小数的速算与巧算
- 格式:doc
- 大小:31.00 KB
- 文档页数:2
五年级奥数教案第一讲小数的速算与巧算第一课时教学内容:运算定律的简单运用教学目的:通过教学使学生进一步掌握乘法的交换律、结合律、乘法对加法的分配律,等运算定律.并利用这些运算定律进行巧算与速算。
教学重点:进一步理解并能运用运算定律进行计算.教学难点:在理解的基础上进行灵活运用。
教学过程:一复习运算定律1、乘法的交换律 a×b=b×a2、乘法的结合律(a×b)×c=a×(b×c)3、乘法的分配律 (a+b)×c=a×c+b×c乘法的分配律,不公适用两个加数的和,也适用于两个数的差,而且适用于多个数的和。
也可以逆向使用。
如果把乘号改成除号,不能逆向使用。
二、一些特殊的计算5×2=10 25×4=100 125×8=10000。
5×2=1 0.25×4=1 0。
125×8=1三、运用定律例1 1.25×(1.7×8)因为1.25与8的乘积为10。
=1。
25×8×1.7 先去括号,利用乘法的交换律和结合律,=10×1.7 求出1。
25与8的积.再乘1。
7.=17例2 0。
25×32×12。
5 看到25想到4,看到125想到8,=0。
25×4×8×12.5 把32看成为4与8的乘积.=0.25×4×(8×12。
5)分别求出0。
25与4的积,12。
5与8的积.=1×100100例3 12。
5×(10+0。
8)因为12。
5与0.8的乘积为整十数,=12.5×10+12。
5×0。
8 直接运用乘法的分配律。
=125+10=135例4 (20-0。
4)×2。
5 直接运用乘法的分配律=20×2。
小数的速算与巧算基本方法【知识概述】小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:例1 计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×882、拆拼法简算:例2 计算:(1)1.25×1.08 (2)7.5×9.9练习:(1)2.5×10.4 (2)3.8×0.99(3)1991+199.1+19.91+1.9914、转化法简算:例4 5.7×9.9+0.1×5.7练习:(1)4.6×99+4.6 (2)7.5×101-7.55、运用定律不用计算,根据已知条件直接写出下面题的结果。
已知0.26×4.5=1.17计算:2.6×4.5=() 0.26×45=() 0.026×0.45=() 2.6×0.45=() 260×45=()例5 1240×3.4+1.24×2300+12.4×430练习:4.65×32-2.5×46.5-70×0.4655.7×10.1-0.575、设数法简算:例6(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)练习:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)例6 计算:1.999×2003-1.998×2004练习:19.94×2010-19.93×2011训练A用简便方法计算下面各题(1)1.9×2×0.2×2.5 (2)0.8×0.04×12.5×25(3)16.08×0.125 (4)99×73.2+73.2(5)0.25×4.73×0.125×320 (6)99.6+99.8+99.9+100+100.1 (7)100×7.9+184×2.1+84×2.9训练B(1)4.7×2.8+3.6×9.4 (2)6.3×27+1.9×21(3)3.75×4.8+62.5×0.48 (4)1250×0.037+0.125×160+12.5×2.7(5)3.6×232-36×13.2-360 (6)3.42×76.3+7.63×57.6+9.18×23.7训练C(1)1.23×2.45-1.22×2.46(2)(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)。
小数的巧算与速算在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏例1. 简算:9968068...⨯+ 分析:题中,9.9接近10,且6.8和0.68都是有6、8这两个数字。
