常乐”可翻译为:成功的心态→努力且知足。
A项,“你们的观点都是好的,结合起来才准确”说明郑磊和刘连的观点都不全面,可以推出,排除;B项,知足→可能有成功的心态,肯定原命题的部分后件,只能得出可能性的前件,故可以推出,排除;C项,成功的心态→努力,肯定原命题的前件,可以得出后件即“努为且知足”,则“努力”这一支命题也必为真,故C项可以推出,排除;D项,题干中并未提到努力和知足这两种心态的重要性问题,所以不能推出,当选。
2.选言命题的翻译推理(1)相容选言命题♦概念:事物若干种情况或性质中至少有一种情况存在的命题,p 或者q♦翻译:p或q翻译为:-p→q或者-q→p♦常用关联词:...或者...、可能...也可能...、也许...也许、至少有一个【例题】苗苗是某少儿舞蹈班的学生,她喜欢民族舞。
第二章命题逻辑§2.2 主要解题方法2.2.1 证明命题公式恒真或恒假主要有如下方法:方法一.真值表方法。
即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。
真值表法比较烦琐,但只要认真仔细,不会出错。
例2.2.1 说明 G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。
解:该公式的真值表如下:表2.2.1由于表2.2.1中对应公式G所在列的每一取值全为1,故G恒真。
方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。
例2.2.2 说明 G= ((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)是恒真、恒假还是可满足。
解:由(P→R) ∨⌝ R=⌝P∨ R∨⌝ R=1,以及⌝ (Q→P) ∧ P= ⌝(⌝Q∨ P)∧ P = Q∧⌝ P∧ P=0知,((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)=0,故G 恒假。
方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。
方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。
例子参见书中例2.4.3。
方法五. 注意到公式G蕴涵公式H的充要条件是:公式G→H是恒真的;公式G,H等价的充要条件是:公式G↔H是恒真的,因此,如果待考查公式是G→H型的,可将证明G→H 是恒真的转化为证明G蕴涵H;如果待考查公式是G↔H型的,可将证明G↔H是恒真的转化为证明G和H彼此相蕴涵。
命题逻辑的语法与语法规则命题逻辑是逻辑学的一个分支,主要研究命题之间的关系和推理规则。
在命题逻辑中,逻辑语法和语法规则是非常重要的概念,它们帮助我们理解命题逻辑的基本结构和操作方式。
本文就命题逻辑的语法与语法规则展开讨论。
一、命题逻辑的基本要素在命题逻辑中,有几个基本要素需要明确,它们是命题、变元、逻辑符号和逻辑连接词。
下面分别介绍这些要素。
1. 命题命题是对某个陈述陈述的真假性进行判断的陈述句。
在命题逻辑中,命题是逻辑推理的基本单位,用大写字母P、Q、R等表示。
例如,命题P可以表示"今天天晴",命题Q可以表示"明天下雨"。
2. 变元变元是命题逻辑中的占位符,可以代表任意的命题。
通常用小写字母p、q、r等表示。
变元与具体的命题不同,它只表示一个抽象的命题。
例如,使用变元p表示"今天天晴或明天下雨",使用变元q表示"明天天晴"。
3. 逻辑符号逻辑符号是命题逻辑中的符号表示,用来表示逻辑操作和连接关系。
常见的逻辑符号有非(¬)、合取(∧)、析取(∨)、蕴含(→)和等价(↔)等。
4. 逻辑连接词逻辑连接词是用来连接命题的逻辑符号。
常见的逻辑连接词有非(不)、且(并且)、或(或者)、如果...则...和当且仅当等。
它们分别对应着逻辑符号¬、∧、∨、→和↔。
二、命题逻辑的语法规则命题逻辑中的语法规则规定了命题如何通过逻辑连接词进行组合,从而构成复杂命题。
下面介绍几个常见的语法规则。
1. 合取的交换律和结合律合取的交换律指的是∧连接的命题可以交换位置,不改变命题的真值。
例如,对于命题P、Q和R,有P∧(Q∧R)等价于(Q∧R)∧P。
合取的结合律指的是多个命题合取时,可以任意改变结合的先后次序,不改变命题的真值。
例如,对于命题P、Q和R,有(P∧Q)∧R等价于P∧(Q∧R)。
2. 析取的交换律和结合律析取的交换律指的是∨连接的命题可以交换位置,不改变命题的真值。
【热点聚焦】常用逻辑用语主要从三个方面考查,分别为充分必要条件的判断、充要条件的探求、由充分条件和必要条件探求参数的取值范围以及全称量词与存在量词.由于充要条件知识载体丰富,因此题目往往具有一定综合性.【重点知识回眸】一、充要条件1.充分条件、必要条件与充要条件的概念p⇒q p是q的充分条件,q是p的必要条件p⇒q,且q p p是q的充分不必要条件p q,且q⇒p p是q的必要不充分条件p⇔q p是q的充要条件p q,且q p p是q的既不充分也不必要条件提醒:A是B的充分不必要条件是指:A⇒B且B A,A的充分不必要条件是B是指:B⇒A且A B,弄清它们区别的关键是分清谁是条件,谁是结论.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于q是p的充分不必要条件.其他情况依次类推.3.充分、必要条件与集合的子集之间的关系设A={x|p(x)},B={x|q(x)}.(1)若A⊆B,则p是q的充分条件,q是p的必要条件.(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若A=B,则p是q的充要条件.二、全称量词和存在量词1.全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.2.存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含有一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x0∈M,p(x0)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0)∀x∈M,p(x)提醒:含有一个量词的命题的否定的规律是“改量词,否结论”. 三、简单的逻辑联结词【新教材地区不含此内容!】 1.命题中的或、且、非叫做逻辑联结词. 2.命题p 且q 、p 或q 、非p 的真假判断pqp 且q p 或q 非p真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假假真3.提醒:“命题的否定”与“(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.4.含有逻辑联结词的命题真假的判断规律(1)p ∨q :“有真则真,全假才假”,即p ,q 中只要有一个真命题,则p ∨q 为真命题,只有p ,q 都是假命题时,p ∨q 才是假命题.(2)p ∧q :“有假则假,全真才真”,即p ,q 中只要有一个假命题,则p ∧q 为假命题,只有p ,q 都是真命题时,p ∧q 才是真命题. (3) p : p 与p 的真假相反.