生化实验技术与方法
- 格式:ppt
- 大小:161.00 KB
- 文档页数:15
实验一基因的PCR扩增技术一、实验目的与原理简介聚合酶链式反应(polymerase chain reaction)是体外克隆基因的重要方法,它可在几个小时内使模板分子扩增百万倍以上。
因此能用于从微量样品中获得目的基因,同时完成了基因在体外的克隆,是分子生物学及基因工程中极为有用的研究手段。
常规PCR反用于已知DNA序列的扩增,具体可分为三个主要过程:一、变性。
通过升高温度使DNA双链模板分子中氢断裂,形成单链DNA分子,温度为94℃,时间1min。
二、复性。
降低温度使DNA单链分子同引物结合。
温度为55℃,时间1min。
三、延深。
升高温度,在DNA聚合酶最佳活性的条件下在引物3端加入dNTP,实现模板的扩增,温度为72℃,时间2min。
同时第一步变性前要在94℃下预变性5分钟,使DNA双链完全解开。
经过 25-35个循环之后,在72℃下继续延伸10分钟。
PCR反应包含的七种基本成分:1)热稳定性DNA聚合酶:Taq DNA聚合酶是最常适用的酶,商品化Taq DNA酶的特异性活性约为80000单位/mg.2)寡核苷酸引物:寡核苷酸引物的设计是影响PCR扩增反应的效率与特异性的关键因素。
3)脱氧核苷三磷酸(dNTP):标准的PCR反应体系应包括4种等摩尔浓度的脱氧核苷三磷酸,即dATP、dTTP、dCTP和dGTP。
每种dNTP的浓度一般在200-250μl之间,高浓度的dNTP对扩增反应会起抑制作用,可能是dNTP与Mg2+螯合有关。
4)二价阳离子:一般需要Mg2+来激活热稳定的DNA聚合酶,由于dNTP与寡聚核酸结Mg2+合,因而反应体系中阳离子的浓度一般要超过dNTP和引物来源的磷酸盐基团的摩尔浓度。
Mg2+的最佳浓度为1.5mmol/L。
5)维持PH值的缓冲液:用Tris-Cl在室温将PCR缓冲液的PH值调至8.3-8.8之间,标准PCR缓冲液浓度在10mmol/L。
在72℃温育时,反应体系的温度将下降1个多单位,致使缓冲液的PH值接近7.2。
实验一基本技术操作及吸光光度法*********************************************实验须知一、实验目的1、通过实验验证生化的基本理论,巩固所学知识。
2、掌握生物化学及分子生物学基本实验方法。
3、培养严谨、认真、实事求是的态度和正确的思维方法。
二、实验要求1、课前预习,课中认真做笔记。
2、按照实验室要求规范操作,如实记录实验结果。
3、认真,按时(当堂)完成实验报告。
三、试剂使用1、核对标签,切勿拿错试剂。
2、刻度吸管或移液器头(Tip头)与试剂必需一一对应,以免引起试剂的交叉污染。
3、用后盖好瓶盖,归还原处。
切勿张冠李戴。
四、仪器使用1、爱护仪器设备,严格遵守操作规则,注意安全。
2、精密仪器,未经允许,不得动用。
3、仪器出现故障,应立即关闭电源,报告老师。
五、实验室规则1、穿工作服进入实验室,遵守课堂纪律。
2、节约水、电、试剂,实验完毕后,清洗所用器材。
3、注意安全,若发生酸碱灼伤,应立即用大量清水冲洗。
4、值日生负责实验室卫生,倒尽垃圾,关好水电、门窗,收齐实验报告。
基本技术操作一:玻璃仪器的洗涤及干燥:(一)意义:去除干扰物,提高实验结果的准确性。
(二)常用洗涤剂:1.洗衣粉,肥皂,洗洁精,去污粉----用于一般去污。
2.强酸,强碱,尿素------去除蛋白质,核酸。
3.铬酸洗液------见附2。
4.水(自来水,蒸馏水)------用来冲洗容器。
(三)洗涤方法:* 洗涤程序:泡→洗(→泡)→冲→漱1.新仪器的洗涤:2%的盐酸浸泡数小时→自来水冲净→洗涤剂溶液中浸泡过夜→试管刷蘸肥皂、洗衣粉或去污粉擦洗容器内外壁→自来水冲10遍→蒸馏水漱洗内壁3遍→包装、消毒→干燥备用。
2.非定量敞口仪器的洗涤(试管、烧杯等)用后立即放入洗涤剂溶液或清水中浸泡过夜→试管刷蘸肥皂、洗衣粉或去污粉擦洗容器内外壁→自来水冲10遍→检查是否洗净→蒸馏水漱洗内壁3遍→包装、消毒→干燥备用。
实验一:分光光度法一:定义:分光光度法是根据物质对不同波长的光波具有选择性吸收的特性---即可以产生吸收光谱,而建立起来的一种定量,定性分析的方法。
分类:根据波长范围可分为紫外,可见和红外分光光度法。
特点:1,与其它光谱分析方法相比,起仪器设备和操作都比较简单,费用少,分析速度快,2,灵敏度高3,选择性好4,精密度和准确度较高5,用途广泛。