解法一: 解法二:9968068...⨯+ 9968068...⨯+=99×0.68+1×0.68 =9.9×6.8+0.1×6.8=(99+1) ×0.68 =(9.9+0.1) ×6.8=100×0.68 =10×6.8=68 =68练习1:(1)272.4×6.2+2724×0.38 (2)1.25×6.3+37×0.125(3) 7.24×0.1+0.5×72.4+0.049×724(4) 6.49×0.22+258×0.0649+5.3×6.49+64.9×0.19例2:(2+0.48+0.82)×(0.48+0.82+0.56)-(2+0.48+1.38) ×(0.48+0.82)分析:整个式子是乘积之差的形式,它们构成很有规律,如果把2+0.48+0.82 用A 表示,把0.48+0.82用B 表示,则原式化为A ×(B+0.56)-(A+0.56) ×B,再利用乘法分配律计算,大大简化了计算过程.解: 设A=2+0.48+0.82 B=0.48+0.82,原式=A ×(B+0.56)-(A+0.56) ×B=A ×B+A ×0.56-(A ×B+0.56×B)= A ×B+A ×0.56- A ×B-0.56×B=0.56×(A-B)=0.56×2=1.12练习2:(1)(3.7+4.8+5.9) ×(4.8+5.9+7)-(3.7+4.8+5.9+7) ×(4.8+5.9)(2) (4.6+4.8+7.1) ×(4.8+7.1+6)-( 4.6 +4.8+7.1+6) ×(4.8+7.1)例3 : 计算76.8÷56×14分析:这道题是乘除同级运算,解答时,利用添括号法则,在“÷”后面添括号,括号里面要变号,“×”变“÷”,“÷”变“×”。
小数的运算技巧【知能大展台】小数的计算技巧指小数的速算与巧算,它除了可以灵活运用整数四则运算中的定律、性质外,还可以根据小数本身的特点,利用和、差、积、商的变化规律,使计算简便。
1.一个数乘以(或除以)0.5、0.25、0.125,只需要将这个数除以(或乘以)2、4、8。
2.积不变的规律:一个因数扩大若干倍,另一个因数同时缩小相同的倍数,积不变。
3.在没有括号的小数乘除法混合运算中,把乘数、除数连同它前面的运算符号调换位置,结果不变。
4.在有括号的小数乘除法混合运算中,如果括号前面是乘号,去掉括号结果不变;如果括号前面是除号,去掉括号后,应把原括号内的称号变为除号,除号变为乘号,结果才不变。
【试金石】例1:计算:9.996+29.98+169.9+3999.5【分析】这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。
当然要记住,“凑整”时增加了多少要减回去。
【解答】9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376【智力加油站】【针对性训练】计算 3.997+19.96+1.9998+199.7【试金石】例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01【分析】算式中的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而算式中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
第一章小数的巧算第一节小数的巧算小数的计算技巧指小数运算的速算与巧算。
它除了可以灵活运用整数四则计算中我们已经学过的许多速算与巧算的方法外,还可以利用小数本身的特点。
计算时要注意审题,善于观察题目中数字的特征,灵活地运用小数的性质及运算性质、运算技巧,确定合理简便的算法。
例1 计算:5.32+2.06+19.4+1.84+7.68(36.3)例2 计算:1-0.1-0.01-0.001-……-0.000000001 【0.888888889】例3 计算:7.63-4.98+5.26+1.89【9.8 】例6 计算:0.125÷(3.6÷80)×0.18【0.5】想一想,下面各题怎样计算比较简便?(1)4.92÷0.25÷0.4(2)47.85÷6.38×0.638(3)36.363÷(1.2121×4)(4)(0.6×1.38)÷(13.8×4.8)例7 计算:312.5×12.3-312.5×6.9+312.5 【2000】例8 计算:2000×199.9-1999×199.8【399.8】例9 计算:12.9÷0.72+43.5÷3.6=30例10 计算:45.3×3.2+578×0.68+12×9.25=649例11 计算:(1)2.5+3.2+7.5+2.8=16(2)18.6-9.3-1.6-2.7 =5例12 计算:(1)17.483717.481917,4882 =1748(2)6.25×0.16+264×0.0625+5.2×6.25+0.625×20 =62.5例13 计算:0.125×0.25×0.5×64=1例14 计算:(1)0.525÷13.125÷4×85.2 =0.852(2)(4.8×7.5×8.1)÷(2.4×2.5×2.7)=18例15计算:0.9+9.9+99.9+999.9+9999.9+99999.9+999999.9 =1111110.3例16 在□内填入适当的数,使等式成立:73.06-[□×(4.465+5.535)+42.06]=3 例17 小明在计算某数除以3.75时,把除号看成了乘号,得结果225,求这道题的正确答案。
