传热学现象
- 格式:doc
- 大小:16.00 KB
- 文档页数:4
绪 论一、概念1.传热学:研究热量传递规律的科学。
2.热量传递的基本方式:热传导、热对流、热辐射。
3.热传导(导热):物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。
(纯粹的导热只能发生在不透明的固体之中。
)4.热流密度:通过单位面积的热流量(W /m 2)。
5.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。
热对流只发生在流体之中,并伴随有导热现象。
6.自然对流:由于流体密度差引起的相对运功c7.强制对流:出于机械作用或其他压差作用引起的相对运动。
8.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。
9.辐射:物体通过电磁波传播能量的方式。
10.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。
11.辐射换热:不直接接触的物体之间,出于各自辐射与吸收的综合结果所产生的热量传递现象。
12.传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。
13.传热系数:表征传热过程强烈程度的标尺,数值上等于冷热流体温差1时所产生的热流密度)/(2k m W ⋅。
14.单位面积上的传热热阻:k R k 1=单位面积上的导热热阻:λδλ=R 。
单位面积上的对流换热热阻:h R 1=λ 对比串联热阻大小就可以找到强化传热的主要环节。
15.导热系数λ是表征材料导热性能优劣的系数,是一种物性参数,不同材料的导热系数的数值不同,即使是同一种材料,其值还与温度等参数有关。
对于各向异性的材料,还与方向有关。
常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。
16.表面换热系数h不是物性参数,它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。
17.稳态传热过程(定常过程):物体中各点温度不随时间而变。
《传热学》名词解释1.热传导:温度不同的物体各部分或温度不同的两物体直接接触时依靠分子,原子及其自由电子等微观粒子热运动而进行的热量传递现象2.导热系数λ:单位厚度的物体具有单位温差时,在它的单位面积上每单位时间的导热量。
其单位为W/(m•K)3.热对流:流体内部,只依靠有温差流体微团的宏观掺混运动传递热量的现象4.对流换热:流体在与它温度不同的壁面上流动时,两者产生热量交换,这一热量传递过程称为对流换热过程5.对流换热系数(表面传热系数)h:单位面积上,流体与壁之间在单位温差下及单位时间内所能传递的热量。
单位为W/(m2•K)6.传热过程:冷热两种流体隔着固体壁面的换热,即热量从壁一侧的高温流体通过壁传给另一侧的低温流体的过程7.传热系数k:单位时间,单位壁面积上,冷热流体间温差为1℃时所传递的热量。
单位为W/(m2•K)8.热阻:热量传递路径上的阻力,反映了热量传递过程中热量与温差的关系;单位面积的导热热阻Rλ=δ/λ,单位为(m2·K)/W;总面积的导热热阻R=δ/(λA),单位为K/W9.辐射换热:物体间靠热辐射进行的能量传递称为辐射换热10.#11.温度场:某一时刻空间所有各点温度的总称12.温度梯度:沿等温线法线方向上的温度增量与发向距离的比值13.等温面:同一时刻,温度场中所有温度相同的点连接所构成的面叫做等温面14.热流密度矢量:单位时间单位面积上所传递的热量称为热流密度。