【典型考题解析】热点一 充分、必要条件的判定【典例1】(2022·天津·高考真题) “x 为整数”是“21x +为整数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不允分也不必要条件【典例2】(2022·浙江·高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【典例3】(2019·天津·高考真题(文))设x ∈R ,则“05x <<”是“11x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【典例4】(2018·北京·高考真题(理))设向量,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 【规律方法】充要条件的三种判断方法:(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据由p ,q 成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题. 热点二 充分条件、必要条件的探求与应用【典例5】(2023·全国·高三专题练习)“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m >B .14m <C .1m <D . 1m【典例6】(2017·上海·高考真题)已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A .0a ≥B .0b ≤C .0cD .20a b c -+=【典例7】【多选题】(2023·全国·高三专题练习)“关于x 的不等式220x ax a -+> 对R x ∀∈恒成立”的一个必要不充分条件是( ) A .01a << B .01a ≤≤C .103a <<D .0a ≥【总结提升】充分、必要条件的探求方法(与范围有关)先求使结论成立的充要条件,然后根据“以小推大”的方法确定符合题意的条件. 热点三 利用充分、必要条件求参数的取值范围【典例8】(2023·全国·高三专题练习)若“2340x x -->”是“223100x ax a -->”的必要不充分条件,则实数a 的取值范围是_________. 【总结提升】利用充要条件求参数的两个关注点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍. 热点四 全称命题、特称命题的否定与真假判断【典例9】(2020·山东·高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x >D .x R ∀∈,20x ≥【典例10】(2016·浙江·高考真题(理))命题“*,x R n N ∀∈∃∈,使得2n x ≥”的否定形式是 A .*,x R n N ∀∈∃∈,使得2n x < B .*,x R n N ∀∈∀∈,使得2n x < C .*,x R n N ∃∈∃∈,使得2n x <D .*,x R n N ∃∈∀∈,使得2n x <【典例11】(2022·全国·高三专题练习)已知命题p :0x R ∃∈,01x =-或02x =,则( ) A .p ⌝:x R ∀∈,1x ≠-或2x ≠ B .p ⌝:x R ∀∈,1x ≠-且2x ≠ C .p ⌝:x R ∀∈,1x =-且2x =D .p ⌝:0x R ∃∉,01x =-或02x =【典例12】(2021·全国·高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【典例13】(2023·全国·高三专题练习)已知命题p :[]21,2,1x x a ∀∈+≥,命题q :[]1,1x ∃∈-,使得210x a +->成立,若p 是真命题,q 是假命题,则实数a 的取值范围为 _____. 【总结提升】1.全称命题与特称命题的否定(1)改量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.(2)否结论:对原命题的结论进行否定. 2.全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题 真 所有对象使命题真 否定为假 假 存在一个对象使命题假 否定为真 特称命题真存在一个对象使命题真否定为假3.根据全(特)称命题的真假求参数的思路与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.【精选精练】一、单选题1.(2020·山东·高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2023·全国·高三专题练习)已知命题p :∀x >0,总有(x +1)ln x >1,则¬p 为( ) A .∃x 0≤0,使得(x 0+1)ln x 0≤1 B .∃x 0>0,使得(x 0+1)ln x 0≤1 C .∃x 0>0,总有(x 0+1)ln x 0≤1 D .∃x 0≤0,总有(x 0+1)ln x 0≤13.(2023·全国·高三专题练习)已知()sin f x x x =-,命题P : 0,2x π⎛⎫∀∈ ⎪⎝⎭,()0f x <,则( )A .P 是假命题,()0,02P x f x π⎛⎫∀∈≥ ⎪⎝⎭¬:,B .P 是假命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,C .P 是真命题,()0,02P x f x π⎛⎫∀∈ ⎪⎝⎭¬:,>D .P 是真命题,()000,02P x f x π⎛⎫∃∈≥ ⎪⎝⎭¬:,4.(2021·天津·高考真题)已知a ∈R ,则“6a >”是“236a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(2021·北京·高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6.(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件7.(2021·全国·高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.(2020·浙江·高考真题)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.(2017·山东·高考真题(文))已知命题p :x R ∃∈,210x x -+≥;命题q :若22a b <,则.a b <下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝11.(2021·陕西·西安中学高三期中)已知命题“R x ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .(,1)-∞- B .(1,3)- C .(3,)-+∞D .(3,1)-12.(2023·全国·高三专题练习)“2log (1)0x +<”成立的一个必要而不充分条件是( ) A .112x -<<-B .0x >C .10x -<<D .0x <二、多选题13.(2023·全国·高三专题练习)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( ) A .8- B .5- C .1 D .4三、填空题14.(2018·北京·高考真题(理))能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.15.(2023·全国·高三专题练习)若“对任意实数02,π⎡⎤∈⎢⎥⎣⎦x ,sin ≤x m ”是真命题,则实数m 的最小值为__.16.(2023·全国·高三专题练习)若命题“∃x ∈R ,使得x 2﹣(a +1)x +4≤0”为假命题,则实数a 的取值范围为__.17.(2020·全国·高考真题(理))设有下列四个命题: p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝ 四、解答题18.(2023·全国·高三专题练习)已知不等式102x x+≥-的解集为条件p ,关于x 的不等式222310x mx m m +---<(23m >-)的解集为条件q . (1)若p 是q 的充分不必要条件,求实数m 的取值范围; (2)若p 的充分不必要条件是q ,求实数m 的取值范围.。
