三相异步电动机的直接起动点动控制实验报告
- 格式:docx
- 大小:40.15 KB
- 文档页数:5
三相异步电动机点动实验报告引言三相异步电动机是工业中常用的电动机类型之一,它具有结构简单、可靠性高、使用范围广等特点,在许多领域都有广泛的应用。
本实验旨在通过对三相异步电动机的点动实验,了解其工作原理和特性。
实验目的1.了解三相异步电动机的工作原理;2.学习三相异步电动机的点动控制方法;3.掌握实验装置的操作和调试。
实验装置与原理本实验使用的装置包括三相异步电动机、交流供电电源、电流表、电压表、按钮开关等。
三相异步电动机的工作原理是通过三个相位的交流电流在定子上产生旋转磁场,进而驱动转子旋转。
实验步骤1.连接实验装置:将三相异步电动机、交流供电电源、电流表、电压表等设备按照实验指导书上的要求进行正确连接。
2.检查电路连接:确保所有电路连接正确无误,检查接线是否牢固。
3.调试电源参数:根据实验要求,设置合适的电源电压和频率。
4.执行点动控制:按下按钮开关,使电动机进行点动运行。
观察电动机的运行状况,并记录相应的电流和电压数值。
5.结束实验:实验结束后,关闭电源并拆除实验装置。
实验结果与分析通过实验观察和数据记录,我们可以得到三相异步电动机的点动运行特性。
根据实验结果,我们可以分析电动机的启动电流、运行稳定性等参数,进一步了解电动机的性能和可靠性。
实验总结通过本次实验,我们深入了解了三相异步电动机的工作原理和性能特点。
同时,我们掌握了电动机的点动控制方法和实验装置的操作。
这对于我们今后在工业领域中应用电动机具有重要的理论和实践意义。
参考资料[1] 电力学院. 电机与拖动实验指导书. 中国电力出版社, 2008.。
三相鼠笼式异步电动机点动和连续控制电路实验报告实验目的:1.了解三相鼠笼式异步电动机的基本结构和工作原理。
2.掌握三相鼠笼式异步电动机的点动和连续控制电路。
3.熟悉电动机的性能指标及其测量方法。
实验仪器:三相鼠笼式异步电动机、电动机控制器、电压表、电流表、功率表、开关、电线等。
实验原理:三相鼠笼式异步电动机是一种常用的电动机,它由定子和转子两部分组成。
定子上有三组绕组,分别称为A、B、C相绕组,绕组之间相互位移120°。
转子由许多导体条组成,条的两端用铜环连接成环形,这些铜环称为鼠笼。
当三相电源接到定子上时,产生的磁场使转子中的鼠笼感应电流,这些电流在转子中形成磁场,由于磁场旋转速度小于磁场的旋转速度,因此转子会跟随磁场旋转,从而带动负载旋转。
点动控制电路是一种简单的控制方式,它通过控制电源的接通和断开来控制电动机的启动和停止。
当按下点动按钮时,电源接通,电动机启动,当松开按钮时,电源断开,电动机停止。
点动控制电路的优点是简单易懂,操作方便,缺点是不能实现电动机的速度调节。
连续控制电路是一种可实现电动机速度调节的控制方式,它通过控制电动机输入电压的大小来调节电动机的转速。
当电动机需要加速时,控制电路会逐渐增加电动机的输入电压,使电动机转速逐渐加快;当电动机需要减速时,控制电路会逐渐减小电动机的输入电压,使电动机转速逐渐减慢。
实验步骤:1.按照图示连接电路,将电动机控制器的“0”和“1”端子分别接到电源正负极,将电动机的三个相线接到控制器的三个相线端子上。
2.将电动机的输入电源接通,检查电动机是否正常运转。
3.按下点动按钮,观察电动机的启动和停止。
4.按下连续控制按钮,调节电动机的转速。
5.测量电动机的电压、电流、功率等参数,并计算出电动机的效率、功率因数等性能指标。
实验结果:通过实验,我们了解了三相鼠笼式异步电动机的基本结构和工作原理,掌握了点动和连续控制电路的控制方式,熟悉了电动机的性能指标及其测量方法。
三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告图2-5 按钮联锁的正反转控制线路按图2-5接线,实验操作步骤如下:(1) 按控制屏启动按钮,接通三相交流电源;(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转;(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转。
实验完毕,按控制屏停止按钮,切断实验线路电源。
实验现象:按正向启动按钮SB1,电机正转,接触器KM1工作,按下SB3电机停止运行;按反向启动按钮SB2,电机反转,接触器KM2工作,按下SB3电机停止运行;2. 接触器和按钮双重联锁的正反转控制线路按图2-6接线,经检查无误后,方可进行通电操作。
