受弯构件斜截面承载力计算
- 格式:ppt
- 大小:2.72 MB
- 文档页数:3
对称集中荷载作用下简支梁的主应力轨迹线(图中,实线为主拉应力轨迹线;虚线为主压应力轨迹线。
)My VS tp 2σσ=cp 2σσ=梁内任一点的应力主应力剪跨比P aP202lh ββ⋅lβl()22222qll ql M l q l βββββ=⋅−=−()1222ql ql V q l ββ=−=−x tp 12σσ=+xcp 2σσ=−1arctan 2α=στ斜截面破坏形态◆斜压破坏为受压脆性破坏;◆剪压破坏界于受拉和受压脆◆斜拉破坏为受拉脆性破坏,无腹筋梁的受剪破坏都是脆性的无腹筋梁的弯剪承载力有限,若不足以抵抗荷载产生的1. 剪跨比¾集中荷载作用下2. 腹筋的数量在一定的范围内,腹筋配筋率增大,抗剪承载力提高。
3. 混凝土强度斜截面破坏是因土强度对梁的抗剪承载力影响很大。
当剪跨比一定时,梁的抗剪承载力随混凝土强度提高而增大4. 纵筋配筋率随着纵筋的配筋率的提高,梁的抗剪承载力也增大。
1、直接作用:纵筋截面承受一定剪力(2、纵筋抑制斜裂缝的发展,增大斜裂缝间交互面的剪力传递,增加纵筋量能加大混凝土剪压区高度,从而间接提高梁的抗剪能力。
纵筋的销栓力ρ大于1.5%时,纵向受拉钢筋的配筋率()ρ0.720βρ=+5. 其他因素(1)截面形状这主要是指斜截面抗剪承载力有一定作用。
适当增加翼缘宽度,可提高抗剪承载力,但翼缘过大,增大作用逐渐减小。
另外,增大梁的宽度也可提高抗剪承载力。
与矩形截面梁相比,形截面梁的斜截面承载力一般要高我国《混凝土结构设计规范》钢筋混凝土梁斜截面抗u c ix d s sbV V V V V V =++++sb b V V =⋅为简化计算,主要考虑未开裂混凝土的抗剪作用和腹筋V u ——梁斜截面破坏时所承受的总剪力V c ——V s ——与斜裂缝相交的箍筋所承受的剪力V sb ——与斜裂缝相交的弯起钢筋所承受的剪力如令Vcs 为箍筋和混凝土共同承受的剪力,则无腹筋梁有腹筋梁若腹筋既有箍筋又有弯起钢筋,则对于有腹筋梁,由于箍筋的存在抑制了斜裂缝的开展,使得梁剪压区面积增大,致使强度和配箍率有关。
受弯构件斜截面受剪承载力计算一、有腹筋梁受剪承载力计算基本公式1.矩形、T形和Ⅰ形截面的一般受弯构件,斜截面受剪承载力计算公式为:VVc0.7ftbh01.25fyvAvh0(5-6)式中ft一混凝土抗拉强度设计值;b一构件的截面宽度,T形和Ⅰ形截面取腹板宽度;h0一截面的有效高度;fyv一箍筋的抗拉强度设计值;Av一配置在同一截面内箍筋各肢的全部截面面积,AvnAv1;n一在同一截面内箍筋的肢数;Av1一单肢箍筋的截面面积;一箍筋的间距。
2.集中荷载作用下的独立梁(包括作用多种荷载,且其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况),斜截面受剪承载力按下式计算:VVcA1.75ftbh0fyvvh01.0(5-7)式中一剪跨比,可取a/h0,a为计算截面至支座截面或节点边缘的距离,计算截面取集中荷载作用点处的截面。
当小于1.5时,取1.5;当大于3.0时,取3.0。
独立梁是指不与楼板整浇的梁。
构件中箍筋的数量可以用箍筋配箍率v表示:vAvb(5-8)3.当梁内还配置弯起钢筋时,公式(5-4)中Vb0.8fyAbin式中(5-9)fy一纵筋抗拉强度设计值;Ab一同一弯起平面内弯起钢筋的截面面积;一斜截面上弯起钢筋的切线与构件纵向轴线的夹角,一般取45o,当梁较高时,可取60。
剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力一般都能达到屈服强度,但是拉应力可能不均匀。
为此,在弯起钢筋中考虑了应力不均匀系数,取为0.8。
另外,虽然纵筋的销栓作用对斜截面受剪承载力有一定的影响,但其在抵抗受剪破坏中所起的作用较小,所以斜截面受剪承载力计算中没有考虑纵筋的作用。
二、混凝土的受剪承载力可以抵抗斜截面的破坏,可不进行斜截面承载力计算,仅需按构造要求配置箍筋的条件oV0.7ftbh0或(5-10)V1.75ftbh01.0(5-11)三、计算公式的适用范围(上限和下限)l.截面限制条件当配箍特征值过大时,箍筋的抗拉强度不能发挥,梁的斜截面破坏将由剪压破坏转为斜压破坏,此时,梁沿斜截面的抗剪能力主要由混凝土的截面尺寸及混凝土的强度等级决定,而与配筋率无关。
