判别分析
- 格式:ppt
- 大小:2.96 MB
- 文档页数:3
关于判别分析的理解判别分析⼜称“分辨法”,是在分类确定的条件下,根据某⼀研究对象的各种特征值判别其类型归属问题的⼀种多变量统计分析⽅法。
其基本原理是按照⼀定的判别准则,建⽴⼀个或多个判别函数,⽤研究对象的⼤量资料确定判别函数中的待定系数,并计算判别指标。
据此即可确定某⼀样本属于何类。
当得到⼀个新的样品数据,要确定该样品属于已知类型中哪⼀类,这类问题属于判别分析问题。
判别分析,是⼀种统计判别和分组技术,就⼀定数量样本的⼀个分组变量和相应的其他多元变量的已知信息,确定分组与其他多元变量信息所属的样本进⾏判别分组。
要解决的问题:已知某种事物有⼏种类型,现在从各种类型中各取⼀个样本,由这些样本设计出⼀套标准,使得从这种事物中任取⼀个样本,可以按这套标准判别它的类型。
分类:根据判别中的组数,可以分为两组判别分析和多组判别分析;根据判别函数的形式,可以分为线性判别和⾮线性判别;根据判别式处理变量的⽅法不同,可以分为逐步判别、序贯判别等;根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。
判别分析通常都要设法建⽴⼀个判别函数,然后利⽤此函数来进⾏批判,判别函数主要有两种,即线性判别函数(Linear Discriminant Function)和典则判别函数(Canonical Discriminate Function)。
线性判别函数是指对于总体,如果各组样品互相对⽴,且服从多元正态分布,就可建⽴线性判别函数。
典则判别函数是原始⾃变量的线性组合,通过建⽴少量的典则变量可以⽐较⽅便地描述各类之间的关系,例如可以⽤画散点图和平⾯区域图直观地表⽰各类之间的相对关系等。
建⽴判别函数的⽅法⼀般由四种:全模型法、向前选择法、向后选择法和逐步选择法。
1)全模型法是指将⽤户指定的全部变量作为判别函数的⾃变量,⽽不管该变量是否对研究对象显著或对判别函数的贡献⼤⼩。
此⽅法适⽤于对研究对象的各变量有全⾯认识的情况。
判别分析判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。
其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。
据此即可确定某一样本属于何类。
1:距离判别的判别准则和判别函数:设总体A 和B 的均值向量分别为1μ和2μ,协方差阵分别为1∑和2∑,今给一个样本x 要判断x 来自哪一个总体。
若协方差相同,即1212μμ∑∑∑≠==,计算x 到总体A 和B 的Mahalanobis 距离(,)d x A 和(,)d x B ,Mahalanobis 的计算有以下定义:定义5.1 设x 是从均值为μ,协方差为∑的总体A 中抽取的样本,则总体A 内两点x 与y 的Mahalanobis 距离(简称马氏距离)定义为:(,)d x y =定义样本x 与总体A 的Mahalanobis 距离为:(,)d x A =然后进行比较,若(,)(,)d x A d x B ≤,则判定x 属于A ;否则判定x 来自B 。
由此得到如下判别准则:,(,)(,),(,)(,)A d x A d x B x B d x A d x B ≤⎧∈⎨≥⎩令T 112()()()w x x μ∑μμ-=-- 称()w x 为两总体距离的判别函数,由此判别准则变为,()0,,()0.A w x x B w x ≥⎧∈⎨≤⎩在实际计算中,总体的均值和协方差阵都是未知的,由此总体的均值与协方差需要用样本的均值和协方差来代替,设1(1)(1)(1)12,,,nx x x ⋅⋅⋅是来自总体A 的1n 个样本点,2(2)(2)(2)12,,,n x x x ⋅⋅⋅是来自总体B 的2n 个样本,则样本的均值和协方差为 11ˆ,1,2in ii i j j iux x i n ====∑2()()()()T1211121211ˆ=()()()22in i i i i j ji j x x x x S S n n n n ==∑---++-+-∑∑ 其中()()()()T 1()(),1,2in i i i i i j j j S x x x x i ==--=∑对于待测样本x ,其判别函数定义为T 1(1)(2)ˆˆˆˆ()()()wx x x x x ∑-=-- 其中(1)(2)ˆˆˆ2x x x +=其判别准则为ˆ,()0,ˆ,()0.A wx x B wx ≥⎧∈⎨≤⎩ 2:若协方差不同,即1212μμ∑∑≠≠,对于样本x ,在方差不同的情况下,判别函数为 T -1T -1222111ˆˆ()()()()()W x x x x x μ∑μμ∑μ=----- 在实际计算中,总体的均值和协方差阵都是未知的,由此总体的均值与协方差需要用样本的均值和协方差来代替。