定义等温面上某点,以通过该点最大热流密度的方向为方向,数值上正好等于沿该方向热流密度的矢量称为热流密度矢量,简称热流矢量15.热扩散率(热扩散系数,导温系数)a:a=λ∕(ρc p)称为热扩散率,热扩散系数,导温系数,单位为m2/s,表征物体被加热或冷却时,物体内各部分温度趋于均匀一致的能力16.稳态导热:物体的温度不随时间发生变化的导热过程称为稳态导热17.临界热绝缘直径:对应于总热阻为极小值时的保温层外径称为临界热绝缘直径18.肋片效率ηf:在肋片表面平均温度下,肋片的实际散热量与假定整个肋片表面都处在肋基温度时的理想散热量的比值19.接触热阻:当导热过程在两个直接接触的固体之间进行时,由于固体表面不是理想平整的,所以两固体直接接触的界面容易出现点接触,或者只是部分的而不是完全的和平整的面接触,这时就会给导热过程带来额外的热阻,这种热阻称为接触热阻20.(导热)形状因子:将有关涉及物体几何形状和尺寸的因素归纳在一起,称为形状因子21.'22.非稳态导热:温度场随时间而变化的导热过程23.瞬态导热:物体的温度不断升高(加热过程)或降低(冷却过程),在经历相当长的时间之后,物体的温度逐渐趋近于周围物体的温度,最终达到平衡,这样的过程称为瞬态导热,即为加热或冷却过程24.周期性非稳态导热:温度按照一定的周期发生变化的导热过程25.(瞬态温度变化的)正常情况阶段:经历不规则情况后,随着时间的推移,初始温度的影响逐渐消失,此时物体内部各处温度随时间的变化率具有一定的规律,称为正常情况阶段26.集总参数法:当Bi<时,可以近似地认为物体的温度是均匀的,这种忽略物体内部导热热阻,认为物体温度均匀一致的分析方法称为“集总参数法”27.(材料的)蓄热系数:,它表示物体表面温度波振幅为1℃时,导入物体的最大热流密度28.傅立叶准则:Fo=,它是非稳态导热过程的无量纲时间29.毕渥准则:B i=hδ/λ,它表示物体内部导热热阻δ/λ与物体表面对流换热热阻1/h的比值30.自然对流:流体因各部分温度不同而引起的密度差异所产生的流动称为自然对流31.受迫对流:流体因受外力作用产生的流动称为受迫对流32.·33.混合对流:受迫对流与自然对流并存的流动称为混合对流34.流动边界层:黏性流体流过物体表面时,紧挨壁面处将形成极薄的,具有很大速度梯度的流动边界层35.热边界层:当壁面与流体之间有温差时,在紧挨壁面处会出现极薄的,具有很大温度梯度的温度边界层,又称热边界层36.物理现象相似:在同一类物理现象中,凡相似的现象,空间各对应点的同名物理量分别成一定的比例37.雷诺准则:Re=ul/ν它的大小表征了流体流动时惯性力与粘滞力的相对大小38.努谢尔特准则:Nu=hl/λ,它表征壁面法向无量纲过于温度梯度的大小,而此梯度的大小反映了对流换热的强弱39.格拉晓夫准则:Gr=(gΔtαl3)/v2,表征了浮升力与粘滞力的相对大小40.普朗特准则:Pr=v/a,,它的值反映了流体的动量传递能力与热量传递能力的相对大小41.(流动、热)进口段:流体从进入管口开始,需经历一段距离,管断面流速分布和流动状态才能达到定型,这一段距离通称进口段42.(流动、热)充分发展段:流体经过进口段后,流态定型,流动达到充分发展,称为流动充分发展段43.、44.(自然对流换热的)自模化现象:对于自然对流紊流,其表面传热系数与定型尺寸无关,该现象称“自模化现象”45.膜状凝结:当凝结液能很好地湿润壁面时,凝结液将形成连续的膜向下流动,称为膜状凝结46.珠状凝结:若凝结液不能很好地湿润壁面,则凝结液将聚成一个个液珠,称为珠状凝结47.沸腾:液体在受热面的加热下,液体内部产生气泡的相变过程称为沸腾48.沸腾温差(过热度):饱和沸腾时,壁温与饱和温度之差49.(饱和、过冷、泡态、膜态)沸腾:一定压强下,当液体主体为饱和温度t s,而壁面温度t w高于ts时的沸腾称为饱和沸腾;若主体温度低于ts,而壁面温度tw高于ts的沸腾称为过冷沸腾;热量依靠自然对流过程传递到主体,蒸发在液体表面进行,这时的沸腾称为自然对流沸腾;自然对流过后,沸腾温差继续增加,之后会产生大量de气泡,称为泡态沸腾(核沸腾);沸腾温差继续增大,当沸腾温差达到一定值时,壁面将全部被一层稳定的气膜所覆盖,这时气化只能在气膜-液交界面上进行,气化所需热量依靠导热,对流,辐射通过气膜传递,称为膜态沸腾50.黑体:物体能全部吸收外来射线,即α=1,由于可见光被全部吸收而不被反射,人眼所看到的颜色呈现黑色,故这种物体被定义为黑体51.白体: 物体能全部反射外界投射过来的射线,即ρ=1,不论是镜反射还是漫反射,由于可见光被全部反射,颜色上呈现白色,故这种物体称为白体52.