二:分光光度法基本原理:物质对光的选择性吸收1:光的基本性质:波动性,微粒性2:物质对光的选择性吸收:一种物质呈现何种颜色,是与入射光的组成和物质本身的结构有关。
溶液呈现不同的颜色是由溶液中的质点(离子或分子)对不同波长的光具有选择性吸收而引起的。
能复合成白光的两种颜色的光也称为互补色光。
3:吸收曲线(光谱)物质的分子内部存在状态:电子能级,振动能级,转动能级组成:紫外--可见吸收光谱,红外吸收光谱,远红外吸收光谱4、透光率和吸光度当一束单色光通过均匀的溶液时,入射光强度为I0,吸收光强度为Ia,透射光强度为It,反射光强度为Ir,则I0 = Ia + It + Ir 透光率(transmittance)T:透射光的强度It与入射光强度I0之比。
透光率愈大,溶液对光的吸收愈少;透光率愈小,溶液对光的吸收愈多。
吸光度A:透光率的负对数。
A愈大,溶液对光的吸收愈多。
5、Lambert-Beer定律Lambert定律:当一适当波长的单色光通过一固定浓度的溶液时,其吸光度与光通过的液层厚度成正比。
式中b为液层厚度,k1为比例系数,它与被测物质性质、入射光波长、溶剂、溶液浓度及温度有关,Lambert定律对所有的均匀介质都是适用的。
三:分光光度计的基本组成(1)光源光源的作用:发出所需波长范围内的连续光谱,有足够的光强度,稳定。
可见光区:钨灯,碘钨灯(320~2500 nm)紫外区:氢灯,氘灯(180~375 nm)(2) 单色器单色器的作用:从光源的连续光谱中,分出某一波长范围的光,作为吸光光度分析的光源。
生化实验五大技术一.分光光度技术1.定义:根据物质对不同孩长的光线具有选择性吸收,每种物质都具有其特异的吸收光语。
而建立起来的一种定t 、定性分析的技术。
2.基本原理:(图1-1光吸收示意)透光度T=It/lo吸光度A=lg(lo/ I1)朗伯-比尔(lambert-Beeri)定律:A=KLcK 为吸光率,L 为溶液厚度(em), c 为溶液浓度(mol/L)]摩尔吸光系数日ε:1摩尔浓度的溶液在厚度为I.cm 的吸光度。
c=A/ε3. 定量分析:(1)标准曲线(工作曲线)法(2) 对比法元-KCLCxS SX X S X S X S X C A A C C C L KC L KC A A *,===即(3)计算法: e=A/ε(4)差示分析法(适用于浓度过浓成过稀)(5) 多组分湖合物测定4.技术分类分子吸收法&原子吸收法:可见光(400-760 nm) &紫外光(200~ 40m) &红外光(大于760 nm)分光光度法;5.应用方向有机物成分分析&结构分析红外分光光度法测定人体内的微量元囊原子吸收分光光度法二电脉技术1.定义:带电荷的供试品在情性支持介质中,在电场的作用下,向其对应的电极方向按各自的速度进行脉动。
使组分分离成族窄的区带,用透宜的检洲方法记录其电泳区带图请或计算其百分含量的方法。
2.基本原理: 球形质点的迁移率与所带电成正比,与其半径及介质粘度成反比。
v=Q/6xrη3.影响电泳迁移率的因素:电场强度电场强度大,带电质点的迁移率加速溶液的PH值: 溶液的pH离pl越远,质点所带净电荷越多,电泳迁移幸越大溶液的离子强度:电泳液中的高子浓度增加时会引起质点迁移率的降低电渗:在电场作用下液体对于固体支持物的相对移动称为电渗4:技术分类:自由电泳(无支持体)区带电泳(有支持体):法纸电泳(常压及高压),博层电泳(薄膜及薄板).凝波电泳(琼脂,琼脂糖、淀粉胶、柔丙烁配胶凝胶)等5. 电泳分析常用方法及其特点:小分子物质滤纸、纤维素、硅胶薄膜电泳复杂大分子物质凝胶电泳⑴醋酸纤维素薄膜电泳①这种薄顺对蛋白质样品吸阴性小,消除纸电沫中出现的“拖尾”现象②分离理应快,电泳时间短③样品用最少:④经过冰最酸乙醉溶液或其它看明液处理后可使膜透明化有利丁对电泳图潜的光吸收措测店和爱的长期保------别适合于病理情况下微量异常蛋白的检测(胰岛素、游菌酶、胎儿甲种球蛋白)⑵玻脂糖凝胶电泳①琼脂糖凝胶孔径较大,对般蛋白质不起分子筛作用②琼脂糖凝胶弹性差,不适含管状电泳------用于等电液鱼、免疫电话、血清脂蛋白等蛋白质电脉,以及DNA、RNA、核苷酸的分析(3)聚丙烯肤胶凝胶电泳①可调节孔径大小②机械强度好,有弹性③分辨率高,用途广④无电涉----------用于不同分子量蛋白质的电泳分离⑶ SDS聚丙烯酰胺凝胶电泳该种电泳使蛋白分子相对迁移率R的大小完全取决于分子量的高低,因此可从已知分子a的标准蛋白的对数和相对迁移所作的标准曲线中求出供试品的分子量----------最常用定性分析蛋白质的电脉方法,特别用于蛋白质纯度检测&分子量制定⑷等电聚焦电泳技术利用有pH梯度的介质分离等电点不同的蛋白质---------由于其分辨率可达 0.01pH单位,因此特别适合于分离分子相近而等电点不同的蛋白质组分。