小数的速算与巧算基本方法【知识概述】小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:例1 计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25(3)1.25×882、拆拼法简算:例2 计算:(1)1.25×1.08 (2)7.5×9.9 练习:(1)2.5×10.4 (2)3.8×0.99 (3)1991+199.1+19.91+1.9914、转化法简算:例4 5.7×9.9+0.1×5.7练习:(1)4.6×99+4.6 (2)7.5×101-7.55、运用定律不用计算,根据已知条件直接写出下面题的结果。
已知0.26×4.5=1.17计算:2.6×4.5=()0.26×45=()0.026×0.45=()2.6×0.45=()260×45=()例51240×3.4+1.24×2300+12.4×430练习:4.65×32-2.5×46.5-70×0.4655.7×10.1-0.575、设数法简算:例6(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)练习:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)例6计算:1.999×2003-1.998×2004练习:19.94×2010-19.93×2011训练A用简便方法计算下面各题(1)1.9×2×0.2×2.5 (2)0.8×0.04×12.5×25(3)16.08×0.125 (4)99×73.2+73.2(5)0.25×4.73×0.125×320 (6)99.6+99.8+99.9+100+100.1 (7)100×7.9+184×2.1+84×2.9训练B(1)4.7×2.8+3.6×9.4 (2)6.3×27+1.9×21(3)3.75×4.8+62.5×0.48 (4)1250×0.037+0.125×160+12.5×2.7(5)3.6×232-36×13.2-360 (6)3.42×76.3+7.63×57.6+9.18×23.7训练C(1)1.23×2.45-1.22×2.46(2)(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)Welcome To Download !!!欢迎您的下载,资料仅供参考!。
小数四则运算知识框架一、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)二、乘法凑整与运算性质思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=⨯=,520100⨯=,81251000⨯=(去8数,重点记忆)123456799111111111⨯⨯=(三个常用质数的乘积,重点记忆)711131001理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)三、乘、除法混合运算的性质1)商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ,0()()()()0÷=⨯÷⨯=÷÷÷≠a b a n b n a m b m mn≠2)在连除时,可以交换除数的位置,商不变.即:a b c a c b÷÷=÷÷3)在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a⨯÷=÷⨯=÷⨯4)在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()⨯⨯=⨯⨯⨯÷=⨯÷a b c a b c a b c a b c②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c÷⨯=÷÷÷÷=÷⨯添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()() a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷5)两个数之积除以两个数之积,可以分别相除后再相乘.