实验操作步骤如下:图2-6 接触器和按钮双重联锁的正反转控制线路(1) 按控制屏启动按钮,接通三相交流电源。
(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转。
(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转。
(4) 按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生?(5) 电动机停稳后,同时按正、反向两只起动按钮,观察有何情况发生?(6) 失压与欠压保护按起动按钮SB1(或SB2)电动机起动后,按控制屏停止按钮,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按SB1(或SB2),观察电动机能否自行起动?实验完毕,按控制屏停止按钮,切断实验线路电源。
实验现象:按下SB1,电机正向旋转,KM1正常工作,按下SB3电机停止运行。
按下SB2,电机反向旋转,KM2正常工作,按下SB3电机停止运行。
三相异步电动机实验
一、实验目的
1、掌握电机定子绕组的连结方法
2、掌握电机的启动方式及实现正反转的方法
二、实验器材
电动机、按钮、交流接触器、起子片
三、实验原理及实验电路
1、判断电机绕组的接线柱
用Ω表测量
2、电机直接启动
1)、正反转的方法
对调任意两相线
2)、点动控制电路
①、按钮 ST SB
②、交流接触器 KM KM
线圈常开触头 KM 常闭触头
③、按下ST >交流接
触器线圈KM 获电。
>交流接触器的常开触头闭合>电机主干线电路通电>电机转动
松下按钮ST>线圈KM
断电>常开触头在复位弹簧作用下断开>电机停转
3、长动自锁电路工作流程
按下SB 1>线圈KM 获
电>所有的常开KM 闭
合>电机运转 松下SB 1由于3-5的KM 闭合而实现自锁电机
一直运转(故而称长动
控制)
按下SB>线圈KM 断电>所有的KM 断电>电机停转
四、思考题
1、电机在启动时,如果缺一相电,电机能否启动,现象如何若电机在运转时,如果缺一相电,电机能否转动,现象如何
2、查铭牌数据,求出该电机的相电压及磁极对数如何。
一、实验目的1. 了解点动控制电气原理的基本概念和原理。
2. 掌握点动控制电气原理图的设计和绘制方法。
3. 学会点动控制电气原理的组装和调试。
4. 培养实际操作能力和分析问题、解决问题的能力。
二、实验原理点动控制电气原理是一种基本的电气控制方式,它通过按钮、接触器等电器元件实现电动机的启动和停止。
点动控制电路通常由电源、按钮、接触器、电动机等组成。
当按下启动按钮时,接触器线圈得电,主触头闭合,电动机启动;当松开启动按钮时,接触器线圈失电,主触头断开,电动机停止。
三、实验器材1. 电源:三相交流电源,电压380V。
2. 按钮开关:启动按钮和停止按钮。
3. 接触器:交流接触器。
4. 电动机:三相异步电动机。
5. 电缆线:用于连接电路元件。
6. 电工工具:万用表、剥线钳、螺丝刀等。
四、实验步骤1. 设计点动控制电气原理图根据实验要求,设计点动控制电气原理图。
原理图应包括电源、按钮、接触器、电动机等元件,并标注元件的型号、规格和参数。
2. 组装电路按照原理图,将各个元件连接起来,注意电路的连接顺序和接线的正确性。
首先连接电源,然后连接按钮、接触器、电动机等元件。
3. 检查电路连接完毕后,使用万用表检查电路的连通性,确保电路连接正确无误。
4. 调试电路接通电源,观察按钮、接触器、电动机等元件的工作状态。
按下启动按钮,电动机应能正常启动;松开启动按钮,电动机应能正常停止。
5. 分析故障如果在实验过程中出现故障,需要分析故障原因,并采取相应的措施进行排除。
例如,检查电路连接是否正确,检查元件是否损坏等。
6. 记录实验数据记录实验过程中观察到的现象和结果,包括电动机的启动和停止时间、电路的工作状态等。
五、实验结果与分析1. 实验结果本次实验成功实现了点动控制电气原理,电动机能够根据按钮的按下和松开来实现启动和停止。
2. 实验分析通过本次实验,我们掌握了点动控制电气原理的基本概念和原理,学会了点动控制电气原理图的设计和绘制方法,提高了实际操作能力和分析问题、解决问题的能力。
试验一三相异步电动机的点动控制一、实验目的:1、了解交流接触器、热继电器和按钮的结构及其在控制电路中的应用。
2、学习异步电动机基本控制电路的连接。
