考点练习(必修二):与圆有关的轨迹问题(附答案)
- 格式:doc
- 大小:131.50 KB
- 文档页数:7
4.2.2 圆与圆的位置关系(时间90分钟,满分120分)一、选择题(每小题5分,共50分)1.圆C1:(x+2)2+(y-2)2=1与圆C2:(x-2)2+(y-5)2=16的位置关系是()A.外离B.相交C.内切D.外切【解析】圆C1的圆心是C1(-2,2),半径r1=1,圆C2的圆心是C2(2,5),半径r2=4,则圆心距|C1C2|=5.因为|C1C2|=r1+r2,所以两圆外切.【答案】D2.圆C1:x2+y2+4x+8y-5=0与圆C2:x2+y2+4x+4y-1=0的位置关系为()A.相交B.外切C.内切D.外离【解析】由已知,得C1(-2,-4),r1=5,C2(-2,-2),r2=3,则d=|C1C2|=2,所以d=|r1-r2|.故两圆内切.【答案】C3.已知圆A与圆B相切,圆心距为10 cm,其中圆A的半径为4 cm,则圆B的半径为()A.6 cm或14 cmB.10 cmC.14 cmD.无解【解析】令圆A、圆B的半径分别为r1,r2,当两圆外切时,r1+r2=10,所以r2=10-r1=10-4=6;当两圆内切时,|r1-r2|=10,即|4-r2|=10,r2=14或r2=-6(舍),即圆B的半径为6 cm或14 cm.【答案】A4.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A.{1,-1}B.{3,-3}C.{1,-1,3,-3}D.{5,-5,3,-3}【解析】因为两个圆有且只有一个公共点,所以两个圆内切或外切.当两圆内切时,|a|=1;当两圆外切时,|a|=3,即实数a的取值集合是{1,-1,3,-3}.故选C.【答案】C5.圆x2+y2+4x-4y+7=0与圆x2+y2-4x+10y+13=0的公切线的条数是()A.1B.2C.3D.4【解析】两圆的圆心分别为C1(-2,2),C2(2,-5),则两圆的圆心距d又半径分别为r1=1,r2=4,则d>r1+r2,即两圆外离,因此它们有4条公切线.【答案】D6.已知以C(4,-3)为圆心的圆与圆O:x2+y2=1相切,则圆C的方程为()A.(x-4)2+(y+3)2=16B.(x+4)2+(y-3)2=36C.(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36D.(x+4)2+(y-3)2=16或(x+4)2+(y-3)2=36【解析】设所求圆的方程为(x-4)2+(y+3)2=r2(r>0).因为圆C与圆O相切,所以|r-1|=5或r+1=5,解得r=6或r=4(负值舍去).故所求圆的方程为(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36.【答案】C7.圆C 1:(x+1)2+(y+2)2=4与圆C 2:(x+2)2+(y+3)2=1的位置关系是( )A.外离B.外切C.相交D.内切【解析】圆心距d =两圆半径的和为2+1=3, 两圆半径之差的绝对值为1,1212r r d r r -<<+,所以两圆的位置关系是相交.【答案】C8.若圆x 2+y 2=4与圆x 2+y 2+ay-2=0的公共弦的长度为,则常数a 的值为( )A .2±B .2C .-2D .4±【解析】两圆方程左右两边分别相减得公共弦所在直线的方程为ay+2=0.由题意知0a ≠.圆x 2+y 2=4的圆心到直线ay+2=0的距离为2a ,又公共弦长为,所以=解得2a =±. 【答案】A9.已知圆C :(x-3)2+(y-4)2=1和两点A (-m ,0),B (m ,0)(m>0).若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .7B .6C .5D .4【解析】因为A (-m ,0),B (m ,0)(m>0),所以使90APB ∠=︒的点P 在以线段AB 为直径的圆上,该圆的圆心为O (0,0),半径为m.而圆C 的圆心为C (3,4),半径为1.由题意知点P 在圆C 上,故两圆有公共点.所以两圆的位置关系为外切、相交或内切,故11m CO m -≤≤+,即151m m -≤≤+,解得46m ≤≤.所以m 的最大值为6.故选B .【答案】B★10.若圆(x-a )2+(y-a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值范围是( )A.⎝⎭B.⎛ ⎝⎭C.⎛ ⎝⎭⎝⎭UD.⎛ ⎝⎭【解析】圆(x-a )2+(y-a )2=4的圆心C (a ,a ),半径r=2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R=1,则这两个圆相交,圆心距d =,则|r-R|<d<r+R ,则13<<,所以22a <<,所以a <<a << 【答案】C二、填空题(每小题5分,共20分)11.圆C 1:x 2+y 2-12x-2y-13=0和圆C 2:x 2+y 2+12x+16y-25=0的公共弦所在的直线方程是 .【解析】两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.【答案】4x+3y-2=012.若圆C 1:(x-3)2+(y-4)2=16与圆C 2:x 2+y 2=m (m>0)内切,则实数m= .【解析】圆心距5d =,由题意得两圆半径差的绝对值45=,解得m=81.【答案】8113.已知圆O :x 2+y 2=25和圆C :x 2+y 2-4x-2y-20=0相交于A ,B 两点,则公共弦AB 的长为 .【解析】两圆方程相减得弦AB 所在的直线方程为4x+2y-5=0.圆x 2+y 2=25的圆心到直线AB的距离d == 故公共弦AB的长为AB ===14.若点A (a ,b )在圆x 2+y 2=4上,则圆(x-a )2+y 2=1与圆x 2+(y-b )2=1的位置关系是 .【解析】因为点A (a ,b )在圆x 2+y 2=4上,所以a 2+b 2=4.又圆x 2+(y-b )2=1的圆心C 1(0,b ),半径r 1=1,圆(x-a )2+y 2=1的圆心C 2(a ,0),半径r 2=1,则122d C C ===,所以d=r 1+r 2.所以两圆外切.【答案】外切三、解答题(15-17每小题12分,18题14分,共50分)15.求与圆O :x 2+y 2=1外切,切点为1,2P ⎛- ⎝⎭,半径为2的圆的方程. 【解析】设所求圆的圆心为C (a ,b ),则所求圆的方程为(x-a )2+(y-b )2=4.因为两圆外切,切点为1,2P ⎛- ⎝⎭,所以|OC|=r 1+r 2=1+2=3,|CP|=2.所以222291422a b a b ⎧+=⎪⎪⎛⎨⎛⎫+++= ⎪ ⎪ ⎝⎭⎪⎝⎭⎩,解得32a b ⎧=-⎪⎪⎨⎪=⎪⎩所以圆心C的坐标为3,22⎛⎫-- ⎪ ⎪⎝⎭,所求圆的方程为22342x y ⎛⎛⎫+++= ⎪ ⎝⎭⎝⎭.16.求和圆(x-2)2+(y+1)2=4相切于点(4,-1)且半径为1的圆的方程.【解析】设所求圆的圆心为(a ,b ),1=. ① 若两圆外切,123=+=. ② 由①②,解得5,1a b ==-,所以所求圆的方程为(x-5)2+(y+1)2=1.若两圆内切,211=-=. ③ 由①③,解得3,1a b ==-,所以所求圆的方程为(x-3)2+(y+1)2=1.综上,可知所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.17.一动圆与圆C 1:x 2+y 2+6x+8=0外切,与圆C 2:x 2+y 2-6x+8=0内切,求动圆圆心的轨迹方程.【解析】圆C 1:(x+3)2+y 2=1,所以圆心为(-3,0),半径r 1=1;圆C 2:(x-3)2+y 2=1,所以圆心为(3,0),半径r 2=1. 设动圆圆心为(x ,y ),半径为r ,由题意得1r =+1r =-,2=, 化简并整理,得8x 2-y 2=8(1x ≥).所以动圆圆心的轨迹方程是8x 2-y 2=8(1x ≥). ★(附加题)18.圆O 1的方程为x 2+(y+1)2=4,圆O 2的圆心O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且AB =求圆O 2的方程.【解析】(1)设圆O 1的半径为r 1,圆O 2的半径为r 2.因为两圆外切,所以|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=1),故圆O 2的方程是(x-2)2+(y-1)2=1)2.(2)设圆O 2的方程为(x-2)2+(y-1)2=22r . 因为圆O 1的方程为x 2+(y+1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在直线的方程224480x y r ++-=, ①作O 1H ⊥AB ,则|AH|=12,O 1,由圆心O 1(0,-1)到直线①,得224r =或2220r =,故圆O 2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。