即()()()()()()a b c d a c b d a d b c⨯÷⨯=÷⨯÷=÷⨯÷例题精讲【例 1】91.588.890.2270.489.6186.791.8++++++【考点】分组凑整【难度】☆☆【题型】计算【解析】原式91.5=+ (88.890.2+)+(270.489.6+)+(186.791.8+)91.5179360278.5=+++=(91.5278.5+)179360909++=【答案】909【巩固】2006+200.6+20.06+2.006+994+99.4+9.94+0.994=【考点】分组凑整【难度】☆☆【题型】计算【解析】(2006+994)+(200.6+99.4)+(20.06+9.94)+(2.006+0.994)=3000+300+30+3=3333。
第一讲小数乘法的速算与巧算【知识概述】小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:例1 计算:1.25×88方法一:原式=1.25×8×11方法二:原式=1.25×(80+8)【试题精选】(1)0.8×2.5×1.25× 4(红花岗第五届五年级组初赛题)(2)0.125×0.25×0.5×64(红花岗第六届五年级组初赛题、汇川区第四届)(3)1.25×0.32×0.25(红花岗区第七届五年级组初赛题、汇川区第五届,红花岗区第八届五年级组初赛题、汇川区第六届)(4)9.6×0.125(红花岗区第十届五年级组初赛题、汇川区第八届)(5)1.25×2.5×3200(红花岗区第四届五年级组决赛)(6)6.25×1.25×6.4(红花岗区第九届五年级组决赛题、汇川第七届)(7)8.88×1.25(汇川第五届初赛)2、拆拼法简算:例2 计算:(1) 18 ×222.2-666.6 (红花岗区第二届五年级组决赛)(2)7.5×9.9【试题精选】(1)24×333.3-999.9(红花岗第十届五年级组决赛题、汇川第八届)(2)7.5×21+37×2.5(红花岗第九届五年级组决赛题、汇川第七届)(3)0.7777×0.7+0.1111×5.1(红花岗区第五届五年级组决赛)(4)3.8×0.99(5)2.5×10.4(6)1.25×1.08(7)199.9×12.5×120(红花岗区第十届五年级组决赛)(8)0.25×1.25×19.2(汇川第五届三年级组初赛题)3、提取公因数法(利用乘法分配律)简算:不用计算,根据已知条件直接写出下面题的结果。
小学数学四年级讲义:小数的速算与巧算 [解题方法及技巧] 小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
1. 小数的概念:把一个整体平均分成几份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几……可以用小数表示。
2. 小数的性质:(1)小数的末尾添上0或者去掉0,小数的大小不变。
(2)小数点向左移动一位,两位,三位,原数缩小10倍,100倍,1000倍; 小数点向右移动一位,两位,三位,原数扩大10倍,100倍,1000倍。
3. 小数的构成和分类:小数由整数部分+小数点+小数部分构成的。
小数可分成纯小数和带小数。
纯小数:整数部分为0的小数。
带小数:整数部分大于零的小数。
4.小数的数位顺序和计数单位:从小数点左边第一位起从右往左依次为:个位,十位,百位,千位等等,从小数点右边第一位起从左往右依次为:十分位,百分位,千分位,万分位等等。
小数部分的计数单位从左往右依次为:0.1,0.01,0.001,0.0001等等。
5.小数的读法和写法:(1)小数的读法:整数部分按照整数的读法来读。
整数部分是0的读作“零”,小数点读作“点”,小数部分依次读出每一个数位上的数字。
如:①46.056读作:四十六点零五六0.7754读作:零点七七五四(2)小数的写法:整数部分按照整数的写法来写,整数部分是零的写作“0”,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
例:①八十九点七四:89.74零点二五写作:0.256. 小数的运算法则:小数的四则运算和整数的四则运算相同。
(1)同级运算:从左往右计算。
(2)多级运算:先括号,再乘除,后加减。