2.2 命题逻辑的归结2.2.1 命题逻辑基础逻辑可分为经典逻辑和非经典逻辑,其中经典逻辑包括命题逻辑和谓词逻辑。
归结原理是一种主要基于谓词(逻辑)知识表示的推理方法,而命题逻辑是谓词逻辑的基础。
因此,在讨论谓词逻辑之前,先讨论命题逻辑的归结,便于内容上的理解。
本节中,将主要介绍命题逻辑的归结方法,以及有关的一些基础知识和重要概念,如数理逻辑基本公式变形、前束范式、子句集等。
描述事实、事物的状态、关系等性质的文字串,取值为真或假(表示是否成立)的句子称作命题。
命题:非真即假的简单陈述句在命题逻辑里,单元命题是基本的单元或作为不可再分的原子。
下面所列出的是一些基本的数理逻辑公理公式和一些有用的基本定义,如合取范式、子句集,这些公式和定义在归结法的推理过程中是必不可少的,也是归结法的基础,应该熟练掌握。
-数理逻辑的基本定义下面所列的是一些数理逻辑中重要的定义,在后面的分析中要用到:·合取式:p与q,记做p ∧q·析取式:p或q,记做p ∨q·蕴含式:如果p则q,记做p → q·等价式:p当且仅当q,记做p q·若A无成假赋值,则称A为重言式或永真式;·若A无成真赋值,则称A为矛盾式或永假式;·若A至少有一个成真赋值,则称A为可满足的;·析取范式:仅由有限个简单合取式组成的析取式·合取范式:仅由有限个简单析取式组成的合取式-数理逻辑的基本等值式下面这些基本的等式在归结原理实施之前的公式转化过程中是非常重要的。
只有将逻辑公式正确转换成为归结原理要求的范式,才能够保证归结的正常进行。
·交换律:p∨q q ∨p ;p ∧q q ∧p·结合律:(p∨q) ∨r p∨(q ∨r);(p ∧q) ∧r p ∧(q ∧r)·分配律:p∨(q ∧r) (p∨q)∧(p ∨r) ;p ∧(q ∨r) (p ∧q) ∨(p ∧r)·双重否定律:p ~~p·等幂律:p p∨p;p p∧p·摩根律: ~(p∨q) ~p ∧~q ;~(p ∧q) ~p ∨~q·吸收律: p∨(p∧q ) p ;p ∧(p∨q ) p·同一律: p∨0 p ;p∧1 p·零律:p∨1 1p∧0 0·排中律:p∨~p 1·矛盾律:p∧~p 0·蕴含等值式:p → q ~p∨q·等价等值式:p q (p → q)∧(q → p)·假言易位式: p → q ~p → ~q·等价否定等值式:p q ~p~q·归谬论:(p → q)∧(p → ~q) ~p-合取范式范式:范式是公式的标准形式,公式往往需要变换为同它等价的范式,以便对它们作一般性的处理。
专题02 常用逻辑用语【考点预测】一、充分条件、必要条件、充要条件 1.定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件. 2.从逻辑推理关系上看 (1)若p q ⇒且q p ,则p 是q 的充分不必要条件;(2)若pq 且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价); (4)若pq 且q p ,则p 不是q 的充分条件,也不是q 的必要条件.对充分和必要条件的理解和判断,要搞清楚其定义的实质:p q ⇒,则p 是q 的充分条件,同时q 是p 的必要条件.所谓“充分”是指只要p 成立,q 就成立;所谓“必要”是指要使得p 成立,必须要q 成立(即如果q 不成立,则p 肯定不成立). 二.全称量词与存在童词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题). 三.含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝. (2)存在量词命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝. 注:全称、存在量词命题的否定是高考常见考点之一.【方法技巧与总结】1.从集合与集合之间的关系上看 设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ;注:关于数集间的充分必要条件满足:“小⇒大”.(2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件; (3)若A B =,则p 与q 互为充要条件. 2.常见的一些词语和它的否定词如下表(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每一个元素x 证明其成立,要判断全称量词命题为假命题,只要能举出集合M 中的一个0x ,使得其不成立即可,这就是通常所说的举一个反例. (2)要判断一个存在量词命题为真命题,只要在限定集合M 中能找到一个0x 使之成立即可,否则这个存在量词命题就是假命题.【题型归纳目录】题型一:充分条件与必要条件的判断 题型二:根据充分必要条件求参数的取值范围 题型三:全称量词命题与存在量词命题的真假 题型四:全称量词命题与存在量词命题的否定 题型五:根据命题的真假求参数的取值范围【典例例题】题型一:充分条件与必要条件的判断例1.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】2,20x x x a ∃∈-+<R ,列出不等式,求出1a <,从而判断出答案.【详解】2,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件. 故选:B例2.(2022·重庆·三模)已知0a >且1a ≠,“函数()x f x a =为增函数”是“函数()1a g x x -=在()0,∞+上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【详解】函数()xf x a =为增函数,则 1a > ,此时10a ->,故函数()1ag x x -=在()0,∞+上单调递增;当()1a g x x -=在()0,∞+上单调递增时, ,10a ->,所以1a >,故()x f x a =为增函数.故选:C例3.(2022·湖北·模拟预测)在等比数列{}n a 中,已知20200a >,则“20212024a a >”是“20222023a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】直接利用等比数列的通项公式及其充分条件,必要条件的定义求解即可. 【详解】∵公比0q ≠,∴20212024a a >,∴420212020a q a q >,∴4q q >,∴()310q q ->,∴()()2110q q q q -++>, ∴()10q q ->,∴01q <<,又∵20222023a a >,∴2320202020>a q a q ,∴23q q >,∴()210q q ->,∴1q <且0q ≠,∴011q q <<⇒<且0q ≠,即“20212024a a >”是“20222023a a >”的充分不必要条件. 故选:A .例4.(2022·山东·德州市教育科学研究院二模)已知m ,n 是两条不重合的直线,α是一个平面,n ⊂α,则“m α⊥”是“m n ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据线面垂直的性质证明充分性成立,由线面垂直的定义判断必要性不成立. 【详解】由线面垂直的性质知,若m α⊥,n ⊂α,则m n ⊥成立,即充分性成立;根据线面垂直的定义,m 必须垂直平面α内的两条相交直线,才有m α⊥,即必要性不成立. 故选:A.例5.