第19章判别分析判别分析是一种多变量统计分析方法,用于确定两个或多个已知类别的样本在一组变量上的差异程度,从而将未知样本分到合适的类别。
在实际应用中,判别分析具有广泛的应用场景,如医学诊断、金融风险评估、图像识别等领域。
判别分析的目标是确定一个判别函数,该函数可以将样本正确地分类到已知的类别中。
判别分析主要通过以下几个步骤来实现:1.数据准备:首先需要收集并准备训练样本,这些样本包括已知类别的观测值和相关变量的测量值。
2.变量选择:在判别分析中,需要选择与类别之间具有显著差异的变量。
常用的方法包括t检验和方差分析等。
3.建立判别函数模型:判别函数模型是用来将样本正确分类的函数。
常见的判别函数模型包括线性判别函数、二次判别函数、多项式判别函数等。
4.模型评估和选择:需要对模型进行评估和选择,以确保模型的稳定性和准确性。
常见的评估指标包括准确率、召回率、精确率等。
5.判别函数应用:通过判别函数,可以将未知样本分类到合适的类别中,从而实现对未知观测值的预测。
判别分析有几个重要的假设前提:首先,假设样本来自正态分布;其次,假设各个类别的协方差矩阵相等;最后,假设各个类别的先验概率相等。
判别分析的优点在于可以通过变量选择来减少数据的维度,提高判别函数的准确性;同时,判别分析对异常值的鲁棒性较好,不会对判别结果产生较大影响。
然而,判别分析也存在一些限制,如对数据分布的假设较为严格,对样本大小要求较高。
在实际应用中,判别分析可以用于多个领域。
例如,在医学诊断中,可以利用判别分析将病人分为患病和健康两类,从而提供更准确的诊断结果;在金融风险评估中,可以通过判别分析将客户分为高风险和低风险,以便制定相应的风险管理策略;在图像识别中,可以利用判别分析将图像分为不同类别,实现图像的自动分类和识别。
总而言之,判别分析是一种多变量统计分析方法,通过确定样本在一组变量上的差异程度来实现对未知样本的分类。
在实际应用中,判别分析具有广泛的应用场景,可以用于医学诊断、金融风险评估、图像识别等领域。
判别分析--费希尔判别、贝叶斯判别、距离判别判别分析⽐较理论⼀些来说,判别分析就是根据已掌握的每个类别若⼲样本的数据信息,总结出客观事物分类的规律性,建⽴判别公式和判别准则;在遇到新的样本点时,再根据已总结出来的判别公式和判别准则,来判断出该样本点所属的类别。
1 概述三⼤类主流的判别分析算法,分别为费希尔(Fisher)判别、贝叶斯(Bayes)判别和距离判别。
具体的,在费希尔判别中我们将主要讨论线性判别分析(Linear Discriminant Analysis,简称LDA)及其原理⼀般化后的衍⽣算法,即⼆次判别分析(Quadratic Discriminant Analysis,简称QDA);⽽在贝叶斯判别中将介绍朴素贝叶斯分类(Naive Bayesian Classification)算法;距离判别我们将介绍使⽤最为⼴泛的K最近邻(k-Nearest Neighbor,简称kNN)及有权重的K最近邻( Weighted k-Nearest Neighbor)算法。
1.1 费希尔判别费希尔判别的基本思想就是“投影”,即将⾼维空间的点向低维空间投影,从⽽简化问题进⾏处理。
投影⽅法之所以有效,是因为在原坐标系下,空间中的点可能很难被划分开,如下图中,当类别Ⅰ和类别Ⅱ中的样本点都投影⾄图中的“原坐标轴”后,出现了部分样本点的“影⼦”重合的情况,这样就⽆法将分属于这两个类别的样本点区别开来;⽽如果使⽤如图8-2中的“投影轴”进⾏投影,所得到的“影⼦”就可以被“类别划分线”明显地区分开来,也就是得到了我们想要的判别结果。
原坐标轴下判别投影轴下判别我们可以发现,费希尔判别最重要的就是选择出适当的投影轴,对该投影轴⽅向上的要求是:保证投影后,使每⼀类之内的投影值所形成的类内离差尽可能⼩,⽽不同类之间的投影值所形成的类间离差尽可能⼤,即在该空间中有最佳的可分离性,以此获得较⾼的判别效果。
对于线性判别,⼀般来说,可以先将样本点投影到⼀维空间,即直线上,若效果不明显,则可以考虑增加⼀个维度,即投影⾄⼆维空间中,依次类推。