求复合函数的单调区间
- 格式:ppt
- 大小:512.00 KB
- 文档页数:15
复合函数单调区间
复合函数的单调性可以通过分析各个函数的单调性来得到。
如果函数f(x) 和g(x) 都是在某个区间上单调递增或单调递减的,则复合函数 h(x) = f(g(x)) 在该区间上也是单调递增或单调递减的。
具体来说,设函数 f(x) 在区间 I 上是单调递增或单调递减的,
函数 g(x) 在区间 J 上是单调递增或单调递减的。
如果区间 J 的值域是区间 I 的子集,则复合函数 h(x) = f(g(x)) 在区间 J 上也
是单调递增或单调递减的。
举个例子,假设函数 f(x) = x^2,在区间I = [0, ∞) 上是单调递
增的;函数 g(x) = x+1,在区间 J = (-∞, ∞) 上是单调递增的。
由于区间 J 的值域 (-∞, ∞) 包含了区间 I,所以复合函数 h(x) =
f(g(x)) = (x+1)^2 在整个区间 J 上都是单调递增的。
需要注意的是,这里的结果只适用于两个函数的单调性相互影响的情况。
如果函数 f(x) 和 g(x) 的单调性没有明显的关系,
那么复合函数的单调性也很难确定。
在这种情况下,可以考虑绘制函数图像或利用导数分析来判断复合函数的单调性。
序轴法——复合函数单调区间的一种简捷求法复合函数是高中数学中的一类重要函数,讨论复合函数的单调性,求出其单调区间是复合函数问题中的一类重要问题。
而一些书刊上对复合函数单调区间的求法过于繁琐,本文介绍一种求复合函数单调区间的简捷方法,供大家参考。
本文介绍的复合函数单调区间求法的理论依据是下面的 定理(判定定理):若)(,),(),(1211x x x y F u F u F n n +=== 都是单调函数,则n 次复合函数][}{)(121x y F F F n += 在其定义域内也是单调函数,且它为增函数的充要条件是),(1x y F=),(21x Fu =)(,1x F u n n += 中减函数的个数为偶数;它为减函数的充要条件是)(,),(),(1211x x x y F u F u F n n +=== 中减函数的个数为奇数。
[]1下面我们先通过一个例子来说明具体的方法。
例1. 已知x x x f 228)(-+=,若)2()(2x f x g -=,求函数)(x g 的单调区间。
(89年高考理科(11)改编--原题为选择题)解:令t=2x 2-,则82)(2++-=t t f t ,故)(x g 是由这两个函数复合而成的,定义域为实数集R 。
当,1<t 即1122-<⇔<-x x 或1>x 时,)(t f ; 当,1≥t 即11221≤≤-⇔-≥x x 时, )(t f ; 当0<x 时,)(x t ;当0≥x 时,)(x t 。
将-1,0.1按大小顺序标在以向右为正方向的有向直线上(由于不考虑单位,只考虑顺序,故称这条直线为“序轴”),再把各层函数的增减性用升、降箭头标在相应区间上方,然后,在序轴下方的相应区间,根据复合函数单调性的判定定理,用箭头标出复合函数的单调性。
如(图1))(x t : )(t f :)(x g : -1 0 1 x(图1)由图1可知,)(x g 的递增区间为](1,-∞-,[0,1];递减区间为(-1,0),(1,+)∞。
序轴法——复合函数单调区间的一种简捷求法复合函数是高中数学中的一类重要函数,讨论复合函数的单调性,求出其单调区间是复合函数问题中的一类重要问题。
而一些书刊上对复合函数单调区间的求法过于繁琐,本文介绍一种求复合函数单调区间的简捷方法,供大家参考。
本文介绍的复合函数单调区间求法的理论依据是下面的定理(判定定理):若)(,),(),(1211x x x y F u F u F n n +=== 都是单调函数,则n 次复合函数][}{)(121x y F F F n += 在其定义域内也是单调函数,且它为增函数的充要条件是),(1x y F =),(21x F u =)(,1x F u n n += 中减函数的个数为偶数;它为减函数的充要条件是)(,),(),(1211x x x y F u F u F n n +=== 中减函数的个数为奇数。
[]1下面我们先通过一个例子来说明具体的方法。
例1. 已知x x x f 228)(-+=,若)2()(2x f x g -=,求函数)(x g 的单调区间。
(89年高考理科(11)改编--原题为选择题)解:令t=2x 2-,则82)(2++-=t t f t ,故)(x g 是由这两个函数复合而成的,定义域为实数集R 。
当,1<t 即1122-<⇔<-x x 或1>x 时,)(t f ;当,1≥t 即11221≤≤-⇔-≥x x 时, )(t f ; 当0<x 时,)(x t ;当0≥x 时,)(x t 。
将-1,0.1按大小顺序标在以向右为正方向的有向直线上(由于不考虑单位,只考虑顺序,故称这条直线为“序轴”),再把各层函数的增减性用升、降箭头标在相应区间上方,然后,在序轴下方的相应区间,根据复合函数单调性的判定定理,用箭头标出复合函数的单调性。
如(图1))(x t :)(t f :)(x g :x(图1)由图1可知,)(x g 的递增区间为](1,-∞-,[0,1];递减区间为(-1,0),(1,+)∞。
复合函数类型一:指数式讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性.解:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.举一反三:1.求函数2323x x y -+-=的单调区间. 【解析】设u=-x 2+3x-2, y=3u ,其中y=3u 为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减,则2323x x y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.2.求函数2-2()(01)x x f x a a a =>≠其中,且的单调区间. 【解析】当a>1时,外层函数y=a u 在()-∞+∞,上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)x xf x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数;当0<a<1时,外层函数y=a u 在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.