[题型一:概念和性质的应用]1、填空(1)小数点左边第二位是( )位,小数点右边第三位是( )位。
(2)15个0.01是( ),24个0.1是( )。
小学数学速算与巧算方法例解小学数学的速算与巧算方法是指通过一些简单、快捷的计算方法,进行数学运算,节省计算时间,提高计算效率。
下面,我将介绍几种常见的小学数学速算与巧算方法。
一、乘法速算方法1.小数×10的整数幂:将小数点向右移动和移动的位数相等,反之向左移动。
例如:0.32×100=322.两位数之积:求两位数相乘,先算个位上的乘积,再算十位上的乘积,最后相加。
3.乘法竖式中的快速乘法:将个位数乘以个位数,再将十位数乘以十位数,分别相加得到乘积的十位和个位,然后将个位数乘以十位数和十位数乘以个位数,再相加得到乘积的百位数。
例如:37×24=8(×2+×7)+(×2+×3)×10+7(×4)=888二、除法速算方法1.短除法:将被除数和除数对齐,逐位进行计算,得到商和余数。
例如:245÷5=49,余0。
2.效果法:遇到末尾数字是5、50、500等以5结尾的除数时,可以先除以10,然后再乘以2、例如:465÷5=93,930÷10=93×2=1863.两个数相除得到循环小数:将被除数和除数进行移位,使得除数变成整数,然后进行计算。
例如:11÷9=1.2222...,可以近似表示为11/9≈1.2三、加法速算方法1.近似法:将大数近似为最接近的整数相加,然后再根据误差进行修正。
例如:387+597≈400+600=1000-13-3=9842.数量法:将两个数分解成数个量的相同数,然后再进行计算。
例如:387+597=400+500+72+97=1000+169=11693.进位借位法:将两个数按位进行计算,向后进位或借位。
例如:387+597=7+7=14,37+57+1=95,3+1=4,所以387+597=984四、减法速算方法1.进退法:将减数和被减数对齐进行计算,遇到退位时向前退位。
第一讲小数的速算和巧算有备而来:小数的速算和巧算除了可以灵活运用整数四则计算中我们已经学过的许多速算与巧算方法外,我们还可以利用小数自身的特点,根据题目中数字的特征,灵活地运用各种运运算定律,运算性质,确定合理简便的算法。
你一定行的!口算0.25×0.4= 2.5+0.8= 0.49÷0.7= 7.2×0.01=1÷0.125= 8×(2.5+0.25)= 8.4×0.2+1.6×0.2=小小数学家之旅扩缩法256×0.0016+264×0.0256+5.2×2.56+0.256×20先想一想:在乘法中,一个因数扩大若干倍,另一个因数缩小相同的倍数积不变。
利用积不变的规律来进行巧算,就叫扩缩法。
本题就是运用这种方法将式子中的一些数变成相同的。
后听一听再做一做:(1)0.54×72.8+1.272×54 (2)340×4.2+27×42+3.9×420 凑整法计算:0.125×32×2.5先想一想:通过对算式中某些数进行凑整,有时需要将题里的某些数进行适当地分解,从而达到凑整简算的目的,本题就是可以把32分解成8×4,然后运用乘法交换律和结合律巧算。
后听一听:再做一做(1)0.25×64×12.5 (2)0.625×7×8×2变序法21÷26.25÷8×42.6先想一想根据题目的特点,改变运算顺序和方法,就可以使计算变得简单方便,本题就是将21÷26.25÷8变为21÷(26.25×8),改变运算顺序及运算方法。
但在改变顺序同时要注意运算符号的变化。
后听一听再做一做3.998÷2.4×9.6÷19.99运用“商不变”性质简算计算:(7.2×7.5×8.1)÷(1.2×2.5×2.7)先想一想:根据商不变性质,将被除数和除数同时扩大1000们,变小数除法为整数除法,然后再改变运算进行简算。
小数的速算与巧算【知识概述】小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等.很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:例1 计算:0。
125×0.25×0.5×64练习:(1)1。
31×12.5×8×2 (2)1.25×32×0.25 (3)1。
25×882、运算律逆用简算:例2、 5。
7×9。
9+0。
1×5.7练习:(1)4.6×99+4。
6 (2)7.5×101-7.5例3 1240×3.4+1。
24×2300+12.4×430 练习:4。
65×32-2.5×46。
5-70×0。
4653、移动小数点位置简算:练习:(1)0.79×0.46+7。
9×0.24+11.4×0.079 (2)2。
