天然气制合成氨简介
- 格式:ppt
- 大小:2.48 MB
- 文档页数:105
合成氨工艺简介工艺危险特点:1 高温、高压使可燃气体爆炸极限扩宽,气体物料一旦过氧(亦称透氧),极易在设备和管道内发生爆炸。
2 高温、高压气体物料从设备管线泄露时会迅速膨胀与空气混合形成爆炸性混合物,遇到明火或因郜流速物料与裂(喷)口处摩擦产生静电火花引起着火和空间爆炸。
3 气体压缩机等转动设备在高温下运行会使润滑油挥发裂解,在附近管道内造成积炭,可导致积炭燃烧和爆炸。
4 高温、高压可加速设备金属材料发生蠕变、改变金相组织,还会加剧氢气、氮气对钢材的氢蚀和渗氮,加剧设备的疲劳腐蚀,使其机械强度减弱,引发物理爆炸。
5 液氨大规模事故性泄露会形成低温云团引起大范围人群中毒,遇明火还会发生空间爆炸。
合成氨指由氮和氢在高温高压和催化剂存在下直接合成氨,为一种基本无机化工流程。
现代化学工业中,氨是化肥工业和基本有机化工的主要原料。
工艺流程1 原料气制备(制备H2、CO、N2的粗原料气)1-1煤气化煤气化是用气化剂对煤或焦炭等固体燃料进行热加工,使其转变为可燃性气体的过程,简称造气。
气化剂主要是水蒸气、空气(或氧气)及它们的混合气体。
对于固体原料煤和焦炭,通常采用气化的方法制取合成气;空气煤气:以空气为气化剂制取的煤气,主要成分为N2和CO2。
合成氨生产中也称之为吹风气。
水煤气:以水蒸气为气化剂制得的煤气,主要成分H2和CO。
混合煤气:以空气和适量水蒸气为气化剂。
半水煤气:以适量空气和水蒸气做气化剂,所得气体组成符合([H2]+[CO])/[N2]=3.1~3.2的混合煤气,即合成氨的原料气。
1-1-1 以空气为气化剂-空气煤气,其主要成分为空气和二氧化碳C + O2 = CO2C + 1/2O2 = COC + CO2 = 2COCO + 1/2O2 = 2CO21-1-2 以水蒸气为气化剂-水煤气,其主要成分为氢气和一氧化碳。
C + H2O = CO + H2C + 2H2O = CO2 + 2H2CO + H2O = CO2 + H2C + 2H2 = CH41-1-3 间歇式生产半水煤气1-1-3-1固定床煤气发生炉右图为间歇式固定床煤气发生炉燃料层分区示意图。
1. 合成氨工业(1)简要流程(2)原料气的制取N2:将空气液化、蒸发分离出N2或将空气中的O2与碳作用生成CO2,除去CO2后得N2。
H2:用水和燃料(煤、焦炭、石油、天然气)在高温下制取。
用煤和水制H2的主要反应为:(3)制得的H2、N2需净化、除杂质,再用压缩机制高压。
(4)氨的合成:在适宜条件下,在合成塔中进行。
(5)氨的分离:经冷凝使氨液化,将氨分离出来,提高原料的利用率,并将没有完全反应的N2和H2循坏送入合成塔,使之充分利用。
2.合成氨条件的选择(1)合成氨反应的特点:合成氨反应是一个放热的、气体总体积缩小的可逆反应:(2)合成氨生产的要求:合成氨工业要求:○1反应要有较大的反应速率;○2要最大限度的提高平衡混合物中氨气的含量。
(3)合成氨条件选择的依据:运用化学反应速率和化学平衡原理的有关知识,同时考虑合成氨生产中的动力、材料、设备等因素来选择合成氨的适宜生产条件。
反应条件对化学反应速率的影响对平衡混合物中NH3的含量的影响合成氨条件的选择增大压强有利于增大化学反应速率有利于提高平衡混合物中NH3的产量压强增大,有利于氨的合成,但需要的动力大,对材料、设备等的要求高,因此,工业上一般采用20MPa—50MPa的压强升高温度有利于增大化学反应速率不利于提高平衡混合物中NH3的产量温度升高,化学反应速率增大,但不利于提高平衡混合物中NH3的含量,因此合成氨时温度要适宜,工业上一般采用500℃左右的温度(因该温度时,催化剂的活性最强)使用催化剂有利于增大化学反应速率没有影响催化剂的使用不能使平衡发生移动,但能缩短反应达到平衡的时间,工业上一般选用铁触媒作催化剂,使反应在尽可能低的温度下进行。
○1温度:500℃左右○2压强:20MPa—50MPa ○3催化剂:铁触媒除此之外,还应及时将生成的氨分离出来,并不断地补充原料气,以有利合成氨反应。
(6)合成氨生产示意图3.解化学平衡题的几种思维方式(1)平衡模式思维法(三段思维法)化学平衡计算中,依据化学方程式列出“起始”“变化”“平衡”时三段各物质的量(或体积、或浓度),然后根据已知条件建立代数式等式而进行解题的一种方法。
合成氨工艺流程在200MPa的高压和500℃的高温和催化剂作用下,N2+3H2====2NH3,经过压缩冷凝后,将余料在送回反应器进行反应,合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。
世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。
合成氨主要用作化肥、冷冻剂和化工原料生产方法生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
①天然气制氨。
天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。
以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。
空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。
随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。
硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。
液氨常用作制冷剂。
贮运商品氨中有一部分是以液态由制造厂运往外地。