第六章圆周运动圆周运动课后篇巩固提升合格考达标练1.如图所示,在圆规匀速转动画圆的过程中()A.笔尖的速率不变B.笔尖做的是匀速运动9C.任意相等时间内通过的位移相等D.两相同时间内转过的角度不同,匀速圆周运动的速度大小不变,也就是速率不变,但速度的方向时刻改变,故A 正确,B错误;做匀速圆周运动的物体在任意相等时间内通过的弧长相等,但位移还要考虑方向,C错误;相同时间内转过角度相同,D错误。
2.如图所示为行星传动示意图。
中心“太阳轮”的转动轴固定,其半径为R1,周围四个“行星轮”的转动轴固定,半径均为R2,“齿圈”的半径为R3,其中R1=1.5R2,A、B、C分别是“太阳轮”“行星轮”和“齿圈”边缘上的点,齿轮传动过程中不打滑,那么()A.A点与B点的角速度相同B.A点与B点的线速度相同C.B点与C点的转速之比为7∶2D.A点与C点的周期之比为3∶5,A、B两点的线速度大小相等,方向不同,B错误;由v=rω知,线速度大小相等时,角速度和半径成反比,A、B两点的转动半径不同,因此角速度不同,A错误;B点和C点的线速度大小相等,由v=rω=2πnr可知,B点和C点的转速之比为n B∶n C=r C∶r B,r B=R2,r C=1.5R2+2R2=3.5R2,故n B∶n C=7∶2,C正确;根据v=2πr可知,T A∶T C=r A∶r C=3∶7,D错误。
T3.(多选)如图所示,在冰上芭蕾舞表演中,演员展开双臂单脚点地做着优美的旋转动作,在他将双臂逐渐放下的过程中,他转动的速度会逐渐变快,则它肩上某点随之转动的()A.转速变大B.周期变大C.角速度变大D.线速度变大,即转速变大,角速度变大,周期变小,肩上某点距转动圆心的半径r不变,因此线速度也变大。
4.(2020海南华侨中学高一上学期期末)如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大、b、c三点共轴,角速度相同,B正确,C错误;a、b、c三点半径不等,所以三点的线速度大小不等,A错误;R a=R b>R c,a、b、c三点角速度相同,故a、b两点的线速度大于c点线速度,D错误。
1 .物体的运动轨迹是圆的运动叫圆周运动圆周运动 圆周运动是变.速.运动,“速”特.指.速率匀速圆周运动:质点沿圆周运动,任.意.相等时间内通过的圆弧长度相等(但任意相等时间内,位移大.小.相等)2.线速度: 方向:切线方向 单位: m/s角速度: 方向:右手螺旋定则 单位: rad/s转速 (n ) :质点在单位时间内转过的圈数。
单位: r/s 或 r/min周期 (T ) :质点转动一周所用的时间。
单位: s 3.几个有用的结论:① 同轴转动的物体上各点转动的周期和角速度均相同② 皮带不打滑时,皮带上各点和轮子边缘..各点的线速度大小相等③ 两齿轮间不打滑时,两轮边缘..各点的线速度大小相等4. 向心力狭隘定义: 物体做圆周运动时,所受的沿半径指向圆心方向的力 ( 合力) 。
向心力广义定义: 质点(或物体)作曲线运动时所需的指向曲率中心的力,又称法向力。
向心力简单定义:改变.物.体.运.动.方.向.的.力.. 。
5. 对向心力的理解:① 向心力是物体所受到的指向圆心方向的合力的新名字...,故受力分析时,不能 “强迫”物体再受.一.个.向.心.力.. ,只能思考,是由哪些力去“充当”“提供”向心力。
② 不是因为物体做圆周运动而产生了向心力, 而是因为物体受到指向圆心的力 (向心力 )才做圆周运动。
③ 向心力是从力的作用效果..角度来命名的,它不是具有确定性质的某种类型的力。
相反,任何性质的力都可 以作为向心力。
④ 向心力来源:它可是某种性质的一个力,或某个力的分力, 还可以是几个不同性质的力沿着半径指向圆心的合外力。
⑤ 向心力总指向圆心,时刻垂直于速度方向, 故向心力只能改变速度的方向 ,不能改变速度的大小。
6. 向心加速度:与向心力相呼应的加速度,指向圆心,总垂直于速度方向。
匀速圆周运动是变速运动,是变加速...运动(加速度方向在变)。
7. 变速圆周运动和匀速圆周运动的特点:8.圆周运动方程F 合== 的理解:左边F合是外界(如绳子)实际提供的力右边是物体做圆周运动需要的.力的大小等号的含义是:“满足”、“提供”、“充当”① F 合= 时,物体刚.好.能做圆周运动;②F合< 时,物体做离心运动;③F合> 时,物体做近心运动。
与圆有关的综合问题题型一:与圆有关的轨迹问题[典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法[针对训练]1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′),由题意得,⎩⎪⎨⎪⎧ x ′+4=2x ,y ′-2=2y ,则⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y +2,故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A.2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ). 由题设知CM ―→·MP ―→=0, 故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.题型二:与圆有关的最值或范围问题[例1] (2019·兰州高三诊断)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( ) A .[-2,6] B .[-3,5] C .[2,6]D .[3,5][解析] 法一:当MA ,MB 是圆C 的切线时,∠AMB 取得最大值.若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=(5-1)2+(t -4)2≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.法二:由于点M (5,t )是直线x =5上的点,圆心的纵坐标为4,所以实数t 的取值范围一定关于t =4对称,故排除选项A 、B.当t =2时,|CM |=25,若MA ,MB 为圆C 的切线,则sin ∠CMA =sin ∠CMB =1025=22,所以∠CMA =∠CMB =45°,即MA ⊥MB ,所以t =2时符合题意,故排除选项D.选C. [答案] C[例2] 已知实数x ,y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.(2)y -x 可看成是直线y =x +b 在y 轴上的截距.当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6. (3)x 2+y 2表示圆上的一点与原点距离的平方.由平面几何知识知,x 2+y 2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值. 因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43, 最小值是(2-3)2=7-4 3.[方法技巧]与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:[针对训练]1.(2019·新余一中月考)直线x +y +t =0与圆x 2+y 2=2相交于M ,N 两点,已知O 是坐标原点,若|OM ―→+ON ―→|≤|MN ―→|,则实数t 的取值范围是________. 解析:由|OM ―→+ON ―→|≤|MN ―→|=|ON ―→-OM ―→|, 两边平方,得OM ―→·ON ―→≤0, 所以圆心到直线的距离d =|t |2≤22×2=1, 解得-2≤t ≤2,故实数t 的取值范围是[-2, 2 ]. 答案:[-2, 2 ]2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点A (2,1)连线的斜率.当直线PA 与圆相切时,k 取得最大值与最小值.设过(2,1)的直线方程为y -1=k (x -2),即kx -y +1-2k =0. 由|2k |k 2+1=1,解得k =±33.答案:33,-333.(2019·大庆诊断考试)过动点P 作圆:(x -3)2+(y -4)2=1的切线P Q ,其中Q 为切点,若|P Q |=|PO |(O 为坐标原点),则|P Q |的最小值是________.解析:由题可知圆(x -3)2+(y -4)2=1的圆心N (3,4).设点P 的坐标为(m ,n ),则|PN |2=|P Q |2+|N Q |2=|P Q |2+1,又|P Q |=|PO |,所以|PN |2=|PO |2+1,即(m -3)2+(n -4)2=m 2+n 2+1,化简得3m +4n =12,即点P 在直线3x +4y =12上,则|P Q |的最小值为点O 到直线3x +4y =12的距离,点O 到直线3x +4y =12的距离d =125,故|P Q |的最小值是125.