005×390+20。
05+200。
5×2训练一用简便方法计算下面各题(1)1。
9×2×0。
2×2。
5 (2)0.8×0.04×12。
5×25(3)0。
25×4。
73×0。
125×320 (4)100×7.9+184×2。
1+84×2.9训练二(1)4.7×2.8+3.6×9.4 (2)6。
速算与巧算巧算也是简便运算,在数的运算中根据数的特点及数与数之间的特殊关系,恰当地利用四则运算中的定律、性质或利用和、差、积、商的变化规律,通过数的分解、合并改变原来的运算顺序,不但可以提高运算速度,还能使计算又准又快,锻炼思维,提高运算的技能技巧,达到事半功倍的效果。
小数的速算与巧算一小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
1、凑整法简算就是要求计算的小数通过移位,拆减等,把这类数化成2×5=10,4×25=100,8×25=200,8×125=1000等相加或者相乘的数。
例1计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×882、拆拼法简算就是把某个数进行拆分,然后分别与乘数相乘,达到简便运算的效果。
例2(1)计算:1.25×1.08 (2)计算:7.5×9.9练习:(1)2.5×10.4 (2) 3.8×0.99 (3)1991+199.1+19.91+1.9913、转化法简算就是把相同的因数提取出来,再把剩下的乘数相加或相减,以达到简便运算的目的。
例3 计算:5.7×9.9+0.1×5.7练习:(1)4.6×99+99×5.4 (2)7.5×101-7.54、扩大或缩减法就是将因式中相同数字的乘数通过扩大或者缩小,另一个乘数缩小或者扩大相同倍数,使其中某个乘数相同,达到简便运算的效果。
小数速算与巧算姓名:知识点:与整数四则运算一样,只有熟练掌握小数四则运算的顺序,法则,掌握一定的技巧,才能准确、迅速地进行计算。
在小数四则运算中,可以根据数的特点,通过数的分解,合并,改变原来的运算顺序而达到简便计算的目的;有时也运用四则运算的定律、性质,或利用和、差、积、商的变化规律,使计算简便。
掌握一定的速算和巧算方法不仅可以使计算过程简捷,提高计算正确率,而且可以使我们的思维能力得到提高。
基本例题例1: 5.8+2.32+0.68+4.2 1999+199.9+19.99+1.99912.59-3.24-5.76 134.45-89.78-34.45练习: 7.36+0.82+5.14+22.64+3.183.41-1.97+0.49-1.03 1998+199.8+19.98+1.998例2: 1.25×2.7×8 8.88×12.53.2×2.5 0.25×12.5×3.2练习: 44.4×0.25 1.25×5.60.25×1.25×4×0.8 0.25×0.5×64×12.5 例3: 7.2×52+7.2×48 7.8×23-23×0.823.4×124+234×87.6 0.85×66+85×0.34 9999×2222+3333×3334 9999×1111+3333×6667练习:0.279×355+0.645×279 38.2×0.28+3.82×6.1+0.382×11 666.66×7778+333.33×4444 0.999×0.6+0.111×3.6例4:12.5×5.6+22.5×4.4 172.4×6.2+2724×0.38例5:65×78-64×79 1972×1998-1971×1999练习:86×94-85×95 199772×199911-199771×199912例6:12×1313-13×1212 1998×1999.1999-1999×1998.1998 练习:1989×19901990-1990×19891989 2006×2005.2005-2006.2006×2005 例7: 600÷25÷4 28000÷125÷8练习:1200÷4÷2.5 84000÷8÷12.5例8: 3.25÷2.5 3500÷125练习: 450÷2.5 49500÷1.25拓展练习:1、(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)。
五年级秋季培优第六讲小数的速算与巧算简便运算,就是用比较简捷、巧妙的方法计算出算式的得数。
如果我们能够发现其中数据的特点,正确运用数的组成和运算定律,把复杂的计算转化为简便计算,就能使问题简单化。
小数的简便运算与整数的简便运算方法相同,如:a×b=b×a,(a×b)×c=a×(b×c),a×b+a×c=a×(b+c)等对小数的简便运算同样适用。