3、学习按钮、熔断器、热继电器的使用方法。
4、了解点动与长动的主要区别。
二、实验仪器和设备:1、DT31继电器-接触器1套2、D21三相异步电动机1台3、机电传动试验平台1套4、接线若干三、实验原理:1、继电接触器控制大量应用于对电动机的启动、停止、正反转、调速、制动等控制。
从而使生产机械按规定的要求动作;同时,也能对电动机和生产机械进行保护。
2、图1是异步电动机直接启动的控制电路。
图1-a是点动控制线路,手放开按钮后电动机即停止工作。
电路不能自锁。
图1-b是长动控制线路,手按下按钮后,线圈得电,主触点,辅助触点都闭合,电动机保持运转,控制电路实现自锁。
图1 三相异步电动机点动长动控制线路四、实验内容和步骤:1、在实验板台找到DT31继电器-接触器等,了解其结构及动作原理。
2、通过实验,掌握基本电路的接线方法。
3、按图1-a异步电动机启动线路连接,经老师检查允许后再送电(电动机暂不接入)。
4、1-a的控制电路改接为1-b图,即具有控制电路具有自锁功能。
5、通过点动、长动接线实验,观察实验现象,了解两种接线的不同工作状况及自锁区别。
五、实验总结:1、电路中自锁点起什么作用?电路没有自锁时:按下闭合按钮,接触器线圈得电后,主触点闭合接通回路,电机运转;松开闭合按钮,电路断路,线圈失电,主触点回归常开原位,电机停转。
电路处于点动。
电路有自锁点时:接触器线圈得电后,主触点、常开辅助触点都闭合接通回路,主触点闭合电机运转;常开辅助触点闭合,进行状态保持,此时再松开启动按钮,接触器也不会失电断开。
电路处于长动状况。
自锁点作用就是利用常开辅助触点与通电线圈关系,实现电路长动工作状况。
2、什么叫零压保护,即电路的零压保护是如何实现的?所谓零压(或失压)保护是指当电源断电或电压严重降低时,接触器的线圈失电,电磁铁释放使主触点断开,电动机自动从电源切除停转。
实验报告十:三相异步电动机接触器点动控制路线实验目的:2. 了解三相异步电动机的基本性能参数。
3. 掌握三相异步电动机的调试与运行方法。
4. 培养实际操作技能与实验技能。
实验器材:1. 三相异步电动机2. 接触器3. 断路器4. 电动机调速器5. 电压表7. 万用表8. 细线圈表9. 脉冲信号测试仪实验原理:三相异步电动机接触器点动控制路线是一种常见的电气控制系统,其主要实现方式是利用接触器点动启动电动机。
点动启动电动机的过程即是通过断开与接通电流来实现的。
具体来说,当启动按钮按下时,接触器控制电路关闭,电动机的空载运行开始;当按钮松开时,接触器控制电路恢复,电动机停转。
实验步骤:1. 转动电动机风扇叶片,观察电动机是否正常旋转,检查电气系统是否正常工作。
2. 打开电动机调速器,设定适当的三相电源电压,调整电流控制器以得到适当的电动机起动电流,保证电动机可以正常运行。
3. 观察电动机的运行状况,记录电动机的电压、电流、转速等基本性能参数,并根据参数调整电动机的运行状态,保证其正常运行。
4. 切换电源电压,比较电动机在不同电压下的运行性能,观察电机的启动变化情况,分析电压对电动机性能的影响。
5. 利用万用表和细线圈表等工具对电气系统进行检查,确认电气系统的状况良好。
6. 利用脉冲信号测试仪进行测试分析,并确定是否需要进行一些调整。
7. 关闭电动机调速器,断开电源前,注意需要先切断电动机的电源,然后才能关闭电动机调速器。
实验结论:通过三相异步电动机接触器点动控制路线的实验,我们深入掌握了电气控制的基本原理和要点,得到了更系统、全面的实验经验。
在实验过程中,我们充分考虑了实验器材的特点和用途,根据实验结果和实验数据进行了周密分析和归纳总结,实验结论具有较强的可靠性和实用价值。
同时,我们对实验设备的操作方法和技巧有了更深刻的认识,能够更加熟练地运用实验技能和专业知识。
实验一、三相异步电机点动和自锁控制线路一、实验目的熟悉三相异步电动机启动停止和点动线路中各电器元件的工作原理、使用方法及其在线路中的作用。
二、实验要求1、实验前要检查控制屏左侧端面上的调压器旋钮须在零位,即将它向逆时针向旋转到底,各个电源输出端没有连接负载,开启控制屏上的“电源总开关”,按下“启动”按钮,向顺时针方向旋转控制屏左侧端面上的调压器旋纽,将三相交流电源输出端U、V、W的线电压调到220V,以后保持不变。
2、按下控制屏上的“停止”按钮以切断三相交流电源,按实验图2-1所示点动控制线路进行安装接线,接线时,先接主电路,它是从 220V三相交流电源的输出端U、V、W开始,经三刀开关Q1、熔断器FU,接触器KM1的主触头,热电器FR的热元件到电动机M的三个线端A、B、C的电路。