答案:125[课时跟踪检测]1.(2019·莆田模拟)已知圆O :x 2+y 2=1,若A ,B 是圆O 上的不同两点,以AB 为边作等边△ABC ,则|OC |的最大值是( ) A.2+62B. 3 C .2D.3+1解析:选C 如图所示,连接OA ,OB 和OC . ∵OA =OB ,AC =BC ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°, 在△OAC 中,由正弦定理得OA sin 30°=OCsin ∠OAC ,∴OC =2sin ∠OAC ≤2,故|OC |的最大值为2,故选C.2.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b 2的最小值为( ) A .2 B .4 C .8D .9解析:选D 圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b 2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.3.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( ) A .3 B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45.因为P 在圆C 上,所以P ⎝⎛⎭⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎨⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.4.(2019·拉萨联考)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,则点P 到直线l :x -2y -5=0的距离的最小值是( ) A .4 B. 5 C.5+1 D.5-1解析:选D 圆C :x 2+y 2-4x -2y +4=0化为(x -2)2+(y -1)2=1,圆心C (2,1),半径为1,圆心到直线l 的距离为|2-2-5|12+22=5,则圆上一动点P 到直线l 的距离的最小值是5-1.故选D. 5.(2019·赣州模拟)已知动点A (x A ,y A )在直线l :y =6-x 上,动点B 在圆C :x 2+y 2-2x -2y -2=0上,若∠CAB =30°,则x A 的最大值为( ) A .2 B .4 C .5D .6解析:选C 由题意可知,当AB 是圆的切线时,∠ACB 最大,此时|CA |=4.点A 的坐标满足(x -1)2+(y -1)2=16,与y =6-x 联立,解得x =5或x =1,∴点A 的横坐标的最大值为5.故选C.6.(2018·北京高考)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( ) A .1 B .2 C .3D .4解析:选C 由题知点P (cos θ,sin θ)是单位圆x 2+y 2=1上的动点,所以点P 到直线x -my -2=0的距离可转化为单位圆上的点到直线的距离.又直线x -my -2=0恒过点(2,0),所以当m 变化时,圆心(0,0)到直线x -my -2=0的距离d =21+m 2的最大值为2,所以点P 到直线x -my -2=0的距离的最大值为3,即d 的最大值为3.7.(2019·安徽皖西联考)已知P 是椭圆x 216+y 27=1上的一点,Q ,R 分别是圆(x -3)2+y 2=14和(x +3)2+y 2=14上的点,则|P Q |+|PR |的最小值是________.解析:设两圆圆心分别为M ,N ,则M ,N 为椭圆的两个焦点, 因此|P Q |+|PR |≥|PM |-12+|PN |-12=2a -1=2×4-1=7,即|P Q |+|PR |的最小值是7. 答案:78.(2019·安阳一模)在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ),由题意得x 2+(y +3)2=2x 2+y 2, 整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组⎩⎨⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3,解得0≤a ≤3, 综上可得,实数a 的取值范围是[0,3]. 答案:[0,3]9.(2019·唐山调研)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|Q M |的最小值. 解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2. 化简可得(x -5)2+y 2=16,故此曲线方程为(x -5)2+y 2=16. (2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题知直线l 2与圆C 相切,连接C Q ,CM , 则|Q M |=|C Q |2-|CM |2=|C Q |2-16,当C Q ⊥l 1时,|C Q |取得最小值,|Q M |取得最小值,此时|C Q |=|5+3|2=42,故|Q M |的最小值为32-16=4.10.(2019·广州一测)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k . 当k 1k 2=3时,求k 的取值范围. 解:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2(x -1)2+y 2. 整理得,x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎪⎨⎪⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2.②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2, 即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >33.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0,所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦ 由⑤⑥⑦,得k 的取值范围为[-3,-1)∪⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1∪(1, 3 ].。
竖直平面内的圆周运动问题绳球模型和杆球模型一、单选题(本大题共5小题,共20.0分)1.如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环可视为质点,从大环的最高处由静止滑下。
重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A. B. C. D.2.如图所示,轻杆的一端有一个小球m,另一端有光滑的固定转轴O.现给小球一初速度v,使小球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示小球到达最高点时杆对小球的作用力,则F()A. 一定是拉力B. 一定是支持力C. 一定等于0D. 可能是拉力,可能是支持力,也可能等于03.质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A. 受到向心力为B. 受到的摩擦力为C. 受到的摩擦力为D. 受到的合力方向指向圆心4.如图所示,在竖直平面内有一“V”形槽,其底部BC是一段圆弧,两侧都与光滑斜槽相切,相切处B、C位于同一水平面上。
一小物体从右侧斜槽上距BC平面高度为2h的A处由静止开始下滑,经圆弧槽再滑上左侧斜槽,最高能到达距BC所在水平面高度为h的D处,接着小物体再向下滑回,若不考虑空气阻力,则( )A. 小物体恰好滑回到B处时速度为零B. 小物体尚未滑回到B处时速度已变为零C. 小物体能滑回到B处之上,但最高点要比D处低D. 小物体最终一定会停止在圆弧槽的最低点5.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。
如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径。
现将一物体沿与水平面成α角的方向已速度υ0抛出,如图(b)所示。
高一数学必修二第四章圆与方程练习题及答案高一数学(必修2)第四章圆与方程基础训练一、选择题1.圆(x+2)²+y²=5关于原点P(0,0)对称的圆的方程为()A。
(x-2)²+y²=5B。
x²+(y-2)²=5C。
(x+2)²+(y+2)²=5D。
x²+(y+2)²=52.若P(2,-1)为圆(x-1)²+y²=25的弦AB的中点,则直线AB 的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=03.圆x²+y²-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1-√2D。