透明体:如果外界投射过来的射线能够全部穿透物体,即τ=1,则称这种物体为透明体53.辐射力E:单位时间内,物体单位辐射面积向半球空间所发射全部波长的总能量称为辐射力,单位为W/m254.}55.单色辐射力Eλ:单位时间内,物体单位辐射面积,向半球空间所发射的某一波长的能量称为单色辐射力,单位为W/(m2·μm)56.定向辐射强度I p:在某给定辐射方向上,单位时间,单位可见辐射面积,在单位立体角内所发射的全部波长的能力称为定向辐射强度57.单色定向辐射强度Iλp:在某给定辐射方向上,单位时间,单位可见辐射面积,在单位立体角内所发射的某一波长的能力称为单色定向辐射强度58.发射率(黑度)ɛ:实际物体的辐射力与同温度下黑体的辐射力之比;ɛ=E/E b59.单色发射率ɛλ:ɛλ=Eλ/E bλ60.定向发射率ɛp:ɛp=E p/Eλp:61.单色定向发射率ɛλ,p:ɛλ,p=Eλ,p/E bλ,p62.灰体:假如某物体的光谱发射率ɛλ不随波长发生变化,即ɛ=ɛλ=const,这种物体称灰体63.温室效应:投射阳光的密闭空间由于与外界缺乏热量交换而形成的保温效应64.角系数X a,b: 表示离开表面的辐射能中直接落到另一个表面上的百分数65.%66.有效辐射J: 单位时间离开单位面积表面的总辐射能67.投入(投射)辐射G:单位时间,单位面积表面得到的总辐射能68.重辐射面:在辐射换热系统中,表面温度未定,净辐射换热量为零的表面69.辐射隔热:减少表面间辐射换热的有效方法是采用高反射比的表面涂层,或在表面间加设遮热板,这类措施称为辐射隔热70.复合换热:当流体为气体介质时,壁面上除对流换热外,还将同时存在辐射,这种对流与辐射并存的换热称为复合换热(区别于“混合换热”)71.换热器:实现两种或两种以上温度不同的流体相互换热的设备72.(换热器的)效能ɛ:换热器的实际传热量与最大可能的传热量之比73.(换热器的)传热单元数NTU:传热单元数NTU是表示换热器传热量大小的一个无量纲数,NTU=kA/C min。
生活中的传热学现象及解释
标题:生活中的传热学现象及解释
一、引言
在日常生活中,我们经常遇到各种各样的传热现象。
这些现象涉及到物理学的传热学领域,包括对流、传导和辐射三种基本方式。
通过了解这些现象背后的科学原理,我们可以更好地理解并应用它们。
二、对流现象
1. 煮开水:当我们把水烧开时,可以看到锅底的水开始冒泡,这就是对流现象。
这是因为当水加热到一定温度时,底部的水受热膨胀,密度变小,向上浮起,而上部的冷水则下沉,形成循环流动,使热量得以传递。
2. 冬季室内取暖:在冬天使用暖气或空调时,空气会因温差产生对流。
暖空气上升,冷空气下降,使得整个房间的温度逐渐升高。
三、传导现象
1. 喝热饮:当我们喝热饮时,杯子的热度会通过杯壁传递到我们的手上,这就是传导现象。
物体内部的分子由于碰撞,将热量从高温区向低温区传递。
2. 铁锅炒菜:铁锅炒菜时,锅底的热量会通过铁锅传导到食物上,使其快速煮熟。
四、辐射现象
1. 太阳光照射:太阳光是通过辐射的方式传递到地球上的。
尽管大气层会对太阳光有一定的阻挡和散射,但大部分还是能到达地面,给我们带来温暖。
2. 电热毯工作原理:电热毯的工作原理就是利用了热辐射。
电热毯内的发热元件通电后会产生热量,这些热量以辐射的形式传递出来,使人体感到温暖。
五、结语
以上就是我们在生活中常见的传热现象及其背后的科学原理。
通过对这些现象的理解,我们可以更好地理解和利用这些现象,提高生活的便利性和舒适性。
同时,这也让我们更加深刻地认识到,科学就在我们身边,无处不在,影响着我们的生活。
(完整版)传热学知识点传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2. 导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3. 对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4 对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。