此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。
液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。
液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运合成氨是以碳氨为主要原料, 我司可承包的合成氨生成成套项目, 规模有4×104 吨/年,6×104 吨/年, 10×104 吨/年, 30×104 吨/年, 其产品质量符合中国国家标准.1. 工艺路线:以无烟煤为原料生成合成氨常见过程是:造气-> 半水煤气脱硫-> 压缩机1,2工段-> 变换-> 变换气脱硫->压缩机3段-> 脱硫->压缩机4,5工段-> 铜洗-> 压缩机6段-> 氨合成-> 产品NH3采用甲烷化法脱硫除原料气中CO. CO2 时, 合成氨工艺流程图如下:造气->半水煤气脱硫->压缩机1,2段->变换-> 变换气脱硫-> 压缩机3段->脱碳-> 精脱硫->甲烷化->压缩机4,5,6段->氨合成->产品NH32. 技术指标:(1) 原料煤: 无烟煤: 粒度15-25mm 或25-100mm固定75%蒸汽: 压力0.4MPa, 1-3MPa(2) 产品: 合成氨:氨含量(99.8%)残留物含量(0.2%)3. 消耗定额: ( 以4×104 吨/年计算)(1) 无烟煤( 入炉) : 1,300kg(2) 电: 1,000KWH( 碳化流程), 1,300KWH( 脱碳流程)(3) 循环水: 100M3(4) 占地: 29,000M24. 主要设备:(1) 造气炉(2) 压缩机(3) 铜洗(4) 合成塔。
以天然气为原料合成氨摘要:合成氨工业诞生于本世纪初,其规模不断向大型化方向发展。
生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。
以天然气为原料,天然气的主要成分为甲烷,约占90%以上,在铁猛脱硫剂和氧化锌脱硫剂的作用下,将天然气中的无机硫和有机硫脱除到0.5ppm以下,配入一定量的水蒸气和空气分别在一段转化触煤和一定温度下将甲烷转化为氢气,制取氨合成所需的氢气和氮气。
合成氨反应式如下:N2+3H2=2NH3关键字:合成氨工艺流程天然气原料气1. 概念氨是一种无色气体,有强烈的刺激气味。
极易溶于水,常温常压下1体积水可溶解700倍体积氨。
氨对地球上的生物相当重要,它是所有食物和肥料的重要成分。
氨也是所有药物直接或间接的组成。
氨有很广泛的用途,同时它还具有腐蚀性等危险性质。
由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。
由于氨可以提供孤对电子,所以它也是一种路易斯碱。
20世纪初,工业上开发了氰化法和合成氨法生产氨,前者因能耗远大于后者而被淘汰。
目前,世界上的氨,除从焦炉气中回收一些外,绝大部分是在高压,高温和催化剂存在下由氮气和氢气合成制得。
氮气主要来源于空气;氢气主要来源于含氢和一氧化碳的合成气。
由氮气和氢气组成的混合气即为合成氨原料气。
从燃料化工来的原料气含有硫化合物和碳的氧化物,它们对于合成氨的催化剂是有毒物质,在氨合成前要经过净化处理。
德国化学家哈伯1909年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的直接合成法。
反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。
合成氨反应式如下:N2+3H2=2NH3合成氨的原料可分为固体原料,液体原料和气体原料。
经过不断地发展,合成氨技术趋于成熟,形成了以有特色的工艺流程。
其工艺流程大都分为三步:即原料气制备过程,净化过程以及氨合成过程。
合成氨工艺及反应原理简介合成氨工艺采用烃类蒸汽转化法。
天然气经加压至4.05MPa,经预热升温在脱硫工序脱硫后,与水蒸汽混合,进入一段转化炉进行转化制H2,随后进入二段转化炉,在此引入空气,转化气在炉内燃烧放出热量,供进一步转化,同时获得N2。
工艺气经余热回收后,进入变换系统,将CO变为CO2,随后经脱碳、甲烷化反应除去CO和CO2,分离出的CO2送往尿素工艺。
工艺气进入分子筛系统除去少量水份,为合成氨提供纯净的氢氮混合气。
氢氮混合气经压缩至14MPa,送入合成塔进行合成氨的循环反应,少量惰性气体经过普里森系统分离进行回收利用。
产品氨送往尿素工艺和氨罐保存。
合成氨工艺的5个过程:1、天然气脱硫:R-SH+H2=RH+H2S H2S+ZnO=H2O(汽)+ZnS2、转化CH4+H20(汽)=CO+3H2 CH4+2H2O(汽)=CO2+4H2 (H2+ 1/2 O2=H2O)3、变换:CO+H2O(汽)=CO2+H24、脱碳:1)K2CO3+CO2+H2O⇔2KHCO32KHCO3⇔K2CO3+CO2+H2O2)甲烷化:CO+3H2=CH4+H2O CO2+4H2=CH4+2H2O5、N2+3H2=2NH31 脱硫系统工艺流程及原理1.1流程天然气进入界区后分为两路:一路作原料气,另一路作燃料气。
原料天然气进入原料气压缩机吸入罐116-F,除去携带的液体,经过原料气压缩机102-J被压缩到4.05MPa(G),经过原料气预热盘管预热到399℃,接着原料气与来自合成气压缩机103-J一段的富氢气混合。
经过Co-Mo加氢器101-D把有机硫转换成H2S,将3 ml/m3的有机硫转化为无机硫,原料气中总硫为30~90ml/m3左右,经氧化锌脱硫槽脱硫至总硫小于0.5mg/m3。
随后进入氧化锌脱硫槽,天然气中的硫化物被ZnO所吸附,制得合格原料气。
ZnO脱硫槽共二个,可以串联或并联操作,一般串联操作。
阀门及管线的配置可以使任何一个脱硫槽停止使用而另一个继续运转。