1+2√24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x²+y²+2x-4y=0相切,则实数λ的值为()A。
-3或7B。
-2或8C。
2或10D。
1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
1条B。
2条C。
3条D。
4条6.圆x²+y²-4x=0在点P(1,3)处的切线方程为()A。
x+3y-2=0B。
x+3y-4=0C。
x-3y+4=0D。
x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x²+y²+4x-2y+3=0相切,则此直线在y轴上的截距是-2.2.由动点P向圆x²+y²=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为x²+y²-x=0.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为(x-1)²+(y+1)²=4.4.已知圆(x-3)²+y²=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x²+y²-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是3.三、解答题1.点P(a,b)在直线x+y+1=0上,求a²+b²-2a-2b+2的最小值。
必修 2 第五章第五节圆周运动一、学点:皮带传动、共轴转动类问题1.分析下图中,A、B 两点的线速度有什么关系?分析得到:2.分析下列情下,轮上各点的角速度有什么关系?分析得到:二、课堂例题1.在匀速圆周运动中,保持不变的物理量有( )A.线速度B.角速度C.周期D.转速2.如图所示,门上有A、B 两点,在开门过程中,A、B 两点的角速度、线速度大小关系是( )A.ωA>ωBB.ωA<ωBC.vA>vBD.v A<v B3.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等4.对自行车的三个轮子的描述:(1)A、B 两点的相同;(2)B、C 两点的相同;(3)B、C 比A 的角速度;(4)A、B 比C 的线速度。
三、巩固练习1.质点做匀速圆周运动时,下列说法正确的是()A.线速度越大,周期一定越小B.角速度越大,周期一定越小C.转速越大,周期一定越小D.圆周半径越小,周期一定越小2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是()A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成反比D.角速度一定,线速度与半径成正比3.A、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A∶s B=2∶3,转过的角度之比A∶B=3∶2,则下列说法正确的是()A.它们的半径之比R A∶R B=2∶3B.它们的半径之比R A∶R B=4∶9C.它们的周期之比T A∶T B=2∶3D.它们的频率之比f A∶f B=2∶35.电扇的风叶的长度为1200 mm,转速为180 r/min,则它的转动周期是s,角速度是rad/s,叶片端点处的线速度是m/s。
6.一个圆环,以竖直直径AB 为轴匀速转动,如图所示,则环上M、N 两点的线速度大小之比v M∶第 1 页共3 页v N= ;角速度之比ωM ∶ωN = ;周期之比 T M ∶T N = 。
高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。
这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。
故选D。
2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。
3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。
4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。
章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。
1.曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动:加速度(大小和方向)不变的运动。
也可以说是:合外力不变的运动。
4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。
(举例:匀速圆周运动)2.绳拉物体合运动:实际的运动。
对应的是合速度。
方法:把合速度分解为沿绳方向和垂直于绳方向。
3.小船渡河例1:一艘小船在200m 宽的河中横渡到对岸,已知水流速度是3m/s ,小船在静水中的速度是5m/s ,求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。
min cos d dt t v v θ=⇒=船船(此时θ=0°,即船头的方向应该垂直于河岸)解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。
高中物理必修二第六章圆周运动题型总结及解题方法单选题1、如图所示是利用两个大小不同的齿轮来达到改变转速的自行车传动结构的示意图。
已知大齿轮的齿数为48个,小齿轮的齿数为16个,后轮直径约为小齿轮直径的10倍.假设脚踏板在1s内转1圈,下列说法正确的是()A.小齿轮在1s内也转1圈B.大齿轮边缘与小齿轮边缘的线速度之比为3:1C.后轮与小齿轮的角速度之比为10:1D.后轮边缘与大齿轮边缘的线速度之比为10:1答案:DAB.齿轮的齿数与半径成正比,因此大齿轮的半径是小齿轮半径的3倍,大齿轮与小齿轮是链条传动,边缘点线速度大小相等,令大齿轮为A,小齿轮为B,后轮边缘为C,故v A:v B=1:1又r A:r B=3:1根据v=ωr可知,大齿轮与小齿轮的角速度之比ωA:ωB=r B:r A=1:3所以脚踏板在1s内转1圈,小齿轮在1s内转3圈,故AB错误;CD.B、C两点为同轴转动,所以ωB:ωC=1:1根据v=ωr可知,后轮边缘上C点的线速度与小齿轮边缘上B点的线速度之比v C:v B=r C:r B=10:1故C错误,D正确。
故选D。
2、某同学经过长时间的观察后发现,路面出现水坑的地方,如果不及时修补,水坑很快会变大,善于思考的他结合学过的物理知识,对这个现象提出了多种解释,则下列说法中不合理的解释是()A.车辆上下颠簸过程中,某些时刻处于超重状态B.把坑看作凹陷的弧形,车对坑底的压力比平路大C.车辆的驱动轮出坑时,对地的摩擦力比平路大D.坑洼路面与轮胎间的动摩擦因数比平直路面大答案:DA.车辆上下颠簸过程中,可能在某些时刻加速度向上,则汽车处于超重状态,A正确,不符合题意;B.把坑看作凹陷的弧形,根据牛顿第二定律有F N−mg=m v2 R则根据牛顿第三定律,把坑看作凹陷的弧形,车对坑底的压力比平路大,B正确,不符合题意;C.车辆的驱动轮出坑时,对地的摩擦力比平路大,C正确,不符合题意;D.动摩擦因数由接触面的粗糙程度决定,而坑洼路面可能比平直路面更光滑则动摩擦因数可能更小,D错误,符合题意。
与圆有关的轨迹问题归纳大家好,今天咱们聊聊一个看似简单却又充满趣味的数学话题——与圆有关的轨迹问题。
说到圆,谁能不想起那形状完美得让人忍不住想拍一张照的饼干呢?不过,今天可不是讨论美食,而是要深入探讨圆和它的轨迹。
我们一起轻松地理清楚这其中的奥秘,保证让你听了以后恍若看了一场精彩的电影!1. 圆的基本知识1.1 圆的定义首先,咱们得明白什么是圆。
圆就是一个平面上的所有点到中心的距离都相等的地方。
是不是听上去很简单?没错,就是这么简单,像咱们吃饼干那样,随便一咬就能享受到。
而这个中心点,我们通常叫做“圆心”,它就像圆的老大,指挥着整个圆的“舞蹈”。
1.2 圆的性质而且,圆还有一些好玩的性质哦!比如,任何一条经过圆心的直线,都会把圆分成两个完全相同的部分,咱们叫它“直径”。
想象一下,就像切披萨时那样,一刀下去,两边的馅料恰好均匀,不用担心谁吃得多谁吃得少。
2. 与圆有关的轨迹2.1 轨迹的定义说到轨迹,咱们先得知道它是什么。
轨迹就是一个点在运动时所经过的路径。
听起来有点高深,实际上就是那种“我走过的路”嘛。
比如,踢足球的时候,球的路径就是它的轨迹,乒乓球飞舞的样子也是。
2.2 圆的轨迹那么,和圆有关的轨迹又是什么呢?最简单的例子就是一个点围绕圆心转动时所形成的轨迹。
想象一下,假如你手上有一根线,另一端绑着个小球,你把小球绕着圆心转,结果就形成了一个完整的圆。
这就叫做“圆周轨迹”。