q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。
a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。
7. 导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1 度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
第一章导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律(导热基本定律):q ' = -k ?dT q ' = -k ?T = -k (i ?T + j ?T + k ?T) x ?dx ?x ?y ?zq ' = -k ?T n ?nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
第1章绪论热量传递过程由导热、对流、辐射3三种基本方式组成。
一导热导热又称热传导,是指温度不同的物体各部分无相对位移或不同温度的各部分直接紧密接触时,依靠物质内部分子、原子及自由电子等微观粒子的热运动而进行热量传递的现象。
1、傅里叶公式(W)λ——导热系数,。
(物理意义:单位厚度的物体具有单位温度差时,在单位时间内其单位面积上的导热量。
)2、热流密度(W/m2)二热对流热对流,依靠流体的运动,把热量从一处传递到另一处的现象。
1、对流换热对流换热:流体与温度不同的固体壁面接触时所发生的传热过程。
区别2、牛顿冷却公式h——对流换热系数,W/(m2·)。
(物理意义:流体与壁面的温差为1时,单位时间通过单位面积传递的热量。
)三热辐射物体表面通过电磁波(或光子)来传递热量的过程。
1、特点辐射能可以通过真空自由地传播而无需任何中间介质。
一切物体只要具有温度(高于0K)就能持续地发射和吸收辐射能。
不仅具有能量传递,还有能量的转换:热能——电磁波——热能。
2、辐射换热:依靠辐射进行的热量传递过程。
3、辐射力物体表面每单位面积在单位时间内对外辐射的全部能量。
(W/m2)C b——辐射系数,C b=5.67W/(m2·K4)。
4、辐射量计算四传热过程1、总阻2、总热流密度第2章导热问题的数学描述一基本概念及傅里叶定律1、基本概念等温面:由温度场中同一瞬间温度相同点所组成的面。
等温线:等温面上的线,一般指等温面与某一平面的交线。
热流线:处处与等温面(线)垂直的线。
2、傅里叶定律(试验定律)3、各向热流密度二导热系数1、定义式2、实现机理气体:依靠分子热运动和相互碰撞来传递热量。
非导电固体:通过晶体结构的振动来传递热量。
液体:依靠不规则的弹性振动传递热量。
3、比较同种物质:不同物质:4、温度线性函数三导热微分方程及定解条件1、导热微分方程拉普拉算子。
——热扩散率,。
分子代表导热能力,分母代表容热能力。
1.热传导(1)为什么冬天晒过的棉被盖上去暖和,拍打后效果更好。
要点:导热系数小保温材料答:棉被经过晾晒后,可使棉花空隙中进入更多的空气,而空气在狭小的棉絮空间里热量的传递方式主要是导热,由于空气的导热系数小,具有良好的保温性能,拍打后让更多的空气进入,效果明显。
(2)在夏天,20℃的室温感到舒适,而冬天同样20℃的室温感到冷。
要点:热传导,辐射换热,对流换热答:冬夏最大的区别就是室外温度不同。
夏季室外温度高,因此通过墙壁的传热方向是室外传到室内,而冬季室外气温比室内低,通过墙壁热量传递的方向是室内到室外。
因此冬季墙壁表面温度低于夏季。
人体在室内主要是与周围的空气发生对流换热,和墙壁发生辐射换热,人在冬季通过辐射换热与墙壁的散热比夏季高得多,因此冬季感觉到冷。
(3)用套管式温度计测量管道中流体的温度,为减小测量误差,若有铜和不锈钢两种材料,哪一种做套管较好套管温度计安装在那个位置好要点:套筒式温度计答:1.选择不锈钢。
温度计套管产生误差的主要原因是由于沿肋高(即套管长度方向)有热量导出和套管表面与流体之间存在换热热阻。
因而要减小温度计套管的误差,要选择导热系数小的材料,增加导热热阻,故选择不锈钢。