生化实验五大技术一.分光光度技术1.定义:根据物质对不同孩长的光线具有选择性吸收,每种物质都具有其特异的吸收光语。
而建立起来的一种定t 、定性分析的技术。
2.基本原理:(图1-1光吸收示意)透光度T=It/lo吸光度A=lg(lo/ I1)朗伯-比尔(lambert-Beeri)定律:A=KLcK 为吸光率,L 为溶液厚度(em), c 为溶液浓度(mol/L)]摩尔吸光系数日ε:1摩尔浓度的溶液在厚度为I.cm 的吸光度。
c=A/ε3. 定量分析:(1)标准曲线(工作曲线)法(2) 对比法元-KCLCxS SX X S X S X S X C A A C C C L KC L KC A A *,===即(3)计算法: e=A/ε(4)差示分析法(适用于浓度过浓成过稀)(5)多组分湖合物测定4.技术分类分子吸收法&原子吸收法:可见光(400-760 nm) &紫外光(200~ 40m) &红外光(大于760 nm)分光光度法;5.应用方向有机物成分分析&结构分析红外分光光度法测定人体内的微量元囊原子吸收分光光度法二电脉技术1.定义:带电荷的供试品在情性支持介质中,在电场的作用下,向其对应的电极方向按各自的速度进行脉动。
使组分分离成族窄的区带,用透宜的检洲方法记录其电泳区带图请或计算其百分含量的方法。
2.基本原理: 球形质点的迁移率与所带电成正比,与其半径及介质粘度成反比。
v=Q/6xrη3.影响电泳迁移率的因素:电场强度电场强度大,带电质点的迁移率加速溶液的PH值: 溶液的pH离pl越远,质点所带净电荷越多,电泳迁移幸越大溶液的离子强度:电泳液中的高子浓度增加时会引起质点迁移率的降低电渗:在电场作用下液体对于固体支持物的相对移动称为电渗4:技术分类:自由电泳(无支持体)区带电泳(有支持体):法纸电泳(常压及高压),博层电泳(薄膜及薄板).凝波电泳(琼脂,琼脂糖、淀粉胶、柔丙烁配胶凝胶)等5. 电泳分析常用方法及其特点:小分子物质滤纸、纤维素、硅胶薄膜电泳复杂大分子物质凝胶电泳⑴醋酸纤维素薄膜电泳①这种薄顺对蛋白质样品吸阴性小,消除纸电沫中出现的“拖尾”现象②分离理应快,电泳时间短③样品用最少:④经过冰最酸乙醉溶液或其它看明液处理后可使膜透明化有利丁对电泳图潜的光吸收措测店和爱的长期保------别适合于病理情况下微量异常蛋白的检测(胰岛素、游菌酶、胎儿甲种球蛋白)⑵玻脂糖凝胶电泳①琼脂糖凝胶孔径较大,对般蛋白质不起分子筛作用②琼脂糖凝胶弹性差,不适含管状电泳------用于等电液鱼、免疫电话、血清脂蛋白等蛋白质电脉,以及DNA、RNA、核苷酸的分析(3)聚丙烯肤胶凝胶电泳①可调节孔径大小②机械强度好,有弹性③分辨率高,用途广④无电涉----------用于不同分子量蛋白质的电泳分离⑶SDS聚丙烯酰胺凝胶电泳该种电泳使蛋白分子相对迁移率R的大小完全取决于分子量的高低,因此可从已知分子a的标准蛋白的对数和相对迁移所作的标准曲线中求出供试品的分子量----------最常用定性分析蛋白质的电脉方法,特别用于蛋白质纯度检测&分子量制定⑷等电聚焦电泳技术利用有pH梯度的介质分离等电点不同的蛋白质---------由于其分辨率可达0.01pH单位,因此特别适合于分离分子相近而等电点不同的蛋白质组分。
实验一 分光光度计线性分辨范围测定一. 目的1.学习分光光度计的工作原理,掌握比色测定的基本操作方法。
2.掌握标准曲线的制作及分光光度计最佳测试浓度范围的确定。
二. 原理比色法是常用的生化分析方法。
利用分光光度计可以很方便地完成多种生物物质的定量分析。
比色法的理论基础是朗伯-比尔定律,其测定浓度范围要求在分光光度计线性分辨范围内。
光线的本质是电磁波的一种,有不同的波长。
肉眼可见的彩色光称为可见光,波长范围在400~750nm ;小于400nm 的光线称为紫外光;大于750nm 的光线称为红外光。
当光线通过透明溶液介质时,其辐射的波长有一部分被吸收,一部分透过,因此光线射出溶液之后,部分光波减少,这种光波的吸收和透过可用于某些物质的定性定量分析。