哇,真是简单又美丽,就像那首歌里唱的:“只要你心中有圆,世界就会很美好!”3. 应用实例3.1 日常生活中的圆那这跟咱们的生活有什么关系呢?其实,圆的轨迹无处不在!比如,转动的轮胎、旋转的风车,甚至是咱们每年的生日蛋糕,都是圆的!没准在吃蛋糕的时候,你还没意识到,自己正在欣赏一道数学美景呢。
想想,这种“无形的美”,是不是让你有点感动呢?3.2 科技中的应用不仅如此,科技领域也离不开圆的轨迹。
比如,卫星在绕地球飞行时,走的就是一个圆形轨迹。
一、选择题1.如图所示,质量为m的小球在竖直平面内的固定光滑圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v,当小球以3v的速度经过最高点时,对轨道的压力大小是(重力加速度为g)()A.mg B.2mg C.4mg D.8mg2.如图所示,竖直平面上的光滑圆形管道里有一个质量为m可视为质点的小球,在管道内做圆周运动,管道的半径为R,自身质量为3m,重力加速度为g,小球可看作是质点,管道的内外径差别可忽略。
已知当小球运动到最高点时,管道刚好能离开地面,则此时小球的速度为()A.gR B.2gR C.3gR D.2gR3.如图,铁路转弯处外轨应略高于内轨,火车必须按规定的速度行驶,则转弯时()A.火车所需向心力沿水平方向指向弯道外侧B.弯道半径越大,火车所需向心力越大C.火车的速度若小于规定速度,火车将做离心运动D.火车若要提速行驶,弯道的坡度应适当增大4.火车转弯时,如果铁路弯道的内、外轨一样高,则外轨对轮缘(如左图所示)挤压的弹力F提供了火车转弯的向心力(如图中所示),但是靠这种办法得到向心力,铁轨和车轮极易受损。
在修筑铁路时,弯道处的外轨会略高于内轨(如右图所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的侧向挤压,设此时的速度大小为v,重力加速度为g,以下说法中正确的是()A.该弯道的半径R=2 v gB.当火车质量改变时,规定的行驶速度也将改变C.当火车速率大于v时,外轨将受到轮缘的挤压D.按规定速度行驶时,支持力小于重力5.用手掌平托一苹果,保持这样的姿势在竖直平面内按顺时针方向做匀速圆周运动。
关于苹果从最低点a到最高点c的运动过程,下列说法中正确的是()A.苹果在a点处于超重状态B.苹果在b点所受摩擦力为零C.手掌对苹果的支持力越来越大D.苹果所受的合外力保持不变6.如图所示,a、b两物块放在水平转盘中,与转盘保持相对静止地一起绕转盘中轴线做匀速度圆周运动。
已知物块a的质量是b的2倍,物块a与转盘面间的动摩擦因数是b的2倍,物块a离中轴线的距离是b的2倍,物块a、b与转盘间的最大静摩擦力等于滑动摩擦力。
4.2.2圆与圆的位置关系基础巩固1.圆C 1:(x+2)2+(y-2)2=1与圆C 2:(x-2)2+(y-5)2=16的位置关系是()A.外离B.相交C.内切D.外切2.圆C 1:x 2+y 2+4x+8y-5=0与圆C 2:x 2+y 2+4x+4y-1=0的位置关系为()A.相交B.外切C.内切D.外离3.已知圆A 与圆B 相切,圆心距为10cm,其中圆A 的半径为4cm,则圆B 的半径为()A .6cm 或14cmB .10cmC .14cmD .无解4.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x-a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是()A.{1,-1}B.{3,-3}C.{1,-1,3,-3}D.{5,-5,3,-3}5.圆x 2+y 2+4x-4y+7=0与圆x 2+y 2-4x+10y+13=0的公切线的条数是()A.1B.2C.3D.46.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程为()A .(x-4)2+(y+3)2=16B .(x+4)2+(y-3)2=36C .(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36D .(x+4)2+(y-3)2=16或(x+4)2+(y-3)2=367.圆C 1:x 2+y 2-12x-2y-13=0和圆C 2:x 2+y 2+12x+16y-25=0的公共弦所在的直线方程是.8.若圆C 1:(x-3)2+(y-4)2=16与圆C 2:x 2+y 2=m (m>0)内切,则实数m=.9.已知圆O :x 2+y 2=25和圆C :x 2+y 2-4x-2y-20=0相交于A ,B 两点,则公共弦AB 的长为.10.求与圆O :x 2+y 2=1外切,切点为1,22P ⎛-- ⎝⎭,半径为2的圆的方程.能力提升1.圆C 1:(x+1)2+(y+2)2=4与圆C 2:(x+2)2+(y+3)2=1的位置关系是()A.外离B.外切C.相交D.内切2.若圆x 2+y 2=4与圆x 2+y 2+ay-2=0的公共弦的长度为,则常数a 的值为()A .2±B .2C .-2D .4±3.已知圆C :(x-3)2+(y-4)2=1和两点A (-m ,0),B (m ,0)(m>0).若圆C 上存在点P ,使得90APB ∠=︒,则m的最大值为()A .7B .6C .5D .4★4.若圆(x-a )2+(y-a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值范围是()A.22⎛ ⎝⎭B.22⎛-- ⎝⎭C.,2222⎛⎛-- ⎝⎭⎝⎭D.22⎛⎫⎪ ⎪⎝⎭5.若点A (a ,b )在圆x 2+y 2=4上,则圆(x-a )2+y 2=1与圆x 2+(y-b )2=1的位置关系是.6.求和圆(x-2)2+(y+1)2=4相切于点(4,-1)且半径为1的圆的方程.7.一动圆与圆C 1:x 2+y 2+6x+8=0外切,与圆C 2:x 2+y 2-6x+8=0内切,求动圆圆心的轨迹方程.★8.圆O 1的方程为x 2+(y+1)2=4,圆O 2的圆心O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且AB =求圆O 2的方程.参考答案基础巩固1.【解析】圆C 1的圆心是C 1(-2,2),半径r 1=1,圆C 2的圆心是C 2(2,5),半径r 2=4,则圆心距|C 1C 2|=5.因为|C 1C 2|=r 1+r 2,所以两圆外切.【答案】D2.【解析】由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d=|C 1C 2|=2,所以d=|r 1-r 2|.故两圆内切.【答案】C3.【解析】令圆A 、圆B 的半径分别为r 1,r 2,当两圆外切时,r 1+r 2=10,所以r 2=10-r 1=10-4=6;当两圆内切时,|r 1-r 2|=10,即|4-r 2|=10,r 2=14或r 2=-6(舍),即圆B 的半径为6cm 或14cm .【答案】A4.【解析】因为两个圆有且只有一个公共点,所以两个圆内切或外切.当两圆内切时,|a|=1;当两圆外切时,|a|=3,即实数a 的取值集合是{1,-1,3,-3}.故选C .【答案】C5.【解析】两圆的圆心分别为C 1(-2,2),C 2(2,-5),则两圆的圆心距d =又半径分别为r 1=1,r 2=4,则d>r 1+r 2,即两圆外离,因此它们有4条公切线.【答案】D6.【解析】设所求圆的方程为(x-4)2+(y+3)2=r 2(r>0).因为圆C 与圆O 相切,所以|r-1|=5或r+1=5,解得r=6或r=4(负值舍去).故所求圆的方程为(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36.【答案】C7.【解析】两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.【答案】4x+3y-2=08.【解析】圆心距5d =,由题意得两圆半径差的绝对值45-=,解得m=81.【答案】819.【解析】两圆方程相减得弦AB 所在的直线方程为4x+2y-5=0.圆x 2+y 2=25的圆心到直线AB 的距离d ==故公共弦AB 的长为AB =10.【解析】设所求圆的圆心为C (a ,b ),则所求圆的方程为(x-a )2+(y-b )2=4.因为两圆外切,切点为1,22P ⎛-- ⎝⎭,所以|OC|=r 1+r 2=1+2=3,|CP|=2.所以2222913422a b a b ⎧+=⎪⎪⎛⎨⎛⎫+++= ⎪ ⎪ ⎝⎭⎪⎝⎭⎩,解得322a b ⎧=-⎪⎪⎨⎪=-⎪⎩.所以圆心C 的坐标为333,22⎛-- ⎝⎭,所求圆的方程为223422x y ⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭.能力提升1.【解析】圆心距d =,两圆半径的和为2+1=3,两圆半径之差的绝对值为1,1212r r d r r -<<+,所以两圆的位置关系是相交.【答案】C2.【解析】两圆方程左右两边分别相减得公共弦所在直线的方程为ay+2=0.由题意知0a ≠.圆x 2+y 2=4的圆心到直线ay+2=0的距离为2a,又公共弦长为,所以=解得2a =±.【答案】A3.