2.安装在拐角处位置好,因为拐角处由于离心力的作用,在横截面上产生了二次环流,增加了扰动,从而强化了换热,对应的换热系数增加,从而使测温误差减小。
(4)试解释冰箱结霜后耗电量增加。
要点:传热热阻答:冰箱工作是先吸入处于低压常温下的制冷剂,并压缩到高温高压的蒸汽;然后制冷剂通过蛇形管冷凝器,向外界散热,制冷剂从气体变为液体;最后制冷剂通过更细的蛇形管蒸发器,由于节流作用,从液体变为气体,这个过程需要吸热。
而这部分热量来自于冰箱中的食物。
当冰箱结霜后,蒸发器与冷藏室中增加了传热热阻,那么如果希望冷藏室的温度保持初始温度,需要冰箱中的食物向制冷剂传递更多的能量,这就要求制冷剂的温度能够降得更低,这就要求增加压缩机的功率,增加了耗电量。
传热学实际现象应用1.热传导(1)为什么冬天晒过的棉被盖上去暖和,拍打后效果更好。
要点:导热系数小保温材料答:棉被经过晾晒后,可使棉花空隙中进入更多的空气,而空气在狭小的棉絮空间里热量的传递方式主要是导热,由于空气的导热系数小,具有良好的保温性能,拍打后让更多的空气进入,效果明显。
(2)在夏天,20℃的室温感到舒适,而冬天同样20℃的室温感到冷。
要点:热传导,辐射换热,对流换热答:冬夏最大的区别就是室外温度不同。
夏季室外温度高,因此通过墙壁的传热方向是室外传到室内,而冬季室外气温比室内低,通过墙壁热量传递的方向是室内到室外。
因此冬季墙壁表面温度低于夏季。
人体在室内主要是与周围的空气发生对流换热,和墙壁发生辐射换热,人在冬季通过辐射换热与墙壁的散热比夏季高得多,因此冬季感觉到冷。
(3)用套管式温度计测量管道中流体的温度,为减小测量误差,若有铜和不锈钢两种材料,哪一种做套管较好?套管温度计安装在那个位置好?要点:套筒式温度计答:1.选择不锈钢。
温度计套管产生误差的主要原因是由于沿肋高(即套管长度方向)有热量导出和套管表面与流体之间存在换热热阻。
因而要减小温度计套管的误差,要选择导热系数小的材料,增加导热热阻,故选择不锈钢。
2.安装在拐角处位置好,因为拐角处由于离心力的作用,在横截面上产生了二次环流,增加了扰动,从而强化了换热,对应的换热系数增加,从而使测温误差减小。
(4)试解释冰箱结霜后耗电量增加。
要点:传热热阻答:冰箱工作是先吸入处于低压常温下的制冷剂,并压缩到高温高压的蒸汽;然后制冷剂通过蛇形管冷凝器,向外界散热,制冷剂从气体变为液体;最后制冷剂通过更细的蛇形管蒸发器,由于节流作用,从液体变为气体,这个过程需要吸热。
而这部分热量来自于冰箱中的食物。
当冰箱结霜后,蒸发器与冷藏室中增加了传热热阻,那么如果希望冷藏室的温度保持初始温度,需要冰箱中的食物向制冷剂传递更多的能量,这就要求制冷剂的温度能够降得更低,这就要求增加压缩机的功率,增加了耗电量。
传热学1.热传导方式传热在固体液体气体中发生2.传热方式为热传导,热对流,热辐射3.等温面的特点:(1) 温度不同的等温面或线彼此不能相交;(2) 在连续的温度场中,等温面不会中断(3) 若温度间隔相等时,等温线的疏密可反映出不同区域导热热流密度(单位面积的热流量)的大小。
4.热量方向与温度梯度方向相反5.热量传递方向不止能从高温处传向低温处6.复合传热是指既有对流换热,又有辐射换热的换热现象7.热传导1.热传导定义:物体内部或相互接触的表面间,由于分子、原子及自由电子等微观粒子的热运动及相互碰撞而产生的热量传递现象称为热传导( 简称导热)2.特点:物质各部分不会发生相对位移3.热导率特点:1)对于同种物质,其固态的热导率值最大,气态的热导率值最小2)一般金属的热导率大于非金属的热导率3)导电性能好的金属,其导热性能也好4)纯金属的热导率大于它的合金5)对于各向异性物体,热导率的数值与方向有关5)对于同种物质,其晶体的热导率要大于非晶体的热导率热对流1.热对流:指流体的宏观运动使温度不同的流体相对位移而产生的热量传递的现象,显然,热对流只能发生在流体之中,而且必然伴随有微观微粒热运动产生的导热。
2.流动原因:一自然对流:温度不同引起密度差,轻者上浮,重者下沉;二强制对流:风机、泵或搅拌等外力所致流体质点的运动。