用导线按顺序串联起来,有三路。
主电路连接完整无误后,再连接控制电路,它是从容电器FU后的插孔V开始,经过常开按钮SB1、接线器KM1的线圈、热继电器FR的常闭触头到插孔W,显然它是对接触器KM1主触头吸合,电机机M因接通电源而被投入运转。
当送开SB1时,KM1线圈断电,KM1主触头断开,M停止运转。
实验线路经指导教师检查无误后,方可按下控制屏上的“启动”按钮,按下列步骤进行通电实验。
(1)合上DT43挂箱上的开关Q1。
接通三相交流220V电源。
(2)按下DT42挂箱上的启动按钮SB1,对电动机M进行点动操作,即比较按下SB1与松开SB1时电动机M的运转情况。
按下SB1,接触器线圈KM1得电,接触器常开触点闭合,电动机得电运转。
松开SB1由于抚慰弹簧的作用,使按钮复位,KM1线圈失电,电动机停转,从而实现电动控制。
3、按下控制屏上的“停止”按钮以切断三相交流电源。
按实验图2-2所示的自锁线路进行接线,它与图2-1的不同,只在于控制电路中多串联一只常闭按钮SB2 ,同时在SB1上并联有一只接触器KM1的常开触头,它起自锁作用,实验线路经指导老师检查无误后,方可按下控制屏上的“启动”按钮,按下列步骤进行通电实验。
一、实验目的1. 理解并掌握点动控制线路的原理及其应用。
2. 通过实际操作,熟悉点动控制线路的安装和调试方法。
3. 提高对低压电器使用及接线的技能。
二、实验器材1. 三相异步电动机1台2. 交流接触器1个3. 空气开关1个4. 熔断器4个5. 热继电器1个6. 常闭开关1个,常开开关1个7. 电工工具1套8. 导线若干9. 欧姆表1个三、实验原理三相异步电动机的点动控制是通过控制电路中的接触器来实现电动机的短暂启动。
当按下启动按钮时,接触器吸合,电动机启动;当松开启动按钮时,接触器释放,电动机停止。
本实验采用直接点动控制方式,通过去掉接触器的辅助触点,实现电动机的点动功能。
四、实验步骤1. 认识电器及接线方法(1)熟悉三相异步电动机、交流接触器、空气开关、熔断器、热继电器等电器的结构、工作原理及接线方法。
(2)了解三相异步电动机的铭牌数据,包括额定电压、额定功率、额定电流等。
2. 按电路图接线(1)根据实验电路图,按照主线路和辅助线路的顺序进行接线。
(2)先接串联线路,再接分支部分。
(3)确保接线正确,避免短路和接触不良。
3. 检查电路(1)用欧姆表检测电路中的导线、接触器线圈、热继电器等元件的电阻值,确认电路接线正确。
(2)检查电路中各元件的安装位置是否符合要求。
4. 实验操作(1)开启三相交流电源。
(2)按下启动按钮,观察电动机是否能够实现点动控制。
(3)松开启动按钮,观察电动机是否能够停止。
(4)重复上述操作,验证点动控制功能是否正常。
5. 实验数据记录记录实验过程中观察到的现象,包括电动机的启动、停止、转向等。
五、实验结果与分析1. 实验过程中,按下启动按钮时,电动机能够实现点动控制,松开启动按钮时,电动机能够停止。
2. 通过实验,掌握了点动控制线路的原理、安装和调试方法。
3. 了解了三相异步电动机、交流接触器、空气开关等电器的结构、工作原理及接线方法。
六、实验结论本实验成功实现了三相异步电动机的点动控制,验证了点动控制线路的原理及其应用。
三相异步电动机的直接起动、点动控制实验报告姓名:杨宇学号:班级: 10931专业:数控指导老师:申爱民2011.4.18一、实验目标1.熟悉常用低压电器、仪表的使用及接线。
2.熟悉三相异步电动机的铭牌数据、并能正确接线。
3.训练三相异步电动机直接起动、点动控制线路的正确接线和调试。
4.学习熔断器、接触器、空气开关、热继电器及按钮的使用方法。
二、实验器材1.三相交流电源380V、220V2.三相异步电动机1台3.交流接触器1个4.空气开关1个5.熔断器4个6.热继电器1个7.常闭开关1个,常开开关1个 8.电工工具1套9.导线若干 10.欧姆表1个三、实验原理1.三相鼠笼式电动机的转动原理是,在通电的情况下在电动机的内部产生一种磁场,而电动机的转子要切割磁感线而产生运动,从而把电能转化为机械能。
2.去掉KM辅助触点,可以除去自锁功能,实现电机的点动。
3.图1—1是异步电动机直接启动的控制电路图。
四、实验内容和步骤1.认识常用低压电器和三相异步电机的铭牌标记,了解结构和工作原理及其接线方法。
- 1 -2.按1-1电路图接入各电器,检查接线正确,并用欧姆表检测。