【解析】因为A (-m ,0),B (m ,0)(m>0),所以使90APB ∠=︒的点P 在以线段AB 为直径的圆上,该圆的圆心为O (0,0),半径为m.而圆C 的圆心为C (3,4),半径为1.由题意知点P 在圆C 上,故两圆有公共点.所以两圆的位置关系为外切、相交或内切,故11m CO m -≤≤+,即151m m -≤≤+,解得46m ≤≤.所以m 的最大值为6.故选B .【答案】B4.【解析】圆(x-a )2+(y-a )2=4的圆心C (a ,a ),半径r=2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R=1,则这两个圆相交,圆心距d =,则|r-R|<d<r+R ,则13<<,所以22a<<,所以22a-<<或22a <<.【答案】C5.【解析】因为点A (a ,b )在圆x 2+y 2=4上,所以a 2+b 2=4.又圆x 2+(y-b )2=1的圆心C 1(0,b ),半径r 1=1,圆(x-a )2+y 2=1的圆心C 2(a ,0),半径r 2=1,则122d C C ===,所以d=r 1+r 2.所以两圆外切.【答案】外切6.【解析】设所求圆的圆心为(a ,b ),1=.①若两圆外切,则有123+=.②由①②,解得5,1a b ==-,所以所求圆的方程为(x-5)2+(y+1)2=1.若两圆内切,则有211-=.③由①③,解得3,1a b ==-,所以所求圆的方程为(x-3)2+(y+1)2=1.综上,可知所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.7.【解析】圆C 1:(x+3)2+y 2=1,所以圆心为(-3,0),半径r 1=1;圆C 2:(x-3)2+y 2=1,所以圆心为(3,0),半径r 2=1.设动圆圆心为(x ,y ),半径为r ,由题意得1r =+1r =-,2,化简并整理,得8x 2-y 2=8(1x ≥).所以动圆圆心的轨迹方程是8x 2-y 2=8(1x ≥).8.【解析】(1)设圆O 1的半径为r 1,圆O 2的半径为r 2.因为两圆外切,所以|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=1-),故圆O 2的方程是(x-2)2+(y-1)2=1-)2.(2)设圆O 2的方程为(x-2)2+(y-1)2=22r .因为圆O 1的方程为x 2+(y+1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在直线的方程224480x y r ++-=,①作O 1H ⊥AB ,则|AH|=12,O 1,由圆心O 1(0,-1)到直线①的距离得=,得224r =或2220r =,故圆O 2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。
圆有关的轨迹问题一、选择题1.已知圆x2+y2=4,过A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程是()A. (x-2)2+y2=4B. (x-2)2+y2=4(0≤x<1)C. (x-1)2+y2=4D. (x-1)2+y2=4(0≤x<1)2.已知M是圆C:x2+y2=1上的动点,点N(2,0),则MN的中点P的轨迹方程是()A. (x-1)2+y2=B. (x-1)2+y2=C. (x+1)2+y2=D. (x+1)2+y2=3.已知两定点A(-2,0),B(1,0),若动点P满足|PA|=2|PB|,则P的轨迹为()A. 直线B. 线段C. 圆D. 半圆4.在正方体ABCD-A1B1C1D1中,点M、N分别是直线CD、AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为,则点P的轨迹是()A. 圆的一部分B. 椭圆的一部分C. 抛物线的一部分D. 双曲线的一部分5.已知两定点A(-3,0),B(3,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A. πB. 4πC. 9πD. 16π6.复数z满足条件:|2z+1|=|z-i|,那么z对应的点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线二、填空题7.在平面直角坐标系xoy中,A,B是圆x2+y2=4上的两个动点,且AB=2,则线段AB中点M的轨迹方程为______ .8.自圆x2+y2=4上点A(2,0)引此圆的弦AB,则弦的中点的轨迹方程为______ .9.已知动圆M与圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=25均内切,则动圆圆心M的轨迹方程是______.10.已知圆x2+y2=4,B(1,1)为圆内一点,P,Q为圆上动点,若∠PBQ=90°,则线段PQ中点的轨迹方程为______.11.在直角坐标系xOy中,已知A(-1,0),B(0,1),则满足PA2-PB2=4且在圆x2+y2=4上的点P的个数为______.12.点A(0,2)是圆O:x2+y2=16内定点,B,C是这个圆上的两动点,若BA⊥CA,求BC中点M的轨迹方程为______ .三、解答题(本大题共5小题,共60.0分)第 1 页13.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.14.已知圆C:(x+1)2+y2=8,点A(1,0),P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E.(1)求曲线E的方程;(2)若直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求△MON面积的最大值.15.已知动圆C过定点F2(1,0),并且内切于定圆F1:(x+1)2+y2=16.(1)求动圆圆心C的轨迹方程;(2)若y2=4x上存在两个点M,N,(1)中曲线上有两个点P,Q,并且M,N,F2三点共线,P,Q,F2三点共线,PQ⊥MN,求四边形PMQN的面积的最小值.16.已知圆N经过点A(3,1),B(-1,3),且它的圆心在直线3x-y-2=0上.(Ⅰ)求圆N的方程;(Ⅱ)求圆N关于直线x-y+3=0对称的圆的方程.(Ⅲ)若点D为圆N上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.17.已知圆O:x2+y2=4及一点P(-1,0),Q在圆O上运动一周,PQ的中点M形成轨迹C.(1)求轨迹C的方程;(2)若直线PQ的斜率为1,该直线与轨迹C交于异于M的一点N,求△CMN的面积.答案和解析【答案】1. B2. A3. C4. B5. D6. A7. x2+y2=38. (x-1)2+y2=1,(x≠2)9. .10. x2+y2-x-y-1=011. 212. x2+y2-2y-6=013. 解:(1)由圆C:x2+y2-8y=0,得x2+(y-4)2=16,∴圆C的圆心坐标为(0,4),半径为4.设M(x,y ),则,.由题意可得:.即x(2-x)+(y-4)(2-y)=0.整理得:(x-1)2+(y-3)2=2.∴M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)知M的轨迹是以点N(1,3)为圆心,为半径的圆,由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.∵k ON=3,∴直线l的斜率为-.∴直线PM 的方程为,即x+3y-8=0.则O到直线l 的距离为.又N到l 的距离为,∴|PM|==.∴.14. 解:(Ⅰ)∵点Q在线段AP的垂直平分线上,∴|AQ|=|PQ|.又|CP|=|CQ|+|QP |=2,∴|CQ|+|QA |=2>|CA|=2.第 3 页∴曲线E是以坐标原点为中心,C(-1,0)和A(1,0)为焦点,长轴长为2的椭圆.设曲线E的方程为=1,(a>b>0).∵c=1,a=,∴b2=2-1=1.∴曲线E的方程为.(Ⅱ)设M(x1,y1),N(x2,y2).联立消去y,得(1+2k2)x2+4kmx+2m2-2=0.此时有△=16k2-8m2+8>0.由一元二次方程根与系数的关系,得x1+x2=,x1x2=,.∴|MN|==∵原点O到直线l的距离d=-,∴S△MON==.,由△>0,得2k2-m2+1>0.又m≠0,∴据基本不等式,得S△MON=.≤=,当且仅当m2=时,不等式取等号.∴△MON面积的最大值为.15. 解:(1)设动圆的半径为r,则|CF2|=r,|CF1|=4-r,所以|CF1|+|CF2|=4>|F1F2|,由椭圆的定义知动圆圆心C的轨迹是以F1,F2为焦点的椭圆,a=2,c=1,所以,动圆圆心C的轨迹方程是.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得|MN|=4,|PQ|=4,四边形PMQN 的面积S=8.