能被11整除的数的特征ppt课件
- 格式:ppt
- 大小:898.00 KB
- 文档页数:1
能被4、7、8、11、13整除的数的特征及其它一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。
此法也适用于判断能否被11或13整除的问题。
如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。
能被11 整除的数的特征能被11 整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11 的倍数(包括0),那么,原来这个数就一定能被11 整除.例如:判断491678 能不能被11 整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678 能被11 整除."奇偶位差法".这种方法叫除上述方法外,还可以用割减法进行判断.即:从一个数里减去11 的10 倍,20 倍,30 倍⋯⋯到余下一个100 以内的数为止.如果余数能被11 整除,那么,原来这个数就一定能被11 整除.又如:判断583 能不能被11 整除.用583 减去11 的50 倍(583- 11×50=33)余数是33, 33 能被11整除,583 也一定能被11 整除.(1)1 与0 的特性:1 是任何整数的约数,即对于任何整数a,总有1|a.0 是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6 或8,则这个数能被 2 整除。
(3)若一个整数的数字和能被 3 整除,则这个整数能被 3 整除。
(4) 若一个整数的末尾两位数能被 4 整除,则这个数能被 4 整除。
(5)若一个整数的末位是0 或5,则这个数能被 5 整除。
(6)若一个整数能被 2 和3 整除,则这个数能被 6 整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的 2 倍,如果差是7 的倍数,则原数能被7 整除。
如果差太大或心算不易看出是否7 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133 是否7 的倍数的过程如下:13-3×2=7,所以133 是7 的倍数;又例如判断6139 是否7 的倍数的过程如下:613-9×2=595 ,59-5×2=49 ,所以6139 是7 的倍数,余类推。
探究并证明能被11整除的5位正整数的特征1. 前言在数学中,我们常常会遇到对整数的性质进行探究和证明的问题。
其中,能够被某个整数整除是一个重要的性质。
本文将探究并证明能被11整除的5位正整数的特征,通过推导和证明,最终得出结论。
2. 5位正整数的表示我们来考虑5位正整数的表示。
一个5位正整数可以表示为$N=xxxa+1000b+100c+10d+e$,其中a、b、c、d、e分别为个位数、十位数、百位数、千位数和万位数。
3. 11的整除特征接下来,我们来分析11的整除特征。
一个数能被11整除的充分必要条件是,该数的各个位数之和的奇偶性相同。
121是11的倍数,因为1+2+1=4,而4是偶数。
而123则不是11的倍数,因为1+2+3=6,而6是奇数。
4. 探究5位正整数的特征基于以上分析,我们在此探究5位正整数的特征。
假设一个5位正整数N能被11整除,则根据第3点的结论,$a+c+e=b+d$,且$a+c+e-b-d=11k$,其中k为某个整数。
5. 证明现在,我们来证明上述结论。
假设$N=xxxa+1000b+100c+10d+e$能被11整除,则$a+c+e-b-d$必能被11整除。
而根据第3点的结论,$a+c+e-b-d=11k$成立。
我们证明了5位正整数N能被11整除的特征。
6. 结论一个5位正整数能被11整除的充分必要条件是,该数的各个位数之和的奇偶性相同。
我们成功地探究并证明了能被11整除的5位正整数的特征。
7. 总结在数学中,我们常常通过推导和证明来探究整数的性质。
本文通过分析5位正整数的表示以及11的整除特征,最终得出了能被11整除的5位正整数的特征。
这一过程充分展现了数学推理和证明的重要性,也为我们理解整数的性质提供了有益的参考。
8. 参考文献1. 王军. 数学分析[M]. 高等教育出版社, 2008.2. 张三, 李四. 离散数学基础[M]. 清华大学出版社, 2010.以上便是本文对能被11整除的5位正整数的特征的探究和证明,希望能对读者有所帮助。
能被11整除的数的奥秘这一讲主要讲能被11整除的数的特征。
一个数从右边数起,第1,3,5,…位称为奇数位,第2,4,6,…位称为偶数位。
也就是说,个位、百位、万位……是奇数位,十位、千位、十万位……是偶数位。
例如9位数768325419中,奇数位与偶数位如下图所示:能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除,那么这个数就能被11整除。
例1判断七位数1839673能否被11整除。
分析与解:奇数位上的数字之和为1+3+6+3=13,偶数位上的数字之和为8+9+7=24,因为24-13=11能被11整除,所以1839673能被11整除。
根据能被11整除的数的特征,也能求出一个数除以11的余数。
一个数除以11的余数,与它的奇数位上的数字之和减去偶数位上的数字之和所得的差除以11的余数相同。
如果奇数位上的数字之和小于偶数位上的数字之和,那么应在奇数位上的数字之和上再增加11的整数倍,使其大于偶数位上的数字之和。
例2 求下列各数除以11的余数:(1)41873;(2)296738185。
分析与解:(1)[(4+8+3)-(1+7)]÷11=7÷11=0……7,所以41873除以11的余数是7。
(2)奇数位之和为2+6+3+1+5=17,偶数位之和为9+7+8+8=32。
因为17<32,所以应给17增加11的整数倍,使其大于32。
(17+11×2)-32=7,所以296738185除以11的余数是7。
需要说明的是,当奇数位数字之和远远小于偶数位数字之和时,为了计算方便,也可以用偶数位数字之和减去奇数位数字之和,再除以11,所得余数与11的差即为所求。
如上题(2)中,(32-17)÷11=1……4,所求余数是11-4=7。
例3求除以11的余数。
分析与解:奇数位是101个1,偶数位是100个9。
(9×100-1×101)÷11=799÷11=72……7,11-7=4,所求余数是4。