1).先接主线路,再接辅助线路。
2).先接串联线路,再接分支部分。
3).所有元件布局及布线要安全、方便。
同一相电源导线尽量用同种颜色。
3.通电按SB2观察三相异步电机的连续转动,按SB1停止。
4.断开控制回路中接触器的自锁触点KM,按SB2观察点动过程。
5.对主电路缺相,控制电路的短路和断路故障进行正确分析和排除。
图1-1主电路控制电路五、实验总结1.控制电路接线要先接串联电路,再接支路。
2.控制电路中的自锁由接触器的辅助触点实现。
它的作用是在按下SB2后,SB2有弹簧作用下恢复到常开状态,这时KM为自锁状态,仍可以保证控制电路形成闭合回路。
3.故障及原因1).接通电源后,按起动按钮,接触器吸合,但电动机不转且发出“嗡嗡”声响;或者虽能起动,但转速很慢。
三相异步电动机的直接起动点动控制实验报告实验报告:三相异步电动机的直接起动点动控制实验一、实验目的:1.了解三相异步电动机的基本原理和起动方法;2.掌握三相异步电动机的直接起动点动控制方法;3.了解三相异步电动机在直接起动点动控制过程中的运行特性。
二、实验原理:三相异步电动机是由定子绕组和转子构成,当定子绕组通过交流电源供电时,形成旋转磁场,通过与磁场相互作用的转子达到旋转的目的。
常用的三相异步电动机起动方法有直接起动法、星-三角启动法、自耦变压器起动法等。
本实验采用直接起动法进行控制,即通过直接给电动机供电来启动。
三、实验器材:1.三相异步电动机;2.电流表和电压表;3.三相交流电源;4.开关按钮;5.电缆等。
四、实验步骤:1.将实验室电源连接到三相交流电源,并确保其接地良好;2.将电动机的三个相线分别与实验室电源的三个相线相连;3.设置电压和频率,根据实验需求调节合适的数值;4.确保电动机的正反转拨动开关处于停止状态;5.逐次打开电源上的开关按钮,观察电动机是否运行;6.若电动机启动不正常或运行不稳定,可根据实际情况适当调整电流和电压的数值;7.在确保实验安全的前提下,可以通过改变电源的电压和频率观察电动机的运行特性。
五、实验数据记录与分析:1.记录电动机起动时的电流和电压数值;2.分析电流和电压的变化规律,得出电动机起动过程中的运行特性;3.可以通过对比不同频率和电压下的实验数据,得出不同条件对电动机启动的影响;4.利用实验数据进行图表绘制,以便更好地展示实验结果。
六、实验结论:1.在使用直接起动法对三相异步电动机进行起动时,适当调节电流和电压的数值可以提高电动机的起动性能;2.不同频率和电压对电动机启动过程有一定的影响,可根据实际情况进行调整;3.通过对电流和电压的观察,可以了解三相异步电动机在起动过程中的运行特性。
七、实验总结:通过本次实验,我们掌握了三相异步电动机的直接起动点动控制方法,了解了三相异步电动机在起动过程中的运行特性和影响因素。
一、实训目的1. 熟悉三相异步电动机点动连续控制的基本原理和操作方法。
2. 掌握点动连续控制电路的安装、调试和故障排除。
3. 培养动手能力和实际操作技能,提高对电气控制系统的认识。
二、实训器材1. 三相异步电动机1台2. 交流接触器1个3. 熔断器1个4. 按钮若干5. 导线若干6. 电工工具1套7. 欧姆表1个三、实训原理三相异步电动机点动连续控制原理如下:1. 点动控制:按下启动按钮,接触器线圈得电,主触头闭合,电动机运转;松开启动按钮,接触器线圈失电,主触头断开,电动机停止。
2. 连续控制:按下启动按钮,接触器线圈得电,主触头闭合,电动机运转;按下停止按钮,接触器线圈失电,主触头断开,电动机停止。
四、实训步骤1. 根据电路图,将三相异步电动机、交流接触器、熔断器、按钮等元器件连接到电路中。
2. 检查电路连接是否正确,确保没有短路、断路等问题。
3. 用万用表检测电路,确认元器件工作正常。
4. 进行点动控制实验,观察电动机运转情况。
5. 进行连续控制实验,观察电动机运转情况。
6. 调整电路参数,使电动机点动和连续控制效果最佳。
7. 故障排除:若出现故障,分析原因,采取相应措施进行排除。
五、实训结果与分析1. 点动控制实验结果:按下启动按钮,电动机能正常运转;松开启动按钮,电动机能立即停止。
2. 连续控制实验结果:按下启动按钮,电动机能正常运转;按下停止按钮,电动机能立即停止。
3. 分析:通过本次实训,掌握了三相异步电动机点动连续控制的基本原理和操作方法,提高了实际操作技能。
六、实训心得体会1. 通过本次实训,加深了对电气控制系统的认识,了解了点动连续控制的基本原理。
2. 培养了动手能力和实际操作技能,为今后从事电气相关工作奠定了基础。