当直线MN斜率存在时,设其方程为y=k(x-1)(k≠0),联立方程得,消元得k2x2-(2k2+4)x+k2=0设M(x1,y1),N(x2,y2),则∵PQ⊥MN,∴直线PQ的方程为,,得(3k2+4)x2-8x+4-12k2=0设P(x3,y3),Q(x4,y4),则四边形PMQN的面积,令k2+1=t,t>1,上式,令2t+1=z,(z>3),(z >3),∴,∴S>8(1+0)=8,综上可得S≥8,最小值为8.16. 解:(Ⅰ)由已知可设圆心N(a,3a-2),又由已知得|NA|=|NB|,从而有,解得:a=2.于是圆N的圆心N(2,4),半径.所以,圆N的方程为(x-2)2+(y-4)2=10.(Ⅱ)N(2,4)关于x-y+3=0的对称点为(1,5),所以圆N关于直线x-y+3=0对称的圆的方程为(x-1)2+(y-5)2=10(Ⅲ)设M(x,y),D(x1,y1),则由C(3,0)及M为线段CD 的中点得:,解得:.又点D在圆N:(x-2)2+(y-4)2=10上,所以有(2x-3-2)2+(2y-4)2=10,化简得:.故所求的轨迹方程为.17. 解:(1)设M(x,y),则Q(2x+1,2y),∵Q在圆x2+y2=4上,∴(2x+1)2+4y2=4,即(x +)2+y2=1.∴轨迹C的方程是(x +)2+y2=1.(2)直线PQ方程为:y=x+1,圆心C到直线PQ的距离为d ==,∴|MN|=2=,∴△CMN 的面积为==.【解析】1. 解:设弦BC中点(x,y),过A的直线的斜率为k,割线ABC的方程:y=k(x-4);作圆的割线ABC,所以中点与圆心连线与割线ABC垂直,方程为:x+ky=0;因为交点就是弦的中点,它在这两条直线上,故弦BC中点的轨迹方程是:x2+y2-4x=0如图故选B.第 5 页结合图形,不难直接得到结果;也可以具体求解,使用交点轨迹法,见解答.本题考查形式数形结合的数学思想,轨迹方程,直线与圆的方程的应用,易错题,中档题.2. 解:设线段MN中点P(x,y),则M(2x-2,2y).∵M在圆C:x2+y2=1上运动,∴(2x-2)2+(2y)2=1,即(x-1)2+y2=.故选A.设出线段MN中点的坐标,利用中点坐标公式求出M的坐标,根据M在圆上,得到轨迹方程.本题考查中点的坐标公式、求轨迹方程的方法,考查学生的计算能力,属于基础题.3. 解:设P点的坐标为(x,y),∵A(-2,0)、B(1,0),动点P满足|PA|=2|PB|,∴,平方得(x+2)2+y2=4[(x-1)2+y2],即(x-2)2+y2=4.∴P的轨迹为圆.故选:C.设P点的坐标为(x,y),利用两点间的距离公式表示出|PA|、|PB|,代入等式|PA|=2|PB|,化简整理得答案.本题考查动点的轨迹的求法,着重考查了两点间的距离公式、圆的标准方程,属于中档题.4. 解:把MN平移到面A1B1C1D1中,直线D1P与MN所成角为θ,直线D1P与MN所成角的最小值,是直线D1P与面A1B1C1D1所成角,即原问题转化为:直线D1P与面A1B1C1D1所成角为,点P在面A1B1C1D1的投影为圆的一部分,∵点P是△A1C1D内的动点(不包括边界)∴则点P的轨迹是椭圆的一部分.故选:B.把MN平移到面A1B1C1D1中,直线D1P与MN所成角为θ,直线D1P与MN所成角的最小值,是直线D1P与面A1B1C1D1所成角,即原问题转化为:直线D1P与面A1B1C1D1所成角为,求点P的轨迹.点P在面A1B1C1D1的投影为圆的一部分,则点P的轨迹是椭圆的一部分.本题考查了空间轨迹问题,考查了转化思想,属于中档题.5. 解:设P(x,y),则|PA|=,|PB|=,∵|PA|=2|PB|,∴(x+3)2+y2=4[(x-3)2+y2],即x2+y2-10x+9=0,化为标准式方程得(x-5)2+y2=16.即P的轨迹所包围的图形为半径为4的圆,该圆的面积S=π×42=16π.故选:D.设出P点坐标,根据|PA|=2|PB|列出方程整理出P的轨迹方程,判断图形计算面积.本题考查了轨迹方程的求法,属于基础题.6. 解:设复数z=x+yi,x,y∈R,∵|2z+1|=|z-i|,∴|2z+1|2=|z-i|2,∴(2x+1)2+4y2=x2+(y-1)2,化简可得3x2+3y2+4x+2y=0,满足42+22-4×3×0=20>0,表示圆,故选:A设复数z=x+yi,x,y∈R,由模长公式化简可得.本题考查复数的模,涉及轨迹方程的求解和圆的方程,属基础题.7. 解:由题意,OM⊥AB,OM ==,∴线段AB中点M的轨迹方程为x2+y2=3,故答案为x2+y2=3.由题意,OM⊥AB,OM ==,即可求出线段AB中点M的轨迹方程.本题考查轨迹方程,考查垂径定理的运用,比较基础.8. 解:设AB中点为M(x,y),由中点坐标公式可知,B点坐标为(2x-2,2y).∵B点在圆x2+y2=4上,∴(2x-2)2+(2y)2=4.故线段AB中点的轨迹方程为(x-1)2+y2=1.不包括A点,则弦的中点的轨迹方程为(x-1)2+y2=1,(x≠2)故答案为:(x-1)2+y2=1,(x≠2).设出AB的中点坐标,利用中点坐标公式求出B的坐标,据B在圆上,将P坐标代入圆方程,求出中点的轨迹方程.本题主要考查轨迹方程的求解,应注意利用圆的特殊性,同时注意所求轨迹的纯粹性,避免增解.9. 解:设动圆的圆心为:M(x,y),半径为R,动圆与圆M1:(x+1)2+y2=1内切,与圆M2:(x-1)2+y2=25内切,∴|MM1|+|MM2|=R-1+5-R=6,∵|MM1|+|MM2|>|M1M2|,因此该动圆是以原点为中心,焦点在x轴上的椭圆,2a=4,c=1解得a=2,根据a、b、c的关系求得b2=3,∴椭圆的方程为:.故答案为:.首先根据圆与圆的位置关系确定出该动圆是椭圆,然后根据相关的两求出椭圆的方程.本题考查的知识点:椭圆的定义,椭圆的方程及圆与圆的位置关系,相关的运算问题.在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.故答案为:x2+y2-x-y-1=0.利用直角三角形的中线等于斜边长的一半得到|PN|=|BN|,利用圆心与弦中点连线垂直弦,利用勾股定理得到|OP|2=|ON|2+|PN|2,利用两点距离公式求出动点的轨迹方程.本题考查中点坐标公式、直角三角形斜边的中线等于斜边的一半、圆心与弦中点的连线垂直弦、相关点法求动点轨迹方程.第 7 页11. 解:设P(x,y),∵A(-1,0),B(0,1),由PA2-PB2=4,得(x+1)2+y2-x2-(y-1)2=4.整理得:x+y=2.联立,解得:或.∴P点坐标为(0,2)或(2,0).即满足条件的P点的个数为2.故答案为:2.设出P点的坐标,由已知等式求出P点的轨迹方程,和圆的方程联立求解P点的坐标,则答案可求.本题考查了轨迹方程的求法,考查了方程组的解法,是中档题.12. 解:设M(x,y),连接OC,OM,MA,则由垂径定理,可得OM⊥BC,∴OM2+MC2=OC2,∵AM=CM,∴OM2+AM2=OC2,∴x2+y2+x2+(y-2)2=16,即BC中点M的轨迹方程为x2+y2-2y-6=0.故答案为:x2+y2-2y-6=0.设M(x,y),连接OC,OM,MA,则由垂径定理,可得OM⊥BC,OM2+MC2=OC2,即可求BC中点M的轨迹方程.垂径定理的使用,让我们在寻找M的坐标中的x与y时,跳过了两个动点B,C,而直达一个非常明确的结果,减少了运算量.13. (1)由圆C的方程求出圆心坐标和半径,设出M坐标,由与数量积等于0列式得M的轨迹方程;(2)设M的轨迹的圆心为N,由|OP|=|OM|得到ON⊥PM.求出ON所在直线的斜率,由直线方程的点斜式得到PM所在直线方程,由点到直线的距离公式求出O到l的距离,再由弦心距、圆的半径及弦长间的关系求出PM的长度,代入三角形面积公式得答案.本题考查圆的轨迹方程的求法,训练了利用向量数量积判断两个向量的垂直关系,训练了点到直线的距离公式的应用,是中档题.14. (1)根据椭圆的定义和性质,建立方程求出a,b即可.(2)联立直线和椭圆方程,利用消元法结合设而不求的思想进行求解即可.本题主要考查与椭圆有关的轨迹方程问题,以及直线和椭圆的位置关系的应用,利用消元法以及设而不求的数学思想是解决本题的关键.,运算量较大,有一定的难度.15. (1)利用已知条件判断轨迹是椭圆,求出a,b即可得到椭圆方程.(2)利用直线MN斜率不存在时,求解四边形PMQN的面积S=8.当直线MN斜率存在时,设其方程为y=k(x-1)(k≠0),联立方程得,设M(x1,y1),N(x2,y2),利用韦达定理,弦长公式,通过PQ⊥MN,推出直线PQ的方程为,设P(x3,y3),Q(x4,y4),求出|PQ|,推出四边形PMQN的面积利用换元法以及基本不等式求解表达式的最值.本题考查轨迹方程的求法,椭圆的简单性质以及直线与椭圆的位置关系的综合应用,三角形的面积的最值的求法,函数的思想的应用.16. (Ⅰ)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(Ⅱ)求出N(2,4)关于x-y+3=0的对称点为(1,5),即可得到圆N关于直线x-y+3=0对称的圆的方程;(Ⅲ)首先设出点M的坐标,利用中点得到点D坐标,代入圆的方程整理化简得到的中点M的轨迹方程.本题考查圆的方程,考查参数法,圆的方程一般采用待定系数法,属于中档题.17. (1)设M(x,y),用x,y表示出Q点坐标,代入圆O方程化简即可;(2)求出直线l的方程,圆心C到直线l的距离,利用勾股定理求出弦长|MN|,即可得出三角形的面积.本题考查了轨迹方程的求解,直线与圆的位置关系,属于中档题.第 9 页。