(2022·四川·宜宾市教科所三模(理))已知两条直线m ,n 和平面α,则m n ⊥的一个充分条件是( ) A .m α⊥且n α⊥ B .m α∥且n ⊂αC .m α⊥且n ⊂αD .m α∥且n α∥ 【答案】C 【解析】 【分析】根据线面垂直的性质及线面平行的性质,结合充分条件的定义即可得出答案. 【详解】解:对于A ,若m α⊥且n α⊥,则m n ∥,故A 不符题意; 对于B ,若m α∥且n ⊂α,则m 与n 平行或异面,故B 不符题意; 对于C ,若m α⊥且n ⊂α,则m n ⊥,故C 符合题意;对于D ,若m α∥且n α∥,则m 与n 平行、相交或异面,故D 不符题意. 故选:C.(多选题)例6.(2022·山东临沂·二模)已知a ,b ∈R ,则使“1a b +>”成立的一个必要不充分条件是( )A .221a b +>B .||||1a b +>C .221a b +>D .4110b a b++> 【答案】BC 【解析】 【分析】对于A 、D 选项,取特殊值说明既不充分也不必要即可;对于B ,先取特殊值说明不充分,再同时平方证必要即可;对于C ,先取特殊值说明不充分,再结合基本不等式证必要即可; 【详解】对于A ,当1a b ==-时,满足221a b +>,不满足1a b +>,即221a b +>推不出1a b +>,不充分;当13,24a b ==时,满足1a b +>,不满足221a b +>,即1a b +>推不出221a b +>,不必要;A 错误;对于B ,当1a b ==-时,满足||||1a b +>,不满足1a b +>,即||||1a b +>推不出1a b +>,不充分; 当1a b +>时,平方得2221a ab b ++>,又()22222221a b a ab b a ab b +=++≥++>,又||||0a b +>,故||||1a b +>,即1a b +>能推出||||1a b +>,必要;B 正确;对于C ,当0a b 时,满足221a b +>,不满足1a b +>,即221a b +>推不出1a b +>,不充分;当1a b +>时,由20,20a b >>,221a b +≥>>,即1a b +>能推出221a b +>,必要;C 正确; 对于D ,当12a b ==时,满足4110b a b ++>,不满足1a b +>,即4110b a b++>推不出1a b +>,不充分; 当2,1a b ==时,满足1a b +>,不满足4110b a b ++>,即1a b +>推不出4110b a b++>,不必要;D 错误. 故选:BC.【方法技巧与总结】1.要明确推出的含义,是p 成立q 一定成立才能叫推出而不是有可能成立.2.充分必要条件在面对集合问题时,一定是小集合推出大集合,而大集合推不出小集合.3.充分必要条件考察范围广,失分率高,一定要注意各个知识面的培养.题型二:根据充分必要条件求参数的取值范围例7.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________. 【答案】[2,)+∞ 【解析】 【分析】先确定22x x >的充要条件,再由充分不必要条件的定义求解, 【详解】22x x >等价于0x <或2x >,而且“x a >”是“22x x >”的充分不必要条件,则2a ≥. 故答案为:[2,)+∞.例8.(2022·浙江·高三专题练习)若2()4x a -<成立的一个充分不必要条件是1102x+≤-,则实数a 的取值范围为( ) A .(,4]-∞ B .[1,4]C .(1,4)D .(1,4]【答案】D 【解析】 【分析】解一元二次不等式、分式不等式求得题设条件为真时对应x 的范围,再根据条件的充分不必要关系求参数a 的取值范围. 【详解】由2()4x a -<,可得:22a x a -<<+; 由131022xx x -+=≤--,则()()23020x x x ⎧--≤⎨-≠⎩,可得23x <≤;∵2()4x a -<成立的一个充分不必要条件是1102x+≤-, ∴2223a a -≤⎧⎨+>⎩,可得14a <≤.故选:D.例9.(2022·山西晋中·二模(理))已知条件p :11x -<<,q :x m >,若p 是q 的充分不必要条件,则实数m 的取值范围是( ) A .[)1,-+∞ B .(),1-∞- C .()1,0- D .(],1-∞-【答案】D 【解析】 【分析】根据充要条件与集合的包含关系可得. 【详解】因为p 是q 的充分不必要条件,所以{11}xx -<<∣ {}x x m >∣,即1m ≤-. 故选:D.例10.(2022·河南平顶山·高三期末(文))若1102x+≤-是()24x a -<成立的一个充分不必要条件,则实数a 的取值范围为( ) A .(],4∞- B .[]1,4C .()1,4D .(]1,4【答案】D 【解析】 【分析】理解充分不必要条件的含义;解不等式;理解解集间的关系. 【详解】 由题意可得()211042x a x+≤⇒-<- ,而 ()()230131********x x x x x x x --≤⎧-⎪+≤⇔≤⇔⇔<≤⎨---≠⎪⎩()242222x a x a a x a -<⇔-<-<⇔-<<+则2232a a -≤⎧⎨<+⎩ ,故14a <≤, 故选:D例11.(2022·全国·高三专题练习(文))若关于x 的不等式1x a -<成立的充分条件是04x <<,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,1) C .(3,+∞) D .[3,+∞)【答案】D 【解析】 【分析】根据充分条件列不等式,由此求得a 的取值范围. 【详解】1x a -<成立的充分条件是04x <<,则0a >,111x a a x a -<⇒-<<+,所以10314a a a -≤⎧⇒≥⎨+≥⎩. 故选:D例12.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________. 【答案】[2,)+∞ 【解析】【分析】先确定22x x >的充要条件,再由充分不必要条件的定义求解, 【详解】22x x >等价于0x <或2x >,而且“x a >”是“22x x >”的充分不必要条件,则2a ≥. 故答案为:[2,)+∞.例13.(2022·重庆·高三阶段练习)若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________. 【答案】2a ≥ 【解析】 【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解. 【详解】 由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立; 当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥ ∴实数a 的取值范围是2a ≥. 故答案为:2a ≥.例14.(2022·全国·高三专题练习(文))已知集合233|1,,224A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,{}2|1B x x m =+≥.若“x A ∈”是“x B ∈”的充分条件,则实数m 的取值范围为________. 【答案】33,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】 【分析】求函数的值域求得集合A ,根据“x A ∈”是“x B ∈”的充分条件列不等式,由此求得m 的取值范围. 【详解】函数2312y x x =-+的对称轴为34x =,开口向上,所以函数2312y x x =-+在3,24⎡⎤⎢⎥⎣⎦上递增,当34x =时,min 716y =;当2x =时,max 2y =.所以7,216A ⎡⎤=⎢⎥⎣⎦.