图1 Lambert-Beer 定律示意图分光光度法依据Lambert-Beer 定律:II 0lg = KCL令A = II 0lg,T =0I I,则A = KCL ,A = -lgT其中:T :透光率A :吸光度(有时用光密度OD 表示)I : 透射光强度 I 0:入射光强度 K :吸收系数 L :溶液的光径长度 C :溶液的浓度从上式可以看出,一束单色光通过溶液后,光波被吸收一部分,其吸收多少与溶液中溶质的浓度和溶液厚度成正比,当入射光、吸收系数K 和溶液的光径长度L 不变时,吸光度A 与溶液的浓度C 成正比。
用标准曲线法,即可对未知样品做定量分析。
三. 实验材料及设备1. 仪器UV5200型分光光度计。
2.器材I 0IC L刻度试管:25mL×21;移液器:1mL×1;吸头几支;烧杯:250mL×2,50mL×1;洗耳球:2;滴管:2;移液管(白线):1 mL×1,2 mL×1,5 mL×1;洗瓶、试管架、移液管架:各1。
四. 试剂的配制0.01mol/L硫氰化铁(Fe (SCN)3)溶液:称取30.000g (过量)KSCN和27.05g FeCl3·6H2O,加入2.5mol/L HCl 100mL,用蒸馏水溶解后定容至10000mL(经验提示:保质期1星期)。
2021-02-10—2021-02-12学习总结:一、经常使用的生化检测方式1.终点法通过检测终点吸光度转变的大小来求出被测物的含量。
选择终点法的重要因素,终点时刻的确信a)依照时刻—吸光度曲线来确信:选取吸光度趋于稳固后的时刻b)依照被测物反映终点,结合干扰物的反映情形来确信如:溴甲酚绿法测血清白蛋白溴甲酚绿(BCG)是一种pH指示剂,变色域(黄色)(蓝绿色)溴甲酚绿不但与清蛋白呈色,而且与血清中多种蛋白质成份呈色,其中以a1-球蛋白、运铁蛋白、结合珠蛋白更为显著,其反映速度较清蛋白稍慢。
由于在30s内呈色对清蛋白特异,因此溴甲酚绿与血清混合后,在30s内读数可明显减少非特异性呈色反映。
1.1一点终点法反映达到终点,即在时刻—吸光度曲线上,当吸光度再也不改变时,选择一个终点吸光度值。
待测物浓度=(待测吸光度AU-空白AB)*K(校准系数)1.2两点终点法在被测物反映尚未开始时,选择第一个吸光度,在反映达到终点或平稳时,选择第二个吸光度,用两次吸光度之差计算结果。
优势:有效地排除溶血、黄疸和脂浊本身光吸收造成的干扰,适应于反映初期吸光度无明显转变的被测物。
1.3固按时刻法在时刻—吸光度曲线上选择两个测光点,既非反映物初始也非终点,差值用于计算结果例:苦味酸法测定肌酐,反映初30s,血清中快反映干扰物(微生物、丙酮酸、乙酰乙酸等)与碱性苦味酸反映;第二个30s要紧与肌酐反映,而且吸光度线性良好;80-120s以后,苦味酸能够与蛋白质和其他慢反映干扰物反映。
因此用第二个30s为测按时刻,有利于提高实验特异性和准确性。
1.4持续监测法也称速度法,测定酶活性或用酶法测定代谢产物时,持续选择时刻—吸光度曲线中线性期的吸光度值,并以此线性期的单位吸光度转变值△A/min计算结果二、了解免疫学查验经常使用的技术1.免疫比浊技术原理:免疫浊度法是可溶性抗原、抗体在液相中特异结合,产生必然大小的复合物,形成光的折射或吸收,测定这种折射或吸收后的透射光或散射光作为计算单位。
⽣化与分⼦⽣物学实验指导⽣化与分⼦⽣物学实验指导-()————————————————————————————————作者:————————————————————————————————⽇期:实验⼀氨基酸纸层析法⼀、实验⽬的通过氨基酸的分离,了解层析法的基本原理和操作⽅法。
⼆、实验原理纸层析法(pap er c hro mat ogr aphy )是⽣物化学上分离、鉴定氨基酸混合物的常⽤技术,可⽤于蛋⽩质的氨基酸成分的定性鉴定和定量测定。
纸层析法⼜称纸⾊谱法,是⽤滤纸为⽀持物,所⽤展层溶剂⼤多由⽔和有机溶剂组成,滤纸纤维与⽔的亲和⼒强,与有机溶剂的亲和⼒弱,因此在展层时,纸纤维上吸附的⽔分是固定相,有机溶剂是流动相。
溶剂由下向上移动的,称上⾏法;由上向下移动的,称下⾏法。
将样品点在滤纸上(此点称为原点),进⾏展层,样品中的各种氨基酸在两相溶剂中不断进⾏分配。
由于它们的分配系数不同,不同氨基酸随流动相移动的速率就不同,于是就将这些氨基酸分离开来,形成距原点距离不等的层析点。
溶质在滤纸上的移动速率⽤Rf 值表⽰:在⼀定条件下某种物质的Rf 值是常数。
Rf 值的⼤⼩与物质的结构、性质、溶剂系统、温度、湿度、层析滤纸的型号和质量等因素有关。