典例精讲例1 1.199.7×19.98-199.8×19.96 2. 84.5÷12.5÷8 3. 7.43×0.4×2.5 【思路点拨】观察算式1发现,19.98扩大到它的10倍就是199.8,因此我们先将减号前面的部分写成19.97×199.8,再利用乘法分配律巧算;算式2利用除法的一个运算性质,即“一个数连续除以几个数,等于这个数除以所有除数的积。
”算式3运用乘法结合律计算即可。
【详细解答】例2 计算:(1)0.245×28+24.5×3+2.45×7.2(2)88.8×8.7+11.2×9.9-11.2×1.2【思路点拨】观察上面两道算式,算式(1)可以先根据积不变的性质将算式中0.245×28化成24.5×0.28,2.45×7.2化成24.5×0.72,然后利用乘法分配律进行简算;算式(2)可以直接利用乘法分配律进行简算。
【详细解答】例3 计算:3.6×0.75×1.2÷(1.5×24×0.18)【思路点拨】如果分别算出除号两边的积,再求商,则非常麻烦。
仔细观察被除数中的因数和除数中的因数存在的关系,应用除法的性质去掉括号,改变运算顺序,就能计算简便。
六年级奥数课堂第二讲小数的速算与巧算【专家讲解】要想使计算变得快速、巧妙、正确,就要注意观察,发现算式中数的特点,灵活运用拆、拼的方法进行转化,化繁为简,化难为易。
【解题技巧】小数巧算常用的一些方法有:1.小数减(除)法的性质。
2.积(商)不变的规律。
3.交换律和结合律。
4.乘法分配率及其逆应用(分解、变形)。
5.分组法和图解法。
例题1.用简便方法计算下面各题:(1)52.8-2.65+47.2-7.35 (2)68.4-(24.2-11.6)例题2.用简便方法计算下面各题:(1)1.25×0.25×8×4 (2)0.125×0.25×0.5×64趁热打铁习题(1)(1)38.6-8.3+11.4-1.7 (2)3.28-(1.98-1.72)(3)12.5×2.5×8×4 (4)64×12.5×0.25×0.08(5)0.5×0.32×1.25×0.025×2例题3.用简便方法计算下面各题:(1)0.23×10.2 (2)7.5×99.8例题4.用简便方法计算下面各题:(1)21.3×0.8+0.2×21.3 (2)3.75×31+62.5×3.1趁热打铁习题(2)(1)0.45×100.2 (2)0.25×99.8(3)5.63×12+88×5.63 (4)327×2.8+17.3×28例题5.用简便方法计算下面各题:(1)7.68÷2.5÷4 (2)0.125÷(3.6÷80)×0.18 (3)(9.1×4.8×7.5)÷(2.5×1.3×1.6)趁热打铁(3)(1)82.3÷12.5÷0.8 (2)4.92÷0.25÷0.4(3)36.363÷(1.2121×4)(4)(3.6×7.5×9.5)÷(1.2×2.5×1.9)综合练习题(1)12.2×201-24.4 (2)0.26×9.8-0.74×0.2(3)14.8×47-14.8×19+14.8×72(4)5.75÷1.25÷0.4÷2 (5)0.125÷(3.6÷80)×0.9。
小数的速算与巧算
【知识概述】
小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:
例1 计算:0.125×0.25×0.5×64
练习:
(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×88
2、运算律逆用简算:
例2、 5.7×9.9+0.1×5.7
练习:(1)4.6×99+4.6 (2)7.5×101-7.5
例3 1240×3.4+1.24×2300+12.4×430 练习:4.65×32-2.5×46.5-70×0.465
3、移动小数点位置简算:
练习:
(1)0.79×0.46+7.9×0.24+11.4×0.079 (2)2.005×390+20.05+200.5×2
训练一
用简便方法计算下面各题
(1)1.9×2×0.2×2.5 (2)0.8×0.04×12.5×25
(3)0.25×4.73×0.125×320 (4)100×7.9+184×2.1+84×2.9
训练二
(1)4.7×2.8+3.6×9.4 (2)6.3×27+1.9×21
(3)3.75×4.8+62.5×0.48 (4)1250×0.037+0.125×160+12.5×2.7 (5)3.6×232-36×13.2-360 (6)3.42×76.3+7.63×57.6+9.18×23.7。