3. 学会了分析、排除电路故障的方法,提高了问题解决能力。
4. 增强了团队协作意识,学会了与他人共同完成任务。
总之,本次实训收获颇丰,为今后的学习和工作打下了坚实基础。
三相异步电动机点动控制和自锁控制及联锁正反转控制某实验报告材料实验报告:三相异步电动机点动控制与自锁控制及联锁正反转控制摘要:本实验主要研究了三相异步电动机的点动控制、自锁控制和联锁正反转控制。
通过控制三相电压的变化来实现电动机的不同运行状态。
实验结果表明,点动控制可以实现电动机的短时间运行,并可以通过按钮控制停止。
自锁控制可以实现电动机的连续运行,并且只能通过开关来停止。
联锁正反转控制可以实现电动机在正反两个方向之间切换。
本实验对于三相异步电动机的控制方法具有指导意义。
关键词:三相异步电动机,点动控制,自锁控制,联锁正反转控制1.引言2.实验原理2.1点动控制点动控制是指电动机在短时间内顺时针或逆时针旋转。
通过控制三相电压的变化,可以实现电动机的点动运行。
在本实验中,我们使用按钮来控制电动机的启动和停止。
2.2自锁控制自锁控制是指电动机的连续运行。
在启动电动机后,通过开关控制电动机的运行和停止。
电动机只能通过开关来停止,而不能通过按钮来停止。
2.3联锁正反转控制联锁正反转控制是指电动机在正反两个方向之间切换。
通过控制电动机的转向器,可以实现电动机在顺时针和逆时针之间切换。
在本实验中,我们使用按钮来控制电动机的方向。
3.实验仪器和材料3.1实验仪器:-三相异步电动机-电动机启动按钮-电动机停止按钮-电动机转向按钮-电动机转向器3.2实验材料:-电源线-电压表-电流表4.实验步骤4.1点动控制实验(1)连接三相异步电动机和电源线。
(2)将电动机的启动按钮连接到电源线。
(3)按下启动按钮,电动机开始运行。
(4)按下停止按钮,电动机停止运行。
4.2自锁控制实验(1)连接三相异步电动机和电源线。
(2)将电动机的启动按钮和停止按钮连接到电源线。
(3)按下启动按钮,电动机开始运行。
(4)按下停止按钮,电动机停止运行。
4.3联锁正反转控制实验(1)连接三相异步电动机、电动机转向器和电源线。
(2)将电动机的启动按钮和转向按钮连接到电源线。
《三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告》实验目的:1. 掌握三相异步电动机的基本特性。
2. 掌握三相异步电动机的点动控制和自锁控制。
3. 掌握联锁正反转控制的原理和方法。
实验设备:1. 三相异步电动机。
2. 电动机控制器。
3. 转动表。
4. 交流电源。
5. 电阻箱。
6. 电流表、电压表。
7. 开关。
实验原理:1. 三相异步电动机的基本特性三相异步电动机是一种常用的电动机,它通过三相交流电源供电,产生旋转磁场,驱动转子旋转。
三相异步电动机的基本特性是:(1) 启动电流大。
(2) 转速变化范围小。
(3) 转矩较小。
(4) 负载能力强。
2. 三相异步电动机的点动控制和自锁控制(1) 点动控制点动控制是一种控制方法,通过按下控制按钮使电动机运行一定时间后自动停止,可用于定位、检测、调整等工作。
点动控制可用电路实现。
(2) 自锁控制自锁控制也是一种控制方法,通过按下控制按钮使电动机运行一次后停止,并锁定在停止状态。
自锁控制可用电路实现。
3. 联锁正反转控制联锁正反转控制是指,在电动机正转和反转时,按下另一个按钮将被联锁,使电动机停止后再按下原来的按钮才能启动电动机反向运转。
联锁控制可用电路实现。
实验步骤:1. 连接电动机和控制器(1) 将电动机的三条电缆分别连接至控制器的三条电缆;(2) 按照指示将控制器连接至电源上。
2. 点动控制(1) 打开交流电源,并启动控制器。
(2) 按下点动按钮,控制器工作,电动机转动;(3) 松开按钮,电动机停止。
3. 自锁控制(1) 按下自锁按钮,控制器工作,电动机转动;(2) 松开按钮,电动机停止,并锁定在停止状态。
4. 联锁正反转控制(1) 按下正转按钮,电动机正向旋转;(2) 按下关锁按钮,电动机停止;(3) 按下反转按钮,电动机反向旋转。
实验结果:通过实验,我们成功掌握了三相异步电动机的基本特性和点动控制、自锁控制、联锁正反转控制的原理和方法,并且通过实验获得了相关数据和图表,验证了实验结果的正确性。
