苏教版初一数学(上)期中试卷
- 格式:doc
- 大小:653.50 KB
- 文档页数:15
苏教版七年级数学上册期中考试测试卷(考试时间:120分钟 满分150分)一、选择题(下列各题中只有一个答案是正确的,每题3分,共18分) 1.3的相反数是(▲) A .31 B .3- C .31- D .3 2.下列各式中,次数为3的代数式是 (▲)A .xy 2B .x 4+y 3C .x 3yD .3xy 3.面积是10的正方形,边长最接近下列哪个数(▲)A .2.8B .3C .3.2D .3.4 4.下列各式运算正确的是 (▲) A .3a +4b =7abB .5y 2-2y 2=3C . 7a +a =8aD .4x 2y -2xy 2=2xy5.不论a 取什么值,代数式2--a 的值总是(▲)A .正数B .负数C .非负数D .不能确定 6.如果3,,+--+b a b a b a 中,b a +的值最大,则b 的值可以是(▲)A .-1B .0C .1D .2二、填空题(本大题共10小题,每小题3分,满分30分.请把答案填在题中的横线上) 7.2-的绝对值是_______.8.满足条件大于1-且小于π的整数共有_______个.9.2013年第一季度,泰州市共完成工业投资022********元,022********这个数可用科学记数法表示为_____ ___.10.已知a 、b 互为倒数,d c 、互为相反数,则代数式ab d c 2-+的值为_______. 11.三个连续整数中中间一个数是n ,那么它们的和等于_______. 12.写出b a 32-的一个同类项______ __.13.某公交车原来坐有24人,经过4个站点时上下车情况如下(上车为正,下车为负): (+4,-8),(-5,+6),(-3,+2),(+1,-7),现在车上还有 人. 14.若,,且00<<ab a 化去绝对值符号=--7b a ______.15.如果b -2= a 2,那么代数式b 2-b (a 2+2)+2的值等于________.16.已知整数,,,,4321a a a a …满足下列条件:01=a ,112+-=a a ,223+-=a a ,334+-=a a ,445+-=a a ,…,100100101+-=a a ,则101a 的值为_______.三、解答题(解答需写出必要的文字说明或演算步骤.) 17.(本题满分8分)请把下列各数填在相应的集合内+4,0.333……,-⎪⎪⎪⎪-12,-(+27),π,-(-2),0,2.5,-1.232232223……, 正有理数集合:{ …} 非负整数集合:{ …} 负分数集合:{ …} 无理数集合:{ …}18.(本题满分8分) 画一条数轴,在数轴上把下列各数表示出来,并用“<”连接各数.5.2--,—4.5, 2,0,99)1(-,3--19.(本题满分18分,每小题3分)计算: (1)4-(-4)+(-3); (2) 3125317++-(3)])2(3[134---- (4))31()3(3)31(-⨯-÷⨯-(5)-2×(-216)+(-7)×216+5×136 (6))412(]8.0)31(3[21422-÷--⨯-⨯20.(本题满分10分,每小题5分)先化简,再求值:(1)先化简,再求值:)42()34(22a a a a --+-,其中a =2-;(2)22225(37)(25)x y xy y x -++-,其中2,1-==y x .21.(本题满分9分)邮递员骑车从邮局出发,先向西骑行3km 到达A村,继续向西骑行2km 到达B 村,然后向东骑行7km 到达C 村,再继续向东骑行3km 到达D 村,最后骑回邮局. (1)C 村离A 村有多远? (2)邮递员一共骑行了多少千米?22.(本题满分9分)如果2.2=a ,8.3=b . (1)试求b a 、的值;(2)如果b a 、的和值为整数,试求a -b 的值;23.(本题满分9分)(1)写出一个含有字母x 的代数式,当x =1时,代数式的值等于2;(2)写出一个含有字母x 的代数式,当x =4和x =4-时,代数式的值都等于5; (3)写出两个含有字母x 的三项式,且它们的次数都是2,当x 不论取什么值时,这两个多项式的和总是等于3(列式表示).24.(本题满分9分)请你揭秘:刘谦的魔术表演风靡全国,小亮同学也学起了刘谦,运用所学知识设计了一个魔术节目.他请同学想一个数,然后将这个数按以下步骤操作:乘以3 减去9 除以3 加上2 告诉小亮结果小亮立刻说出同学想的那个数.