3.强制对流引起的热量传递远大于自然对流热量传递4.热辐射1.热射线主要有有红外线,可见光2.热辐射特点:(1) 热辐射总是伴随着物体的内热能与辐射能这两种能量形式之间的相互转化。
(2) 热辐射不依靠中间媒介,可以在真空中传播因此,又称其为非接触性传热。
(3) 物体间以热辐射的方式进行的热量传递是双向的。
即不仅高温物体向低温物体辐射热能,而且低温物体向高温物体辐射热能。
3.布鲁布鲁对流换热1.对流换热:流体与固体表面之间的热量传递是热对流和导热两种基本传热方式共同作用,不是基本传热方式2.特点:(1) 导热与热对流同时存在的热传递过程(2) 必须有直接接触(流体与壁面)和宏观运动;也必须有温差(3) 由于流体粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层3.对流换热是指流体流经固体时流体与固体表面之间的热量传递现象4.圆管壁稳定传热时,温度呈对数曲线分布5.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导热系数小的材料放置在外层,保温效果更好(错误)6.提高对流传热系数的途径:①使流动从层流转变为湍流②增加流速③增大管径④选用螺纹管,短管,弯管(5). 在管外流动,应加折流板7.沸腾三个阶段:自然对流、核状沸腾、膜状沸腾,工业上采用核状沸腾8.边界层的分离增强了流体的扰动,h 增大/ 流体在圆管外的换热,为避免层流,底层对对流换热的影响会设置障碍物,促使边界层的分离形成,为增强传热效果9.空气在圆管内做湍流运动,当其他条件不变,空气流速提高一倍时,对流传热h为原来对流传热系数的1.74倍10.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导数系数小的材料放置在外层,保温效果更好(错误)11.蒸汽冷凝时,定期排放不凝性气体。
名词解释1、热流量:单位时间内通过某一给定面积的热量。
2、热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷热流体相互掺混所导致的热量传递。
3、速度边界层:在固体表面附近流体速度发生剧烈变化的薄层。
4、相似现象:两个同类的物理现象,如果在相应时刻和相应位置与现象有关的各同名物理量一一对应成比例,则称此两现象彼此相似。
5、集中参数法:固体内部的导热热阻远小于其表面的换热热阻时,任何时刻固体内部的温度场都趋于一致,以致可以认为整个固体在同一瞬间均处于同一温度下,此时需要解释的温度只是时间的一元函数,这种忽略物体内部导热热阻的简化分析法称为集中参数法。
6、对流换热:发生在流体和与之接触的固体壁面之间的热量传递过程,是宏观对流与微观的热传导的综合传热过程。
7、热辐射:因热的原因而发出辐射能的现象。
物体电磁波方式向外界传递能量的过程。
8、传热系数:数值上等于冷热流体之间温差1度时,单位传热面积的热流量的值,是表征传热过程强烈程度的指标。
9、热传导:物体各部分之间不发生相对位移,依靠分子原子自由电子等微观粒子的热运动而产生的热能传递。
10.有效辐射:单位时间内离开表面单位的总辐射能。
11、温度场:各个时刻物体内部各点温度分布的总称。
12、定性温度:用以确定特征数中流体物性的温度。
13、黑体:能吸收投入到其表面上的所有热辐射能量的物体。
14、非稳态导热:物体的温度随时间变化的导热。
15、投入辐射:单位时间内从外界投入到物体的单位表面积上的辐射能。
16、吸收比:投入辐射中被吸收的百分数。
17、反射比:投入辐射中被反射的百分比数。
18、穿透比:投入辐射中穿透物体能量的百分数。
19、灰体:在辐射分析中,把光谱吸收比与波长无关的物体称为灰体。
,20、发射率(黑体):实际物体的辐射力E总是小于同温度下黑体的辐射力Eb 两者的比值称为实际物体的发射率。
21、辐射力:单位时间内单位面积向其上的半球空间的所有方向辐射出去的全部波长范围内的能量。
传热学是研究热量传递过程规律的科学。
热量传递过程是由导热、热对流、热辐射三种基本热传递方式组成。
导热又称热传导,是指物体各部分无相对位移或不同物体之久而接触是依靠分子、原子及自由电子等微观粒子热运动而进行的热量传递现象。
