不存 . 在
证 (一) 令zxiy, 则f(z) x , x2y2
u(x,y) x , v(x,y)0, x2y2
当 z沿直 y线 kx 趋于, 零时
lim u(x,y)lim x lim x
x0 ykx
x0 ykx
x2y2
x0 x2 (kx)2
29
lim x
1 ,
x0 x2(1k2)
1 k2
随k值的变化而变, 化
2
s i n 2 z c o s 2 z 1 ,但 s i n z ,c o s z 不 是 有 界 函 数 .
n
n
(k 0 ,1 ,2 , ,n 1 ) 在几何 ,n z的 上 n个值就是以原 ,n r点 为为 半中 径 的圆的内 n边 接形 正 n个 的顶. 点
单连通域与多连通域
从几何上看,单连通域就是无洞、无割痕 的域.
5
复变函数的概念
复变w与 函 自数 变 z之 量 间的 wf(关 z) 系 相当于两 : 个关系式
《复变函数》
第一讲 复数及其代数运算
两复数相等当且仅当它们的实部和虚 部分别相等.
复数 z 等于0当且仅当它的实部和虚部 同时等于0. 说明 两个数如果都是实数,可以比较它们的 大小, 如果不全是实数, 就不能比较大小, 也就 是说, 复数不能比较大小.
2
辐角的主值
在 z ( 0 )的,辐 把 角 π 满 0 π 中 的 足 0 称 A z 为 的 r,g 记 主 0 作 a 值 z .rg
设 zxiy,
x y 2 ii x y 2 i,化简后得 yx.
(2)Im(iz)4
设 zxiy,
i z x ( 1 y )i,Ii m z ) 1 ( y 4 ,