竭诚为您提供优质文档/双击可除异步电动机实验报告篇一:三相异步电动机实验报告三相异步电动机实验一、实验目的1、掌握电机定子绕组的连结方法2、掌握电机的启动方式及实现正反转的方法二、实验器材电动机、按钮、交流接触器、起子片三、实验原理及实验电路1、判断电机绕组的接线柱用Ω表测量2、电机直接启动1)、正反转的方法对调任意两相线2)、点动控制电路①、按钮②、交流接触器线圈常开触头常闭触头③、按下sT>交流接触器线圈Km获电。
>交流接触器的常开触头闭合>电机主干线电路通电>电机转动松下按钮sT>线圈Km断电>常开触头在复位弹簧作用下断开>电机停转3、长动自锁电路工作流程按下sb1>线圈Km获电>所有的常开Km闭合>电机运转松下sb1由于3-5的Km闭合而实现自锁电机一直运转(故而称长动控制)按下sb>线圈Km断电>所有的Km断电>电机停转sTop四、思考题1、电机在启动时,如果缺一相电,电机能否启动,现象如何?若电机在运转时,如果缺一相电,电机能否转动,现象如何?2、查铭牌数据,求出该电机的相电压及磁极对数如何?篇二:a三相鼠笼异步电动机的工作特性实验报告异步电机实验报告课程名:电机学与电力拖动姓名:李静怡学院:电气工程学院班级:电气1108班学号:11291240指导老师:郭芳1篇三:异步电动机实验实验三三相感应电动机实验一、实验目的1、测定三相感应电动机的参数2、测定三相感应电动机的工作特性二、预习要点1、三相感应电动机的等效电路有哪些参数?它们的物理意义是什么?2、三相感应电动机参数的测定方法3、三相感应电动机的工作特性的测定三、实验项目1、空载试验2、短路试验3、负载试验四、实验线路及操作步骤电动机编号为D21,其额定数据:pn=100w,un=220V,In=0.48A,nn=1420r/min,定子绕组△接法。
2、空载试验(1)所用的仪器设备:电机导轨,功率表(DT01b),交流电流表(DT01b),交流电压表(DT01b)。
三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告一、实验目的1.熟悉三相异步电动机的点动控制原理和实现方法;2.掌握三相异步电动机的自锁控制方法;3.理解三相异步电动机的联锁正反转控制的原理和实现方法。
二、实验器材1.三相异步电动机;2.开关、按钮、断路器等电气元件;3.电源和电动机控制板。
三、实验原理1.三相异步电动机的点动控制原理:2.三相异步电动机的自锁控制原理:3.三相异步电动机的联锁正反转控制原理:四、实验步骤1.点动控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下正转按钮,电动机开始正转;(3)按下停止按钮,电动机停止;(4)按下反转按钮,电动机开始反转;(5)按下停止按钮,电动机停止。
2.自锁控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下启动按钮,电动机开始启动;(3)等待一段时间,热继电器加热后断开起动电路;(4)启动线圈断开后,接触器的锁闭线圈闭合,实现电动机的自锁控制。
3.联锁正反转控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下正转按钮,电动机开始正转;(3)正转线圈闭合后,中间继电器锁闭,反转按钮无效;(4)按下停止按钮,电动机停止;(5)按下反转按钮,电动机开始反转;(6)反转线圈闭合后,中间继电器锁闭,正转按钮无效;(7)按下停止按钮,电动机停止。
五、实验结果与分析在实验中,我们成功实现了三相异步电动机的点动控制、自锁控制和联锁正反转控制。
点动控制通过控制电动机的启动电路,实现了电动机的正转、反转和停止操作。
自锁控制通过接触器和热继电器的控制,实现了电动机的自锁功能。
联锁正反转控制通过中间继电器的互斥关系,实现了正转和反转按钮的互斥控制。
六、实验总结本次实验通过对三相异步电动机的点动控制、自锁控制和联锁正反转控制进行了实验,加深了我们对三相异步电动机控制原理和方法的理解。
通过实验,我们掌握了电动机控制电路的接线方法和控制逻辑,提高了电动机控制的实践能力。
三相异步电动机的直接起动、点动控制实验报告姓名:杨宇学号:091542班级: 10931专业:数控指导老师:申爱民2011.4.18一、实验目标1.熟悉常用低压电器、仪表的使用及接线。
2.熟悉三相异步电动机的铭牌数据、并能正确接线。
3.训练三相异步电动机直接起动、点动控制线路的正确接线和调试。
4.学习熔断器、接触器、空气开关、热继电器及按钮的使用方法。