导热系数是指单位厚度的物体具有单位温度差时,在它的单位面积上每单位时间得到热量。
它表示材料导热能力的大小。
只依靠流体的宏观运动传递热量的现象称为热对流。
流体与固体壁直接接触时所发生的热量传递过程,称为对流换热。
表面传热系数是指单位面积上,流体与壁之间在单位温差下及单位时间内所传递的热量。
h的大小表达了对流换热过程的强弱程度. 物体表面每单位时间、单位面积对外辐射的热量称为辐射力。
其大小与物体表面性质及温度有关。
物体靠辐射进行的热量传递称为辐射换热。
辐射换热特点:热辐射过程中伴随着能量形式转换(物体内能—电磁波能—物体内能);不需要冷热物体直接接触;不论温度高低,物体都在不停的相互发射电磁波能,相互辐射能量。
K称为传热系数,它表明单位时间、单位壁面积上,冷热流体间温差为1C时所传递的热量,反映传热过程的强弱. 导热理论基础温度场是指某一时刻空间所有各点温度的总称。
温度场不随时间变化而变化,称为稳态温度场。
具有稳态温度场的导程叫稳态导热。
温度场随时间变化的导热过程叫做非稳态导热。
同一时刻,温度场中所有温度相同的点连接所构成的面叫做等温面。
不同的等温面与同一平面相交,则在此平面上构成的一簇曲线,称为等温线。
自等温面上某点到另一个更等温面,以该点法线方向的温度变化率为最大。
以该点法线方向为方向,数值也正好等于这个最大的温度变化率的矢量称为温度梯度。
单位时间单位面积上所传递的热量称为热流密度。
凡平均温度不高于350C、导热系数不大于0.12W/(m.K)的材料称为保温材料。
常见的保温材料有石棉,岩棉,矿渣棉,微孔硅酸钙,苯板,泡沫塑料,珍珠岩。
用单位体积单位时间内所发出的热量表示内热源强度。
传热学现象解释题1、夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持23℃的室内工作时,却必须穿绒衣才觉得舒服。
试从传热的观点分析原因。
答:首先,冬季和夏季的最大区别是室外温度的不同。
夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。
而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度(23℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。
根据上题人体对冷感的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
2、冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明显。
试解释原因。
答:棉被经过晾晒以后,可使棉花的空隙里进人更多的空气。
而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小(20℃,1.01325×105Pa时,空气导热系数为0.0259W/(m·K),具有良好的保温性能。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
3、在地球表面某实验室内设计的自然对流换热实验,到太空中是否仍然有效,为什么?答:该实验到太空中无法得到地面上的实验结果。
因为自然对流是由流体内部的温度差从而引起密度差并在重力的作用下引起的。
在太空中实验装置格处于失重状态,因而无法形成自然对流,所以无法得到顶期的实验结果。
4、在对流温度差大小相同的条件下,在夏季和冬季,屋顶天花板内表面的对流放热系数是否相同?为什么?答:在夏季和冬季两种情况下,虽然它们的对流温差相同,但它们的内表面的对流放热系数却不一定相等。
原因:在夏季t f<t w,在冬季t f>t w,即在夏季,温度较高的水平壁面在上,温度较低的空气在下,自然对流不易产生,因此放热系数较低.反之,在冬季,温度较低的水平壁面在上,而温度较高的空气在下,自然对流运动较强烈,因此,放热系数较高。
问题1 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?