只要条件(如温度、展层溶剂的组成)不变,Rf 值是常数,故可根据Rf 值作定性判断。
样品中如有多种氨基酸,其中某些氨基酸的R f值相同或相近,此时如只⽤⼀种溶剂展层,就不能将它们分开。
为此,当⽤⼀种溶剂展层后,将滤纸转动90度,再⽤另⼀溶剂展层,从⽽达到分离⽬的,这种⽅法称为双向纸层析法。
氨基酸⽆⾊,可利⽤茚三酮显⾊反应,将氨基酸层析点显⾊作定性、定量⽤。
所有氨基酸及具有游离α-氨基的肽与茚三酮反应都产⽣蓝紫⾊物质,只有脯氨酸和羟脯氨酸与茚三酮反应产⽣(亮)黄⾊物质。
三、药品器材1器材层析滤纸(新华1号)、喷雾器、剪⼑、层析缸、⽑细管、电吹风、刻度尺、铅笔。
R f=原点到层析斑点中⼼的距离原点到溶剂前沿的距离2试剂(1)氨基酸溶液:赖氨酸、脯氨酸、缬氨酸溶液以及他们的混合溶液(各组分浓度0.5%)。
常见的生物化学实验方法生物化学实验是研究生物分子结构、功能和相互作用的重要手段,广泛应用于生物医学研究、药物开发和环境保护等领域。
本文将介绍一些常见的生物化学实验方法。
一、色谱技术色谱技术是一种分离和分析物质的方法,根据分子的化学性质和大小差异,将混合物分离成各个组分。
常见的色谱技术包括气相色谱(GC)、液相色谱(LC)和薄层色谱(TLC)等。
在生物化学实验中,色谱技术常用于对生物样品中的分子进行纯化和分析。
例如,气相色谱可用于分析氨基酸和脂肪酸等小分子化合物,液相色谱则可以用于分离蛋白质、核酸和多糖等生物大分子。
二、电泳技术电泳技术是利用电场作用下物质的电荷和大小差异,将混合物分离成各个组分的方法。
常见的电泳技术包括聚丙烯酰胺凝胶电泳(PAGE)、聚丙烯酰胺凝胶电泳(SDS-PAGE)和凝胶过滤电泳等。
在生物化学实验中,电泳技术常用于分离和检测蛋白质和核酸等生物大分子。
例如,聚丙烯酰胺凝胶电泳可用于分离和测定蛋白质分子量,SDS-PAGE则可以用于检测蛋白质的纯度。
三、质谱技术质谱技术是利用质量分析仪器对物质的质量和结构进行分析的方法。
常见的质谱技术包括质谱仪、飞行时间质谱(TOF-MS)和液相色谱质谱联用(LC-MS)等。
在生物化学实验中,质谱技术常用于鉴定和定量生物分子。
例如,利用质谱仪可以对蛋白质进行鉴定,通过测定样品中蛋白质的质量和碎片离子的质量谱图,确定蛋白质的氨基酸序列。
四、核酸杂交技术核酸杂交技术是利用互补的DNA或RNA序列进行结合,从而检测目标序列的方法。
常见的核酸杂交技术包括Southern blot、Northernblot和in situ hybridization等。
在生物化学实验中,核酸杂交技术常用于检测和定量特定DNA或RNA序列的存在。
例如,Southern blot可用于检测DNA片段在基因组中的分布和拷贝数,Northern blot则可用于检测特定mRNA的表达水平。
生化实验方法和技术嘿,你要是对生命的奥秘感兴趣,那生化实验方法和技术可就像一把神奇的钥匙,能打开那扇神秘的大门呢!我自己就曾经一头扎进这个奇妙的世界,和我的小伙伴们一起探索,那过程就像是一场刺激的冒险。
我记得有一次,我们要做蛋白质的提取实验。
这就好比是从一个大宝藏里,把最珍贵的宝石找出来。
我们先准备好材料,各种瓶瓶罐罐、试剂,那场面就像厨师准备做一道超级复杂的菜一样。
你看,新鲜的组织样本就像是做菜的食材,得小心翼翼地处理。
我们一边做,一边还互相打趣,“嘿,这要是搞砸了,可就像把好好的牛排煎糊了一样惨啊!”在生化实验里,电泳技术那可是相当酷的。
想象一下,那些蛋白质或者核酸分子就像一群小小的运动员,在凝胶这个跑道上赛跑。
我们给它们通上电,就像给运动员们吹起了起跑的哨子。
不同大小的分子跑得快慢不一样,这多有趣啊?我们几个眼睛都不敢眨一下,紧紧盯着那些条带,就盼着能看出点什么来。
“哇塞,你看这个条带,好清晰啊!”小伙伴兴奋地叫着,那感觉就像发现了新大陆一样。
还有PCR技术呢,这简直就是生化实验里的魔法。
它能把一小段DNA像变魔术一样复制好多好多份。
我们当时做的时候,感觉自己就像魔法师。
那些小小的引物就像是魔法咒语,能精准地找到要复制的DNA 片段。
这过程可不能有一点马虎,稍微出点差错,就像魔法失控了一样,结果可能就完全不对了。
我当时就特别紧张,一直念叨着:“可千万别出错啊,这就像走钢丝一样,一失足就完了。
”说到酶活性的测定实验,那也是很有意思的。
酶就像是一个个勤劳的小工匠,在生物体内不停地干活。
我们要测定它们的活性,就像是在考察这些小工匠的工作效率。
我们得精确地控制各种条件,温度啊,pH值啊,就像给小工匠们创造合适的工作环境一样。