类型二:对数式1.求函数y=log 0.5(x 2+4x+3)的单调区间.解析:令y= log 0.5u ,u= x 2+4x+3,由x 2+4x+3>0知函数的定义域为),1()3,(∞+-⋃--∞∈x ,因y= log 0.5u 在u ∈(0,+∞)上是减函数,而u= x 2+4x+4在x ∈(-∞,-3)上是减函数,在(-1,+ ∞)上是增函数,根据复合规律知,函数y=log 0.5(x 2+4x+4) 在x ∈(-∞,-3)上是增函数;在x ∈(-1,+ ∞)上是减函数.举一反三:【变式1】函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是( ).A .(1,+∞)B .(0,1)C.⎝⎛⎭⎪⎫0,13 D.(3,+∞)解析:由于a >0,且a ≠1,∴u =ax -3为增函数,∴若函数f (x )为增函数,则f (x )=log a u 必为增函数,因此a >1,又u =ax -3在[1,3]上恒为正,∴a -3>0,即a >3. 【变式2】求函数()22log 4y x =+的单调区间.【解析】设24t x =+,则244t x =+≥,∵ y=2log t 为增函数,2222log log (4)log 42t x ∴=+≥=()22log 4y x ∴=+的值域为[)2,+∞.再由:22log (4)y x =+的定义域为R24t x ∴=+在()0,+∞上是递增而在(),0-∞上递减,而2log y t =为增函数∴ 函数y=22log (4)x +的减区间为(),0-∞,增区间为()0,+∞.。
复合函数单调区间的求法汪 卫 国(孝昌二中,湖北 432900)函数的单调性是函数的最重要性质之一,它有很广泛的应用,在整个高中数学中占有重要的地位,每年全国各地的高考试题几乎都会涉及到函数的单调性,而且多数情况下都是考察难易程度不同的复合函数的单调性,因此,掌握复合函数单调区间的求法就显得尤为重要。
本文先通过介绍求解复合函数单调区间的一般步骤,再结合一些相应的例题,以帮助同学们切实掌握复合函数单调区间的求法。
定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。
求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行:(1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =;(2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等;(3) 令内层函数A x g u ∈=)(,求出x 的取值范围M; (4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数)]([x g f y =的一个单调区间;若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间;(5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性;(6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。
若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。
例1 求函数2)21(-=x y 的单调区间 解 原函数是由外层函数u y =和内层函数2)21(-=x u 复合而成的;易知)0[∞+,是外层函数u y =的单调增区间; 令02)21(≥-=x u ,解得x 的取值范围为]1,(--∞; 由于]1,(--∞是内层函数2)21(-=x u 的一个单调减区间,于是]1,(--∞便是原函数的一个单调区间;根据复合函数“同增异减”的复合原则知,]1,(--∞是原函数的单调减区间。
复合函数求单调区间定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。
求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行:(1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =;(2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等;(3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ;(4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数)]([x g f y =的一个单调区间;若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间;(5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性;(勿忘定义域)(6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。
若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。
例题:求函数2)21(-=x y 的单调区间 解 原函数是由外层函数u y =和内层函数2)21(-=x u 复合而成的;易知)0[∞+,是外层函数u y =的单调增区间; 令02)21(≥-=xu ,解得x 的取值范围为]1,(--∞; 由于]1,(--∞是内层函数2)21(-=xu 的一个单调减区间,于是]1,(--∞便是原函数的一个单调区间;根据复合函数“同增异减”的复合原则知,]1,(--∞是原函数的单调减区间。
例2 求函数)23(log 221x x y --=的单调区间. 解 原函数是由外层函数u y 21log =和内层函数223x x u --=复合而成的; 易知),0(+∞是外层函数u y 21log =的单调减区间; 令0232>--=x x u ,解得x 的取值范围为)1,3(-;结合二次函数的图象可知)1,3(-不是内层函数223x x u --=的一个单调区间,但可以把区间)1,3(-划分成内层函数的两个单调子区间]1,3(--和)1,1[-,其中]1,3(--是其单调增区间,)1,1[-是其单调减区间;于是由复合函数“同增异减”的复合原则可知,]1,3(--是原函数的单调减区间,)1,1[-是原函数的单调增区间。