与圆有关的轨迹问题1. 动点P 与定点A(-1,0),B(1,0)的连线的斜率之积为-1,则点P 的轨迹为( )A.221x y +=B. ()2211x y x +=≠±C. ()2211x y x +=≠ D. ()2210x y x +=≠2. 点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=13. 设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则点P 的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=24. 已知两定点A(-2,0),B(1,0),如果动点P 满足|P A|=2|P B|,则点P 的轨迹所包围的图形的面积等于________.5. 自A(4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.6. 已知动点M 到点A(2,0)的距离是它到点B(8,0)的距离的一半.(1)求动点M 的轨迹方程;(2)若N 为线段A M 的中点,试求点N 的轨迹.7. 已知线段AB 的长为4,且端点A ,B 分别在x 轴与y 轴上,则线段AB 的中点M 的轨迹方程为________.8. 点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A. (x﹣2)2+(y+1)2=1B.(x﹣2)2+(y+1)2=4C. (x+4)2+(y﹣2)2=1D.(x+2)2+(y﹣1)2=19. 已知△ABC的边AB长为2a,若BC边上的中线为定长m,求顶点C的轨迹.10. 在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为2 3.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.11. 已知圆的方程是x2+y2-2ax+2(a-2)y+2=0,其中a≠1,且a∈R.(1)求证:a取不为1的实数时,圆过定点;(2)求圆心的轨迹方程.12. 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.13. 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.14. 已知线段AB的端点B在圆C1:x2+(y-4)2=16上运动,端点A的坐标为(4,0),线段AB的中点为M.(1)试求M点的轨迹C2的方程;(2)若圆C1与曲线C2交于C,D两点,试求线段CD的长.15. 已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.参考答案 与圆有关的轨迹问题1. 【答案】B2. 解析:选A 设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4.化简得(x -2)2+(y +1)2=1.3. 解析:选D 设P (x ,y ),则由题意知,圆(x -1)2+y 2=1的圆心为C (1,0)、半径为1,∵P A 是圆的切线,且|P A |=1,∴|PC |=2,即(x -1)2+y 2=2,∴点P 的轨迹方程为(x -1)2+y 2=2.4. 【解析】设点P (x ,y ),由题意知(x +2)2+y 2=4[(x -1)2+y 2],整理得x 2-4x +y 2=0,配方得(x -2)2+y 2=4. 可知圆的面积为4π.5. 【解析】设P (x ,y ),O 为原点,连接OP ,∵当x ≠0时,OP ⊥A P ,即k OP ·k A P =-1,∴y x ·4yx -=-1,即x 2+y 2-4x =0.① 当x =0时,P 点坐标(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内的部分).设P (x ,y ),O 为原点,连接OP ,∵当x ≠0时,OP ⊥A P ,即k OP ·k A P =-1,∴y x ·4yx -=-1,即x 2+y 2-4x =0.① 当x =0时,P 点坐标(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内的部分).6. 【解析】(1)设动点M 的坐标为(x ,y ),∵A(2,0),B(8,0),|M A|=12|M B|,∴(x -2)2+y 2=14[(x -8)2+y 2]. 化简得x 2+y 2=16,即动点M 的轨迹方程为x 2+y 2=16. (2)设点N 的坐标为(x ,y ),∵A(2,0),N 为线段A M 的中点,∴点M 的坐标为(2x -2,2y ).又点M 在圆x 2+y 2=16上,∴(2x -2)2+4y 2=16,即(x -1)2+y 2=4. ∴点N 的轨迹是以(1,0)为圆心,2为半径的圆.7. 【解析】 设M 点坐标为(x ,y ),A 点坐标为(x 0,0),B 点坐标为(0,y 0).∵点M 是线段AB 的中点,∴000202x x y y +⎧⎫=⎪⎪⎪⎪⎨+⎪⎪=⎪⎪⎩⎭,即0022.x xy y =⎧⎨=⎩∴A(2x,0),B(0,2y ).又∵|AB|=4, ∴()()222002x y -+-=4,即x 2+y 2=4.8. 【解析】设圆上任意一点为(x 1,y 1),中点为(x ,y ),则 得:,代入x 2+y 2=4得(2x ﹣4)2+(2y +2)2=4,化简得(x ﹣2)2+(y +1)2=1.故选A . 9. 【解析】以直线AB 为x 轴,AB 的中垂线为y 轴建立平面直角坐标系(如右图),则A(-a,0),B(a,0),设C(x ,y ),BC 中点D(x 0,y 0).故x 0=2x a+,y 0=2y .①∵|AD|=m ,∴(x 0+a )2+y 20=m 2.② 将①代入②,整理得(x +3a )2+y 2=4m 2.∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-3a,0)为圆心,以2m 为半径的圆,除去(-3a +2m,0)和(-3a -2m,0)两点.10. 解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22. 又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3. 故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.11. 【解析】(1)证明:将方程x 2+y 2-2ax +2(a -2)y +2=0,整理得x 2+y 2-4y +2-a (2x -2y )=0(a ≠1,且a ∈R).令⎩⎪⎨⎪⎧ x 2+y 2-4y +2=0,2x -2y =0,解得⎩⎪⎨⎪⎧x =1,y =1.所以a 取不为1的实数时,圆过定点(1,1). (2)由题意知圆心坐标为(a,2-a ),且a ≠1,又设圆心坐标为(x ,y ),则有⎩⎪⎨⎪⎧x =a ,y =2-a ,消去参数a ,得x +y -2=0(x ≠1),即为所求圆心的轨迹方程.12. 解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2, 线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285(点P 在直线OM 上时的情况).13. [解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ).在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.14. 解 (1)设M (x ,y ),B (x ′,y ′),则由题意可得⎩⎨⎧x =x ′+42,y =y ′2,解得⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y ,∵点B 在圆C 1:x 2+(y -4)2=16上,∴(2x -4)2+(2y -4)2=16,即(x -2)2+(y -2)2=4. ∴M 点的轨迹C 2的方程为(x -2)2+(y -2)2=4.(2)由方程组⎩⎪⎨⎪⎧(x -2)2+(y -2)2=4,x 2+(y -4)2=16,得直线CD 的方程为x -y -1=0,圆C 1的圆心C 1(0,4)到直线CD 的距离d =|-4-1|2=522,又圆C 1的半径为4, ∴线段CD 的长为242-⎝⎛⎭⎫5222=14.15. 解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165, 故△POM 的面积为165.。