有个小伙伴不小心把温度调错了一点,大家都着急了,“哎呀,这可不行啊,这就像让大冬天的建筑工人在冰天雪地里干活,效率肯定不行啊!”生化实验里的色谱技术,就像是一个超级精细的分拣机。
一、玻璃仪器的使用及清洁(一)玻璃仪器的洗涤及干燥1、一般仪器:烧杯、试管、离心管等普通玻璃仪器,可直接用毛刷蘸餐洗净刷洗,然后用自来水冲洗,直至容器内不挂水珠即可。
最后用少量蒸馏水冲洗内壁2-3次,倒置晾干即可。
2、容量分析仪器:容量瓶、滴定管及吸管等容量仪器,用后用自来水多次冲洗,如能清洁(壁不挂水珠),再用蒸馏水少量冲洗2~3次晾干即可备用。
若仍不干净附有油污等,则须于干后放入铬酸洗液内浸泡数小时,然后倒净(或捞出)洗液,用自来水充分冲洗至水不显黄色后再冲几次,最后用少量蒸馏水冲洗2~3次晾干备用。
在做酶学实验时,对仪器的清洁要求更高,因如有极微量的污物(如重金属离子)即可导致整个实验失败。
因此,必要时仪器经上述方法洗涤后,还需用稀盐酸或稀硝酸洗涤,以除去铬及其它金属离子,然后再用自来水、蒸馏水冲洗。
生化实验室常用的洗液有以下几种:(1)铬酸洗液:为最常用的洗液,由重铬酸钾、粗硫酸及水配制而成,去污力强,清洗效果好。
其配制方法有多种,可根据需要进行选择,常用的配方如下表。
重铬酸钾(g)100 60 100水(ml)750 300 200粗硫酸(ml)250 460 800清洁性能较弱较强(常用)最强配制方法为:先将重铬酸钾溶于水,再慢慢加入浓硫酸。
因配制过程产生大量热,容器需放入冷水中,边加硫酸边搅动混合。
由于产热量很大,使用玻璃容器有破裂的危险,所以最好用耐高温的陶瓷或耐酸的搪瓷容器。
洗液可多次反复使用,如效力变弱,可加入少量重铬酸钾及浓硫酸继续使用,但如果变为绿色,则不宜再用。
(2)10%尿素液:为蛋白质良好溶剂,帮适用于洗涤盛血的容器。
(3)草酸盐液:用于清洗过锰酸钾的痕迹。
(4)硝酸液:用1:1的硝酸水溶液,用于清洗CO2测定器及微量滴定管。
(5)乙二胺四乙酸二钠(EDTA-Na2)液:5~10%的EDTA-Na2液可用于洗涤器皿内无机盐类。
玻璃仪器的干燥方法可根据不同仪器的种类而定。
生物化学的研究方法和实验技术生物化学是研究生物系统中生化过程及其调控的一门学科。
在生物化学领域,研究方法和实验技术的选择对于科学研究的准确性和可靠性至关重要。
本文将介绍几种常见的生物化学研究方法和实验技术。
一、色谱法色谱法是生物化学研究中常用的一种分离和分析技术,其原理是利用样品的化学性质差异通过色谱柱将其分离。
1. 气相色谱法:适用于挥发性或可热分解的物质的分离和分析,常用于分析气体或液体样品中的有机化合物。
2. 液相色谱法:适用于研究不挥发或热不稳定的物质,常用于分析生物体内的有机物、无机物及大分子化合物等。
二、电泳法电泳法是一种将带电物质根据其电荷、分子量或带电状态的不同进行分离的方法。
1. 纸上电泳法:适用于分离和分析小分子有机化合物、氨基酸和核苷酸等。
2. 凝胶电泳法:包括聚丙烯酰胺凝胶电泳、琼脂糖凝胶电泳等,适用于分离和分析大分子化合物,如蛋白质、核酸等。
三、质谱法质谱法是一种通过测量样品中的化合物的离子质量谱来研究其分子结构和组成的方法。
1. 质谱仪:通过样品分子的电离和分析质谱仪中的离子质量谱图,可以确定样品的分子量和结构。
2. 毛细管电泳-质谱联用技术:结合毛细管电泳和质谱仪的优点,可以同时进行分离和分析,适用于复杂样品的分析。
四、核磁共振法核磁共振法通过测量核自旋在磁场中的共振吸收,研究物质的结构和性质。
1. 核磁共振波谱仪:通过测量样品中核自旋的共振吸收峰,可以确定样品的结构和成分。
2. 核磁共振成像技术:将核磁共振波谱仪的原理应用于医学影像学,可以生成人体内部组织和器官的图像。
五、同位素标记法同位素标记法是利用同位素的特性来追踪和研究生物化学过程的一种方法。
1. 放射性同位素标记法:通过将放射性同位素标记到分子中,可以追踪其在生物体内的代谢和转运过程。
2. 稳定同位素标记法:利用稳定同位素在自然界中含量相对稳定的特点,研究生物体内元素的代谢过程。
以上介绍的是生物化学研究中常用的几种方法和技术,每种方法和技术都有自己的特点和适用范围。
植物生理生化实验原理和技术植物生理生化实验旨在研究植物生命过程中的生理和生化相关現象,改进对植物的了解及应用。
以下是实验原理和常用技术。
1. 光合作用测定:光合作用是植物生理的重要过程之一,可使用光合速率仪测量光合速率。