{}{}22|1|1B x x m x x m =+≥=≥-,由于“x A ∈”是“x B ∈”的充分条件,所以27116m -≤,2916m ≥, 解得34m ≤-或34m ≥,所以m 的取值范围是33,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭.故答案为:33,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭例15.(2022·全国·高三专题练习)已知函数()f x =A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ;(2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.【答案】(1)1(,][3,)2-∞-⋃+∞;(2)(,2]-∞-. 【解析】 【分析】(1)求对数复合函数定义域、解一元二次不等式求出集合A 和B ,利用集合的并补运算求()A B R . (2)解含参一元二次不等式求集合B ,根据充分条件有A ⊆B ,列不等式求m 的范围即可. (1)由题设40210x x ->⎧⎨+>⎩得:142x -<<,即函数的定义域A =1(,4)2-,则R1(,][4,)2A =-∞-⋃+∞,当m =2时,不等式(4)(3)0x x --≤得:34x ≤≤,即B =[3,4],所以()A B R =1(,][3,)2-∞-⋃+∞.(2)由2()(21)0x m x m --+=得: x =m 2或x =21m -, 又2221(1)0m m m -+=-≥,即221m m ≥-,综上,2()(21)0x m x m --+≤的解集为B =2[21,]m m -,若x ∈A 是x ∈B 的充分条件,则A ⊆B ,即241212m m ⎧≥⎪⎨-≤-⎪⎩,得:2m ≤-,所以实数m 的取值范围是(,2]-∞-.例16.(2022·天津·汉沽一中高三阶段练习)不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B .(1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围. 【答案】(1){}|11A B x x ⋂=-≤<; (2)(][),12,-∞-⋃+∞ (3)(]1,2 【解析】 【分析】(1)分别解出解出集合A ,B ,再求A B ;(2)由A B B ⋃=得到A B ⊆.对m 分类讨论,分0m >, 0m =和0m <三种情况,分别求出m 的范围,即可得到答案;(3)用集合法列不等式组,求出a 的范围. (1) 由5212xx ->+的解集是A ,解得:{}|21A x x =-<<. 当m =1时,22450x mx m --≤可化为2450x x --≤,解得{}|15B x x =-≤≤. 所以{}|11A B x x ⋂=-≤<. (2)因为A B B ⋃=,所以A B ⊆. 由(1)得:{}|21A x x =-<<.当0m >时,由22450x mx m --≤可解得{}|5B x m x m =-≤≤.要使A B ⊆,只需512m m ≥⎧⎨-≤-⎩,解得:2m ≥;当0m =时,由22450x mx m --≤可解得{}0B =.不符合A B ⊆,舍去;当0m <时,由22450x mx m --≤可解得{}|5B x m x m =≤≤-.要使A B ⊆,只需152m m -≥⎧⎨≤-⎩,解得:1m ≤-;所以,1m ≤-或2m ≥.所以实数m 的取值范围为:(][),12,-∞-⋃+∞. (3)设关于x 的不等式22430x ax a -+<(其中>0a )的解集为M ,则(),3M a a =;不等式组2260280x x x x ⎧--≤⎨+->⎩的解集为N ,则(]2,3N =;要使p 是q 的必要不充分条件,只需N M ,即233a a ≤⎧⎨>⎩,解得:12a <≤.即实数a 的取值范围(]1,2.例17.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知条件{}22:4410p A x x ax a =-+-≤∣,条件{}2:20q B xx x =--≤∣.U =R . (1)若1a =,求()UA B ⋂.(2)若q 是p 的必要不充分条件,求a 的取值范围. 【答案】(1)(){12}UA B x x x ⋂=<>∣或(2)10,2⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)首先求出集合,A B ,代入1a =,得出A ,进而利用集合的交集、补集的定义即可求解.(2)由(1)知,得出集合,A B ,再根据q 是p 的必要不充分条件转化为集合A 是集合B 的真子集,即A B ≠⊂即可求解. (1)由224410x ax a -+-≤,得2121a x a -≤≤+,所以{}2121A xa x a =-≤≤+∣, 由220x x --≤,得12x -≤≤,所以{12}B xx =-≤≤∣ 当1a =时,{13}A xx =≤≤∣.所以{12}A B x x ⋂=≤≤∣ 所以(){12}UA B x x x ⋂=<>∣或;(2)由(1)知,{}2121A xa x a =-≤≤+∣,{12}B x x =-≤≤∣, q 是p 的必要不充分条件,A B ≠∴⊂,所以212211a a +≤⎧⎨-≥-⎩,解得102a ≤≤所以实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.【方法技巧与总结】1.集合中推出一定是小集合推大集合,注意包含关系.2.在充分必要条件求解参数取值范围时,要注意端点是否能取到问题,容易出错. 题型三:全称量词命题与存在量词命题的真假例18.(2022·黑龙江齐齐哈尔·三模(理))已知01b a <<<,下列四个命题:①(0,)∀∈+∞x ,x x a b >,②(0,1)x ∀∈,log log a b x x >,③(0,1)x ∃∈,a b x x >,④(0,)x b ∃∈,log x a a x >. 其中是真命题的有( ) A .①③ B .②④ C .①② D .③④【答案】C 【解析】 【分析】作商并结合单调性判断①;作差并结合对数函数性质、对数换底公式判断②;利用指数函数单调性比较判断③;在给定条件下,借助“媒介”数比较判断作答. 【详解】对于①,由01b a <<<得:1a b >,(0,)∀∈+∞x ,01x x x a a a b b b ⎛⎫⎛⎫=>= ⎪ ⎪⎝⎭⎝⎭,则x x a b >,①正确;对于②,(0,1)x ∀∈,log log log log 10x x xx aa b b-=<=,即0log log x x a b <<,则log log a b x x >,②正确; 对于③,函数(01)x y m m =<<在(0,1)上为减函数,而01b a <<<,则a b m m <,即(0,1)x ∀∈,a b x x <,③错误;对于④,当(0,)x b ∈时,1x a <,log log log 1a a a x b a >>=,即log xa a x <,④错误,所以所给命题中,真命题的是①②. 故选:C例19.(2022·江西·二模(理))已知命题1p :存在00x >,使得0044+≤x x ,命题2p :对任意的x ∈R ,都有tan 2x =22tan 1tan xx-,命题3p :存在0x ∈R ,使得003sin 4cos 6+=x x ,其中正确命题的个数是( )A .0B .1C .2D .3【答案】B 【解析】 【分析】取特值可判断1p 和2p ,由辅助角公式化简可判断3p . 【详解】当02x =时,显然1p 成立;当4x π=时,可知2p 不成立;由辅助角得0003sin 4cos 5sin(x )x x ϕ+=+,所以所以003sin 4cos x x +的最大值为5,所以3p 为假. 