回答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。
而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
问题2 冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?
回答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。
而空气的强制对流换热强度要比自然对流强烈。
因而在有风时从人体带走的热量更多,所以感到更冷一些。
讨论:读者应注意的是人对冷暖感觉的衡量指标是散热量的大小而不是温度的高低,即当人体散热量低时感到热,散热量高时感到冷,经验告诉我们,当人的皮肤散热热流为58W/㎡时感到热,为232W/㎡时感到舒服,为696W/㎡时感到凉快,而大于为928W/㎡时感到冷。
问题3 夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?
回答:首先,冬季和夏季的最大区别是室外温度不同。
夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。
而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过
辐射与墙壁的散热比夏季高很多。
根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
问题4 利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?
回答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。
所以,结霜的冰箱耗电量更大。
问题5 有人将一碗热稀饭置于一盆凉水中进行冷却。
为使稀饭凉得更快一些,你认为他应该搅拌碗中的稀饭还是盆中的凉水?为什么?
回答:从稀饭到凉水是一个传热过程。
显然,稀饭和水的换热在不搅动时属自然对流。
而稀饭的换热比水要差。
因此要强化传热增加散热量,应该用搅拌的方式强化稀饭侧的传热。
问题6 在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?
回答:在其他条件相同时,实心砖材料如红砖的导热系数约为0.5W/(m·K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时其导热系数很低,是很好的绝热材料。
因而用多孔空心砖好。
问题7 电影《泰坦尼克号》里,男主人公杰克在海水里被冻死而女主人公罗丝却因躺在筏上而幸存下来。
试从传热学的观点解释这一现象。
回答:杰克在海水里其身体与海水间由于自然对流交换热量,而罗丝在筏上其身体与空气之间产生自然对流。
在其他条件相同时,水的自然对流强度要远大于空气,因此杰克身体由于自然对流散失能量的速度比罗丝快得多。
因此杰克被冻死而罗丝却幸免于难。
问题8 人造地球在卫星在返回地球表面时为何容易被烧毁?
回答:卫星在太空中正常运行时,其表面的热量传递方式主要依靠与太空及太阳等星体的辐射。
而在卫星返回地面的过程中,由于与大气层之间的摩擦,产生大量的热量,无法及时散失,因而易被烧毁。
问题9 北方深秋季节的清晨,树叶叶面上常常结霜,试问树叶上、下表面的哪一面结霜?为什么?
回答:霜会结在树叶上的表面。
因为清晨,上表面朝向太空,下表面朝向地面。
而太空表面的温度低于摄氏零度,而地球表面温度一般在零度以上。
由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。
问题10 窗玻璃对红外线几乎不透明,但为什么隔着玻璃晒太阳却使人感到暖和?
回答:窗玻璃对红外线不透明,但对可见光却是透明的,因而隔着玻璃晒太阳,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在窗内,因而房间内温度越来越高,因而感到暖和。
问题11 在太阳系中地球和火星距太阳的距离相差不大,但为什么火星表面温度昼夜变化却比地球要大得多?
回答:由于火星附近没有大气层,因而在白天,太阳辐射时火星表现温度很高,而在夜间,没有大气层的火星与温度接近于绝对零度的太空进行辐射换热,因而表面温度很低。
而地球附近由于大气层(主要成份是CO2和水蒸气)的辐射作用,夜间天空温度比太空高,白天大气层又会吸收一部分来自太阳的辐射能量,因而昼夜温差较小。
问题12 在冬季的晴天,白天和晚上空气温度相同,但白天感觉暖和,晚上却感觉冷。
试解释这种现象。
回答:白天和晚上人体向空气传递的热量相同,且均要向温度很低的太空辐射热量。
但白天和晚上的差别在于:白天可以吸收来自太阳的辐射能量,而晚上却不能。
因而晚上感觉会更冷一些。