原理是通过测量植物叶片释放或吸收的氧气量,来间接测定光合速率。
2. 蒸腾作用测定:蒸腾作用是植物水分代谢的关键环节。
可利用蒸腾速率仪测量植物叶片释放的水蒸气量,从而确定植物的蒸腾速率。
3. 细胞呼吸测定:细胞呼吸是植物细胞产能的主要途径,可以通过测量释放的二氧化碳量来测定细胞呼吸速率。
常用的测定方法有测量呼吸速率的气体分析仪或密闭系统测定二氧化碳的累积。
4. 酶活性测定:酶是植物生物化学过程中的重要催化剂。
酶活性的测定可以通过测量糖类、蛋白质、核酸等底物的代谢速率,或通过测量底物与产物之间的光学、电化学变化来实现。
常用的方法有光谱法、酶促反应连续监测法等。
5. 色素提取:植物体内的色素对光合作用和其他生化过程至关重要。
常用的色素提取方法包括酒精提取、乙醚提取等。
提取后的色素溶液可以通过紫外-可见光谱仪进行定量测定。
6. 蛋白质测定:蛋白质是植物细胞内的重要有机物。
常用的蛋白质测定方法包括巴雷特试剂法、劳氏试剂法、比色试剂法等。
通过测定样品和标准溶液的吸收值,可以计算出蛋白质的含量。
7. 酶动力学测定:酶动力学是研究酶催化作用速度的科学。
可以通过测定底物浓度、酶浓度、反应时间等因素对酶活性的影响来研究酶的催化机理。
常用的测定方法有Michalis-Menten曲线法、双倒数法等。
8. 膜透性测定:膜透性是指物质穿过细胞膜的能力。
可以通过测定溶液中离子浓度的变化,来评估膜透性的改变。
常用的测定方法有电导率法、吸光度法等。
9. RNA/DNA提取和定量:RNA/DNA是植物遗传信息的主要表达形式。
可以使用相关试剂盒从植物样品中提取RNA/DNA,然后通过紫外-可见光谱仪或荧光定量仪测定其浓度。
植物生理生化实验原理与技术植物生理生化实验是研究植物生命周期、生长发育、代谢物质合成与分解等生理生化过程的重要手段。
通过实验可以揭示植物对外界环境的适应性和调节机制,探究植物体内的生化反应和代谢途径,为植物科学研究提供实证依据。
本文将从植物生理和生化两个方面介绍相关实验原理与技术。
一、植物生理实验原理与技术1. 光合作用实验光合作用是植物体内最重要的代谢过程之一,通过光合作用,植物能够将光能转化为化学能,合成有机物质,并释放出氧气。
光合作用实验可以通过测定氧气释放量、二氧化碳吸收量、光合速率等指标来评估植物的光合能力。
实验中常用的技术包括测气法、光合速率仪等。
2. 呼吸作用实验呼吸作用是植物体内的一种氧化代谢过程,通过呼吸作用,植物能够将有机物质分解为二氧化碳和水,并释放出能量。
呼吸作用实验可以通过测定二氧化碳释放量、氧气消耗量等指标来评估植物的呼吸能力。
实验中常用的技术包括测气法、呼吸速率仪等。
3. 水分逆境实验水分是植物生长发育的重要因素之一,水分逆境实验可以模拟干旱或水浸等环境条件,研究植物对水分胁迫的响应机制。
常用的实验方法包括干旱处理、水浸处理、土壤水分测定等。
4. 盐胁迫实验盐胁迫是植物生长发育中常见的逆境因素之一,盐胁迫实验可以研究植物对盐胁迫的耐受性和适应性。
常用的实验方法包括盐溶液处理、盐浓度测定、生长指标测定等。
二、植物生化实验原理与技术1. 酶活性测定实验酶是植物体内生化反应的催化剂,酶活性测定实验可以评估酶的活力和功能。
常用的实验方法包括酶活性测定试剂盒法、酶底物转化法等。
2. 叶绿素含量测定实验叶绿素是植物体内的一种重要色素,可以吸收光能进行光合作用。
叶绿素含量测定实验可以评估植物的叶绿素合成和光合能力。
常用的实验方法包括乙醇提取法、叶绿素荧光法等。
3. 蛋白质含量测定实验蛋白质是植物体内的重要代谢产物,蛋白质含量测定实验可以评估植物的蛋白质合成和分解能力。
常用的实验方法包括布鲁氏试剂法、Lowry法等。
植物生理生化实验原理和技术
植物生理生化实验是植物学研究的基础,它能够反映植物物质合成、分解过程及信号转导等过程,对植物发育过程、功能和环境变化的实验评估有着重要的意义。
植物生理生化实验的原理和技术包括:
1、生理及生化活性的检测: (1)利用光量子产量来测定植物光合作用的特性;
(2)利用质谱(HPLC、MS)等技术测量生物分子,如氨基酸,蛋白质,糖类活性
物质的水平和变化; (3) 用酶活检测法和痕量元素检测法评价植物的生理活性。
2、植物分析技术:遗传学技术和全基因组分析:利用遗传学技术开展植物裂变、转基因、育种相关研究及全基因组分析,如农杆菌及其他病原体的基因的克隆、表达。
3、植物细胞培养技术:细胞培养技术是植物生理及生化实验的重要工具,可用于研究组织培养和细胞培养。