故选:B例20.(2022·河南·新乡县高中模拟预测(理))已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为( ) A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x > B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x > C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x > D .[],x a b ∀∈,()()f x g x > 【答案】C 【解析】 【分析】先解读选项ABC ,D 选项是12M M >成立的充分不必要条件,再判断得解. 【详解】解:A 选项表述的是()f x 的最小值大于()g x 的最大值; B 选项表述的是()f x 的最小值大于()g x 的最小值;C 选项表述的是()f x 的最大值大于()g x 的最大值成立的充要条件;D 选项是12M M >成立的充分不必要条件. 故选:C例21.(2022·浙江·高三专题练习)下列命题中,真命题为( ) A .存在0x R ∈,使得00x e ≤ B .直线a b ⊥,a ⊂平面α,平面b αβ=,则平面αβ⊥C .224sin (,)sin y x x k k Z xπ=+≠∈最小值为4 D .1a >,1b >是1ab >成立的充分不必要条件 【答案】D 【解析】 【分析】由指数函数x y e =的性质,可判定A 为假命题;利用正四面体,举例判定,可得判定B 为假命题;利用基本不等式和正弦函数的性质,可判定C 为假命题,结合不等式的性质和充分、必要条件的判定方法,可判定D 为真命题.【详解】对于A 中,由指数函数x y e =的性质,可得0x e >恒成立, 所以不存在0x R ∈,使得00x e ≤,所以A 为假命题; 对于B 中,如图所示,在正方体1111ABCD A B C D -中,设平面11A BCD 为平面α,平面ABCD 为平面β,直线1A B 为直线a ,直线BC 为直线b , 此时满足a b ⊥,且a ⊂平面α,平面b αβ=,但平面α与平面β不垂直,所以C 为假命题.对于C 中,由224sin 4sin y x x =+≥=, 当且仅当224sin sin =x x时,即2sin 2x =时,等号成立, 显然2sin 2x =不成立,所以C 为假命题对于D 中,由1,1a b >>,可得1ab >,即充分性成立;反之:例如:1,42a b ==,此时满足1ab >,但1,1a b >>不成立,即必要性不成立,所以1,1a b >>是1ab >的充分不必要条件,所以D 为真命题. 故选:D(多选题)例22.(2022·全国·高三专题练习)下列命题中的真命题是( ) A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x <1 D .∃x ∈R ,tan x =2【答案】ACD 【解析】 【分析】对选项A ,根据指数函数值域即可得到A 正确;对选项B ,当1x =时,不满足题意,故B 错误;对选项C ,根据存在1x =,使得lg 1x <,故C 正确;对选项D ,根据正切函数的值域为R ,即可判断D 正确. 【详解】对选项A ,令1t x =-,2t y =,因为x ∈R ,所以20t y =>,故A 正确; 对选项B ,当1x =时,()210x -=,故B 错误;对选项C ,当1x =时,lg101=<,故存在x ∈R ,lg 1x <,C 正确; 对选项D ,因为tan y x =的值域为R ,所以存在x ∈R ,使得tan 2x =. 故选:ACD例23.(2022·全国·高三专题练习)下列命题中正确的是_____(写出正确命题的序号) (1)[]0,x a b ∃∈,使()()00f x g x >,只需()()max min f x g x >; (2)[],x a b ∀∈,()()f x g x >恒成立,只需()()min 0f x g x ->⎡⎤⎣⎦; (3)[]1,x a b ∀∈,[]2,x c d ∈,()()12f x g x >成立,只需()()min max f x g x >; (4)[]1,x a b ∃∈,[]2,x c d ∈,()()12f x g x >,只需()()min min f x g x >. 【答案】(2)(3) 【解析】 【分析】根据不等式恒成立问题和有解问题逐一判断四个选项的正误即可得正确选项. 【详解】对于(1),[]0,x a b ∃∈,使()()00f x g x >,只需()()max max f x g x >,故(1)错误; 对于(2),[],x a b ∀∈,()()f x g x >恒成立,即()()0f x g x ->恒成立, 应需()()min 0f x g x ->⎡⎤⎣⎦,故(2)正确;对于(3),[]1,x a b ∀∈,[]2,x c d ∈,()()12f x g x >成立, 即需()()min max f x g x >,故(3)正确;对于(4),[]1,x a b ∃∈,[]2,x c d ∈,()()12f x g x >,, 应需()()max min f x g x >,故(4)错误. 综上,正确的命题是(2)(3). 故答案为:(2)(3). 【方法技巧与总结】1.全称量词命题与存在量词命题的真假判断既要通过汉字意思,又要通过数学结论.2.全称量词命题和存在量词命题的真假性判断较为简单,注意细节即可. 题型四:全称量词命题与存在量词命题的否定例24.(2022·四川成都·三模(理))命题“x ∀∈R ,e 20x +>”的否定是( ). A .0x ∃∈R ,0e 20x +≤B .x ∀∈R ,e 20x +≤C .0x ∃∈R ,0e 20x +>D .0x ∀∈R ,0e 20x +<【答案】A 【解析】由全称量词命题的否定可知:“x ∀∈R ,e 20x +>”的否定是“0x ∃∈R ,0e 20x +≤”. 故选:A.例25.(2022·云南昆明·模拟预测(文))已知命题p :*N n ∀∈,22n n +≥,则p ⌝为( ) A .*N n ∀∉,22n n +<B .*N n ∀∈,22n n +<C .*0N n ∃∉,202n n +< D .*0N n ∃∈,202n n +< 【答案】D 【解析】p ⌝:*0N n ∃∈,2002n n +<.故选:D例26.(2022·江西赣州·二模(文))已知命题p :x ∀∈R ,sin cos x x +≥p ⌝为( ) A.x ∀∈R ,sin cos x x +<B .x ∃∉R ,sin cos x x +<C.x ∀∉R ,sin cos x x +<D .x ∃∈R ,sin cos x x +<【答案】D 【解析】命题p :x ∀∈R ,sin cos x x +x ∃∈R ,sin cos x x +< 故选:D .例27.(2022·辽宁·建平县实验中学模拟预测)命题“()00,x ∃∈+∞,00ln 1x x ≥-”的否定是( ) A .()00,x ∃∈+∞,00ln 1x x <- B .()00,x ∃∉+∞,00ln 1x x ≥- C .()0,x ∀∈+∞,ln 1x x <- D .()0,x ∀∉+∞,ln 1x x ≥- 【答案】C 【解析】由存在量词命题的否定知原命题的否定为:()0,x ∀∈+∞,ln 1x x <-. 故选:C.例28.(2022·山东潍坊·二模)十七世纪,数学家费马提出猜想:“对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )A .对任意正整数n ,关于x ,y ,z 的方程n n n x y z +=都没有正整数解B .