二、实验器材1.三相交流电源380V、220V2.三相异步电动机1台3.交流接触器1个4.空气开关1个5.熔断器4个6.热继电器1个7.常闭开关1个,常开开关1个 8.电工工具1套9.导线若干 10.欧姆表1个三、实验原理1.三相鼠笼式电动机的转动原理是,在通电的情况下在电动机的内部产生一种磁场,而电动机的转子要切割磁感线而产生运动,从而把电能转化为机械能。
2.去掉KM辅助触点,可以除去自锁功能,实现电机的点动。
3.图1—1是异步电动机直接启动的控制电路图。
四、实验内容和步骤1.认识常用低压电器和三相异步电机的铭牌标记,了解结构和工作原理及其接线方法。
2.按1-1电路图接入各电器,检查接线正确,并用欧姆表检测。
1).先接主线路,再接辅助线路。
2).先接串联线路,再接分支部分。
3).所有元件布局及布线要安全、方便。
同一相电源导线尽量用同种颜色。
3.通电按SB2观察三相异步电机的连续转动,按SB1停止。
4.断开控制回路中接触器的自锁触点KM,按SB2观察点动过程。
5.对主电路缺相,控制电路的短路和断路故障进行正确分析和排除。
图1-1主电路控制电路五、实验总结1.控制电路接线要先接串联电路,再接支路。
2.控制电路中的自锁由接触器的辅助触点实现。
它的作用是在按下SB2后,SB2有弹簧作用下恢复到常开状态,这时KM为自锁状态,仍可以保证控制电路形成闭合回路。
3.故障及原因1).接通电源后,按起动按钮,接触器吸合,但电动机不转且发出“嗡嗡”声响;或者虽能起动,但转速很慢。
三相异步电动机的直接起动、点动控制
实
验
报
告
姓名:杨宇
学号:091542
班级:10931
专业:数控
指导老师:申爱民
2011.4.18
一、实验目标
1. 熟悉常用低压电器、仪表的使用及接线。
2. 熟悉三相异步电动机的铭牌数据、并能正确接线。
3. 训练三相异步电动机直接起动、点动控制线路的正确接线和调试。
4. 学习熔断器、接触器、空气开关、热继电器及按钮的使用方法。
、实验器材
1. 三相交流电源380V、220V
2. 三相异步电动机1 台
3. 交流接触器1 个
4. 空气开关1 个
5. 熔断器4 个
6. 热继电器1 个
7. 常闭开关1 个,常开开关1 个8. 电工工具1 套
9. 导线若干10. 欧姆表1 个
三、实验原理
1. 三相鼠笼式电动机的转动原理是,在通电的情况下在电动机的
内部产生一种磁场,而电动机的转子要切割磁感线而产生运动,从而把电能转化为机械能。
2. 去掉KM辅助触点,可以除去自锁功能,实现电机的点动。
3. 图1—1是异步电动机直接启动的控制电路图。
四、实验内容和步骤
1. 认识常用低压电器和三相异步电机的铭牌标记,了解结构和工作原
理及其接线方法。
2.
按
1-1 电路图接入各电器,检查接线正确,并用欧姆表检测。
1 ) . 先接主线路,再接辅助线路。
2 ) . 先接串联线路,再接分支部分。
3 ) . 所有元件布局及布线要安全、方便。
同一相电源导线尽量
用同种颜色。
3. 通电按SB2观察三相异步电机的连续转动,按SB1停止。
4. 断开控制回路中接触器的自锁触点KM,按SB2观察点动过程。
5. 对主电路缺相,控制电路的短路和断路故障进行正确分析和排除。
图1-1
主电路控制电路
五、实验总结
1. 控制电路接线要先接串联电路,再接支路。
2. 控制电路中的自锁由接触器的辅助触点实现。
它的作用是在按下SB2后,SB2有弹簧作用下恢复到常开状态,这时KM为自锁状态,仍可以保证控制电路形成闭合回路。
3. 故障及原因
1 ) . 接通电源后,按起动按钮,接触器吸合,但电动机不转且发出“嗡嗡”声响;或者虽能起动,但转速很慢。
这种故障大多是主回路一相断电或电源缺项。
2 ) . 接通电源后,按起动按钮,若接触器通断频繁,且发出连续的噼啪声或吸合不牢,发出颤动声,此类故障原因可能是:
a 、线路接错,将接触器线圈与自身的动断触头串在一条回路上了。
b 、自锁触头接触不良,时通时断。
c 、接触器铁心上的短路环脱落或断裂。
d 、电源电压过低或与接触器线圈电压等级不匹配。
4. 心得体会这次实验的收获无疑是非常大的。
在课堂上学到的理论很抽象,但通过实验,具体接触各种电器元件并了解了他们的工作原理后,对三相异步电机的控制有了深一步的理解。
此电路中有短路, 过载,失, 欠压保护功能,使电路可以安全工作。
同时我还体会到,在实验室一定要按老师的要求、按安全规章制度做实验,这不仅是对自己负责,也是
对别人的安全负责。
这也可以作为我们的生活态度,要有严格的行为规范,严谨的生活态度,为我们的人生道路指明方向。