细胞培养包括细胞培养供体、细胞外培养和药物作用等。
4、遗传工程技术:遗传工程技术在植物研究中发挥着重要作用,用于对植物遗传组织、酵素、植物病原体等重要物质的异构性,比较、表达和发掘如基因分离、反式、克隆等技术及不同表达等技术的遗传学研究。
总的来说,植物生理生化实验的原理和技术可以用来研究植物的物质合成、组织交互、生物活性的变化及其响应机制,从而为植物学研究提供有效的理论依据及方法。
植物生理生化实验原理和技术植物生理生化实验是研究植物生长、发育和代谢过程的重要手段,通过实验可以深入了解植物的生理生化特性,为植物科学研究提供重要数据和理论基础。
本文将介绍植物生理生化实验的原理和技术,帮助读者更好地理解和开展相关实验工作。
一、植物生理生化实验原理。
1. 细胞膜通透性实验原理。
细胞膜通透性是植物细胞内外物质交换的重要途径,可通过测定不同条件下细胞对离子、小分子物质的通透性来研究细胞膜的特性。
实验原理是利用渗透压差测定物质的渗透性,或通过测定不同条件下细胞内外离子浓度的变化来间接反映细胞膜通透性。
2. 光合作用速率测定原理。
光合作用是植物生长发育的重要能量来源,测定光合作用速率可了解植物对光合作用的适应能力和养分利用效率。
实验原理是通过测定单位时间内植物释放的氧气量或二氧化碳的吸收量来反映光合作用速率。
3. 酶活性测定原理。
酶是植物生理生化过程中的重要催化剂,测定酶活性可以了解植物代谢活动的强弱和酶的特性。
实验原理是通过测定单位时间内酶催化反应产物的生成量或底物的消耗量来反映酶的活性。
二、植物生理生化实验技术。
1. 细胞膜通透性实验技术。
(1)渗透压法,将不同渗透压溶液浸泡植物组织,测定不同条件下组织体积的变化,计算渗透系数。
(2)离子浓度法,测定不同条件下细胞内外离子浓度的变化,通过离子选择电极或离子色谱仪进行分析。
2. 光合作用速率测定技术。
(1)氧气释放法,将植物组织置于含有光源的水中,测定单位时间内水中氧气含量的变化。
(2)二氧化碳吸收法,将植物组织置于密闭容器中,测定单位时间内二氧化碳浓度的变化。
3. 酶活性测定技术。
(1)酶促反应法,将酶和底物混合反应一定时间后,通过比色法或荧光法测定反应产物的含量。
(2)酶抑制法,向酶底物混合液中加入不同浓度的抑制剂,测定酶活性的变化。
通过对植物生理生化实验原理和技术的了解,可以更好地开展相关实验工作,为植物科学研究提供可靠的数据和支持。
生化分离实验总结1. 引言生化分离实验是一种常用的实验方法,用于分离和纯化生物分子,如蛋白质、核酸等。
本文将总结生化分离实验的基本原理和常用方法,并介绍实验过程中可能遇到的问题及解决方法。
2. 基本原理生化分离实验的基本原理是利用样品中不同分子的物理性质差异,通过一系列分离步骤,将目标分子从其他组分中分离出来。
常见的生化分离方法包括离心、电泳、层析、过滤等。
•离心:利用样品中不同分子的密度差异,通过旋转离心机使分子沉淀或上漂。
•电泳:利用分子在电场中的迁移速度差异,将目标分子从复杂混合物中分离出来。
•层析:利用样品中不同分子在固相材料上的亲和力差异,通过流动相使分子在固相上进行逐步分离。
•过滤:利用膜孔大小的差异,通过过滤膜将目标分子分离出来。
3. 常用方法3.1 离心离心是一种常见的生化分离方法,适用于分离沉淀物和上清液。
实验需要使用离心机,操作步骤如下:1.将待分离的样品放入离心管中。
2.调整离心机参数,如离心速度、离心时间等。
3.开始离心,分离出沉淀物和上清液。
4.将上清液转移至新离心管中,即可得到纯净物质。
3.2 电泳电泳是一种基于分子在电场中的迁移速度差异进行分离的方法。
常见的电泳方法有蛋白质电泳、核酸电泳等。
操作步骤如下:1.准备电泳仪和电泳槽,加入凝胶和电泳缓冲液。
2.将待分离的样品与电泳缓冲液混合,加入电泳槽中。
3.设置电压和电泳时间,开始电泳。
4.根据目标分子的特性,通过观察凝胶上的条带来确定目标分子的位置。
5.切下目标条带,进行后续实验操作。
3.3 层析层析是一种利用物质在固相材料上的亲和力差异进行分离的方法。
常见的层析方法有凝胶过滤层析、离子交换层析等。
操作步骤如下:1.准备层析柱和流动相。
2.将待分离的样品与流动相混合,加入层析柱中。
3.通过缓慢加入流动相,使样品分子在柱中逐步分离。
4.收集目标分子的洗脱液,并进行后续实验操作。
3.4 过滤过滤是一种利用膜孔大小差异进行分离的方法,适用于分离固体颗粒、细胞等。