对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解C .存在正整数2n ≤,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解D .存在正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解 【答案】D 【解析】 【分析】根据命题的否定形式,直接写出命题的否定即可 【详解】命题的否定形式为,原命题的题设不变,结论改否定; 故只有D 满足题意; 故选:D例29.(2022·全国·高三专题练习(文))已知命题p :存在一个无理数,它的平方是有理数,则p ⌝为( ) A .任意一个无理数,它的平方不是有理数 B .存在一个无理数,它的平方不是有理数 C .任意一个无理数,它的平方是有理数 D .存在一个无理数,它的平方是无理数 【答案】A 【解析】 【分析】根据存在命题的否定的性质进行判断即可. 【详解】因为存在命题的否定是全称量词命题,所以p ⌝为:任意一个无理数,它的平方不是有理数, 故选:A例30.(2022·山西晋中·模拟预测(理))命题p :0x ∀≥,222e 3x x -+≤,则¬p 为___________. 【答案】00x ∃≥,22002e 3x x -+>【解析】命题p :0x ∀≥,222e 3x x -+≤. 则¬p 为:00x ∃≥,22002e 3x x -+> 故答案为:00x ∃≥,22002e 3x x -+>【方法技巧与总结】1.全称量词命题与存在量词命题的否定是将条件中的全称量词和存在量词互换,结论变否定. 1. 全称量词命题和存在量词命题的否定要注意否定是全否,而不是半否. 题型五:根据命题的真假求参数的取值范围例31.(2022·山东青岛·一模)若命题“R x ∀∈,210ax +≥”为真命题,则实数a 的取值范围为( ) A .0a >B .0a ≥C .0a ≤D .1a ≤【解析】 【分析】结合二次函数的性质来求得a 的取值范围. 【详解】依题意命题“R x ∀∈,210ax +≥”为真命题, 当0a =时,10≥成立, 当0a >时,210ax +≥成立,当0a <时,函数21y ax =+开口向下,210ax +≥不恒成立. 综上所述,0a ≥. 故选:B例32.(2022·浙江·高三专题练习)若命题“存在R x ∈,使220x x m ++≤”是假命题,则实数m 的取值范围是( ) A .(],1-∞ B .(),1-∞ C .()1,+∞ D .[)1,+∞【答案】C 【解析】 【分析】该命题的否定为真命题,利用判别式可求实数m 的取值范围. 【详解】∵命题“存在R x ∈,使220x x m ++≤” 是假命题, 则其否定“任意R x ∈, 220x x m ++>” 为真命题, ∴2240m ∆=-< , 所以1m . 故选: C.例33.(2022·江苏·南京市宁海中学模拟预测)若命题“[]1,4x ∀∈时,2x m >”是假命题,则m 的取值范围( ) A .16m ≥ B .m 1≥ C .16m < D .1m < 【答案】B 【解析】 【分析】全称量词命题的否定是存在量词命题,将问题转化为不等式能成立求参数的取值范围因为“[]1,4x ∀∈,2x m >”是假命题, 则其否定“[]1,4x ∃∈,2x m ≤”为真命题 则()2minxm ≤而当1x =时,2x 取得最小值1 所以m 1≥ 故选:B例34.(2022·黑龙江齐齐哈尔·二模(文))若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为( ) A .[]1,4- B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C 【解析】 【分析】等价于“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令2()(21)30g a x x a x =--++≥,解不等式(1)0(3)0g g -≥⎧⎨≥⎩即得解. 【详解】解:命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题, 即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦. 故选:C例35.(2022·全国·高三专题练习)若“[,]34x ππ∀∈-,tan x m ≥”是真命题,则实数m 的最大值为___________.【答案】【解析】 【分析】利用正切函数的单调性求出正切函数的最小值,进而可求出结果.若“[,]34x ππ∀∈-,tan x m ≥”是真命题, 则实数m 小于等于函数tan y x =在,34ππ⎡⎤-⎢⎥⎣⎦的最小值,因为函数tan y x =在[,]34ππ-上为增函数,所以函数tan y x =在[,]34ππ-上的最小值为所以m ≤m 的最大值为故答案为:例36.(2022·全国·高三专题练习)已知定义在R 上的函数()h x 满足'2()()0h x h x +>且21(1)e h =,其中2x 1()e h x >的解集为A .函数21()1x x f x x -+=-,()()1xg x a a =>,若1x A ∀∈,2x A ∃∈使得()()12f x g x =,则实数a 的取值范围是___________. 【答案】()1,3 【解析】 【分析】构造函数2()()x H x h x e =⋅,利用导数结合已知条件可得()H x 的单调性,由(1)1H =,不等式2x1()e h x >等价于()(1)H x H >,由()H x 的单调性即可求得解集A ,再分别求得()f x ,()g x 的值域,由已知可得函数()f x 的值域是函数()g x 的值域的子集,从而可求得实数a 的取值范围. 【详解】解:构造函数2()()x H x h x e =⋅,所以''222'()()2()()2()x x x H x h x e h x e e h x h x ⎡⎤=⋅+⋅=+⎣⎦,因为定义在R 上的函数()h x 满足'2()()0h x h x +>,所以'()0H x >,所以()H x 在R 上单调递增,且2(1)(1)1H h e ==, 所以不等式2x 1()eh x >可化为2()1x h x e ⋅>,即()(1)H x H >, 所以1x >, 所以2x1()e h x >的解集()1,A =+∞,函数221(1)111()1113111x x x x f x x x x x -+-+-+===-++≥=---,当且仅当111x x -=-,0x =或2x =时等号成立,在A 上仅当2x =时等号成立,所以()f x 在A 上的值域为[)3,+∞,()()1x g x a a =>为增函数,所以()g x 在A 上的值域为(),a +∞, 若1x A ∀∈,2x A ∃∈使得()()12f x g x =, 则[)()3,,a +∞⊆+∞, 所以3a <,又因为1a > 即实数a 的取值范围是()1,3. 故答案为:()1,3.例37.(2022·湖北·荆门市龙泉中学二模)若命题“0,,63x ππ⎡⎤∃∈⎢⎥⎣⎦0tan x m >”是假命题,则实数m 的取值范围是__________.【答案】)+∞ 【解析】 【分析】转化为命题的否定是真命题后求解 【详解】由题意得“0,,63x ππ⎡⎤∀∈⎢⎥⎣⎦0tan x m ≤”为真命题,故0πtan tan3max m x ≥==()故答案为:)+∞例38.(2022·全国·高三专题练习)若“[]01,1x ∃∈-,020x a +->”为假命题,则实数a 的最小值为______. 