受弯构件斜截面承载力计算公式是依据斜截面构件是指构件角度轴线和主轴线之间形成的夹角,这种构件在很多场合下都有着广泛的使用,但是在受力分析中,很多结构设计中都会涉及到斜截面构件的受力分析。
因此,计算斜截面构件的承载力非常重要,在这里我们将介绍受弯构件斜截面承载力计算公式。
一般来讲,受弯构件斜截面承载力的计算,要考虑力学要求,假设受弯构件的斜截面的宽度为w,厚度为h,内轴线半径为r,外轴线半径为R,轴向反力作用下,轴向应力计算公式为σ=F/A,A为断面截面积,其计算公式为:A = (R- r)h +wr。
根据Gao&Yang(2005)的研究,斜截面受弯构件的承载力由以下公式计算:F=FoC%Fo=∫-1/r~1/Rf(x)dx其中:Fo=πWh(R-r)/2f(x)= (R2-r2-2x2)/2(R2-x2)(r2-x2)以上是受弯构件斜截面承载力计算公式。
取极限值后,可以得到有限的载荷力值,其计算结果取决于斜截面构件的尺寸以及各个参数的值。
本文简要介绍了受弯构件斜截面承载力计算的方法,进行计算前有必要确定各个参数值,只有这样才能得到合理的结果,从而更好地为结构设计提供支持。
受弯构件斜截面承载力计算是一项复杂而又艰巨的工作,需要综合多个方面的因素进行参数分析,全面考虑结构的构造、受力情况和材料性能等因素,以确定计算结果的合理性。
一般情况下,斜截面构件的受弯设计不仅仅考虑此受力分析,还要考虑其他因素,比如尺寸变形等。
此外,多次实际应用表明,为了确保斜截面构件的安全性能,应当在斜截面构件承载力分析时考虑相关变形影响及材料疲劳寿命。
尤其是对于极端条件下的受力分析,更应当加以考虑,以提高受弯构件斜截面承载力的计算精度。
总之,受弯构件斜截面承载力的计算是一项重要的工作,必须仔细分析,全面考虑各个因素,以达到计算精度较高的要求,确保结构的安全可靠性。
经过以上的介绍,受弯构件斜截面承载力计算公式已经有了一定的了解,熟悉这种计算方法可以更好地满足结构设计的需求,为可靠和安全的结构设计提供必要的理论支撑和技术保障。
4 受弯构件斜截面承载力计算1 当仅配有箍筋时,对矩形、T 形和I 形截面的一般受弯构件斜截面受剪承载力计算采用下列公式:0025.17.0h s A f bh f V V sv yv t cs +=≤ (4-1)式中 V ——构件斜截面上的最大剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;A sv ——配置在同一截面内箍筋各肢的全部截面面积,A sv =nA sv1;n ——在同一截面内箍筋肢数;A sv1——单肢箍筋的截面面积;s ——沿构件长度方向的箍筋间距;f t ——混凝土轴心抗拉强度设计值;f yv ——箍筋抗拉强度设计值。
b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。
2 对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的 75%以上的情况)的矩形、T 形和I 形截面的独立梁,斜截面受剪承载力计算按下列公式计算:00175.1h s A f bh f V V sv yv t cs ++=≤λ (4-2)式中λ——计算截面的计算剪跨比,可取λ= a /h 0, a 为集中荷载作用点至支座截面或节点边缘的距离;当λ<l.5时,取入= 1.5;当λ>3时,取λ=3,此时,在集中荷载作用点与支座之间的箍筋应均匀配置。
3 对于配有箍筋和弯起钢筋的矩形、T 形和I 形截面的受弯构件,其受剪承载力按下列公式计算:V ≤sb cs u V V V +==V cs +0.8f y A sb sina s (4-3)式中 V ——在配置弯起钢筋处的剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;f y ——弯起钢筋的抗拉强度设计值;A sb ——同一弯起平面内弯起钢筋的截面面积;αs ——弯起钢筋与构件纵轴线之间的夹角一般情况αs =45o ,梁截面高度较大时,()mm h 800≥取αs =60o 。