【答案】3 【解析】 【分析】由题意可知命题的否定是真命题,从而可求出a 的取值范围,进而可求得a 的最小值 【详解】“[]01,1x ∃∈-,020x a +->”的否定为“[1,1]x ∀∈-,都有20x a +-≤”, 因为“[]01,1x ∃∈-,020x a +->”为假命题, 所以“[1,1]x ∀∈-,都有20x a +-≤”为真命题, 所以2a x +≥在[1,1]x ∈-上恒成立, 所以3a ≥,所以实数a 的最小值为3,故答案为:3例39.(2022·全国·高三专题练习)在①x ∃∈R ,2220x ax a ++-=,②a ∃∈R ,使得区间()2,4A =,(),3B a a =满足A B =∅这两个条件中任选一个,补充在下面的横线上,并解答.已知命题p :[]1,2x ∀∈,20x a -≥,命题q :______,p ,q 都是真命题,求实数a 的取值范围. 【答案】答案见解析 【解析】 【分析】由命题p 为真命题可得1a ≤,选择①,可得方程2220x ax a ++-=有解,借助判别式求解即得;选择②,由给定条件列出不等式求解即得. 【详解】选条件①,由命题p 为真命题,得不等式20x a -≥在[]1,2x ∈上恒成立, 因为[]1,2x ∈,则214x ≤≤,即1a ≤,由命题q 为真命题,即方程2220x ax a ++-=有解,则()()22420a a ∆=--≥,解得1a ≥或2a ≤-, 又p ,q 都是真命题,从而有2a ≤-或1a =, 所以实数a 的取值范围是(]{},21-∞-.选条件②,由命题p 为真命题,得不等式20x a -≥在[]1,2x ∈上恒成立, 因为[]1,2x ∈,则214x ≤≤,即1a ≤,因命题q 为真命题,由区间(),3B a a =得0a >,又A B =∅,即4a ≥或032a <≤,解得4a ≥或203a <≤, 又p ,q 都是真命题,从而有203a <≤, 所以实数a 的取值范围是20,3⎛⎤⎥⎝⎦.例40.(2022·全国·高三专题练习)若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),求实数a 的取值范围. 【答案】10,2⎛⎤ ⎥⎝⎦【解析】 【分析】分别求两个函数的值域,利用子集关系,求参数a 的取值范围. 【详解】由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.()()[]22211,1,2f x x x x x =-=--∈-,()[]1,3f x ∈-,函数f (x )的值域是[-1,3],因为a >0,所以函数g (x )的值域是[2-a ,2+2a ], 则有2-a ≥-1且2+2a ≤3,即12a ≤.故a 的取值范围是10,2⎛⎤⎥⎝⎦.【方法技巧与总结】1.在解决求参数的取值范围问题上,可以先令两个命题都为真命题,如果哪个是假命题,去求真命题的补级即可.2.全称量词命题和存在量词命题的求参数问题相对较难,要注重端点出点是否可以取到.【过关测试】 一、单选题1.(2022·河北·模拟预测)已知2:10p x ax -+=无解,()2:()4q f x a x =-为增函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】分别由210x ax -+=无解和()2()4f x a x =-为增函数解出a 的范围,即可判断.【详解】由210x ax -+=无解可得240a -<,解得22a -<<;由()2()4f x a x =-为增函数可得240a ->,解得22a -<<,故p 是q 的充要条件. 故选:C.2.(2022·北京房山·二模)已知,αβ是两个不同的平面,直线l α⊄,且αβ⊥,那么“//l α”是“l β⊥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据空间线面位置关系,结合必要不充分条件的概念判断即可. 【详解】解:当直线l α⊄,且αβ⊥,//l α,则l β⊂,或l β//,l 与β相交,故充分性不成立, 当直线l α⊄,且αβ⊥,l β⊥时,//l α,故必要性成立, 所以,“//l α”是“l β⊥”的必要而不充分条件. 故选:B3.(2022·江苏·华罗庚中学高三阶段练习)若1z ,2z 为复数,则“12z z -是纯虚数”是“1z ,2z 互为共轭复数”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】分别判断命题的充分性和必要性即可得到答案. 【详解】充分性:令14i z =,22i z =,满足12z z -是纯虚数, 不满足1z ,2z 互为共轭复数,不满足充分性. 必要性:若121z z ==,满足1z ,2z 互为共轭复数, 则120z z -=,不满足12z z -是纯虚数,不满足必要性.所以“12z z -是纯虚数”是“1z ,2z 互为共轭复数”的既不充分也不必要条件. 故选:D4.(2022·全国·高三专题练习)命题“12x ∀≤≤,220x a -≤”是真命题的一个必要不充分条件是( ) A .1a ≥ B .3a ≥C .2a ≥D .4a ≤【答案】A 【解析】 【分析】求出当命题“12x ∀≤≤,220x a -≤”是真命题时,实数a 的取值范围,结合题意可得出合适的选项. 【详解】命题“12x ∀≤≤,220x a -≤”是真命题,则2max22x a ⎛⎫≥= ⎪⎝⎭,因此,命题“12x ∀≤≤,220x a -≤”是真命题的一个必要不充分条件是1a ≥. 故选:A.5.(2022·全国·高三专题练习)已知下列四个命题:正确的是( )1p :00x ∃>,使得00ln 1x x >-;2p :R x ∀∈,都有210x x -+>; 3p :00x ∃>,使得001ln1x x >-+; 4p :()0,x ∀∈+∞,使得121log 2xx ⎛⎫> ⎪⎝⎭.A .2p ,4pB .1p ,4pC .2p ,3pD .1p ,3p【答案】C 【解析】 【分析】构造函数()ln 1f x x x =-+,求导判断单调性求最大值可判断1p ;对二次函数配方求21x x -+的最小值可判断2p ;举例子如0e x =可判断3p ;举反例如12x =可判断4p ,进而可得正确答案. 【详解】对于1p ,设()ln 1f x x x =-+,则()111x f x x x-'=-=, 由()0f x '>可得01x <<;由()0f x '<可得1x >,所以()ln 1f x x x =-+在()0,1上单调递增,在()1,+∞单调递减, 所以()()max 1ln1110f x f ==-+=,所以()ln 10f x x x =-+≤恒成立, 所以0x ∀>,ln 1≤-x x ,故1p 错误;对于2p ,R x ∀∈,都有22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,故2p 正确;对于3p :当0e x =时,011ln ln 1ex ==-, 011e x -+=-,此时满足001ln 1x x >-+,故3p 正确;对于4p ,当12x =时,1212⎛⎫= ⎪⎝⎭,121log 12=,不满足121log 2xx ⎛⎫> ⎪⎝⎭成立,故4p 错误;故正确是2p ,3p ,故选:C .6.(2022·重庆南开中学模拟预测)命题“2x ∀≥,24x ≥”的否定为( )A .02x ∃≥,204x < B .2x ∀≥,24x <C .02x ∃<,204x <D .2x ∀<,24x <【答案】A 【解析】 【分析】由全称量词命题的否定:将任意改存在并否定原结论,即可得答案. 【详解】由全称量词命题的否定为存在量词命题,故原命题否定为“02x ∃≥,204x <”.故选:A7.(2022·江西景德镇·模拟预测(理))已知命题:函数32()(21)(0,0)f x x ax m a x m a m =++--->>,。