(1)如果同学小明想的数是-1,那么他告诉小亮的结果应该是;(2)如果小聪想了一个数并告诉小亮结果为2012,那么小亮立刻说出小聪想的那个数是;(3)同学们又进行了几次尝试,小亮都能立刻说出他们想的那个数,请你说出其中的奥妙.(要求:用所学的数学知识写出掲秘的过程.......).25.(本题满分10分)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,第一级:小于或等于25立方米(吨),按正常居民用水价格3元/立方米收费;第二级:超过25立方米且小于或等于35立方米用水区间,其中的25立方米仍按3元/立方米收费,超过部分按4元/立方米收费;第三级:超过35立方米,其中的35立方米仍按第二级方案收费,超过部分按5元/立方米收费. 设每户家庭用水量为x 立方米时,应交水费y 元.(1)当250≤≤x 时, y = 元(用含x 的代数式表示);当3525≤<x 时,y = 元(用化简了的含x 的代数式表示); 当35>x 时,y = 元(用化简了的含x 的代数式表示); (2)小明家十月份缴纳水费95元,那么小明家十月份共用水多少立方米?26.(本题满分12分)如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是60千米/小时,BC段为上山路,车速是45千米/小时,CD段为下山路,车速是72千米/小时,已知下山路的长是上山路的2倍.(1)若AB=12千米,老王开车从A到D共需多少小时?(2)若AB=6千米,老王开车从A到D共需多少小时?(3)当AB的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)D答案一、选择题 BACCBD二、填空题(本大题共10小题,每小题3分)7. 2 8. 4 9. 101023.2⨯ 10. -2 11.3n 12. b a 3(答案不唯一) 13. 14 14. b -a +7 15. 2 16. -50三、解答题(本大题共6小题,共60分. 解答需写出必要的文字说明或演算步骤.) 17.(每空2分)请把下列各数填在相应的集合内正数集合:{+4,0.333……,-(-2), 2.5 …} 非负整数集合:{ +4,-(-2),0, …} 负分数集合:{ -⎪⎪⎪⎪⎪⎪-12,-(+27), …}无理数集合:{π,-1.232232223…… …} 18.(本题8分) 在数轴上把下列各数表示出来,并用“<”连接各数。
苏教版七年级数学上册期中考试测试卷一、选择题(每小题2分,共12分)1.据测算,我国如果每年减少10%的包装纸用量,那么可减排二氧化碳3120000吨,将3120000吨用科学记数法表示为(▲).A .51012.3⨯吨 B .61012.3⨯吨 C .5102.31⨯吨 D .710312.0⨯吨2.把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果为(▲). A .5)2()3(+=+++ B .1)2()3(+=-++ C .5)2()3(-=+-- . D .1)2()3(-=++- 3.下列四个数中,无理数是(▲).A .3.14B .0.33030030003…C .0.3333…D .722 4.下图表示某地区早晨、中午和午夜的的温度(单位:℃),则下列说法正确的是(▲).A .中午和早晨的温差是11℃B .中午和早晨的温差是3℃C .中午和午夜的温差是0℃D .午夜和早晨的温差是11℃5.小明要为自己和弟弟各买一套相同的运动服.已知甲、乙两家商店该种运动服每套的售 价相同, 但甲店规定:若一次买两套,则其中一套可享受七折优惠;乙店规定:若一 次买两套,则可按总价的54收费.下列判断正确的是( ▲). A .甲店比乙店优惠 B .乙店比甲店优惠C .甲、乙两店收费相同D .以上都有可能6.已知整数1234,,,,a a a a ⋅⋅⋅,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则20a 的值为( ▲). A .8- B .9- C . 10- D .20-二、填空题(每小题2分,共20分)7.如果a 与-3互为倒数,那么a 等于 .-4-7午夜+1输入x( )2输出25(第11题)(第12题)abr8.在有理数2)1(,5,310,31,5.0,4-----中,负整数是.9.计算:233)3(÷-=.10.单项式-3x y的系数是,次数是.11.如图(单位:㎝),用代数式表示三角尺(阴影部分)的面积是㎝2.12.如图是数值转换机的示意图,若输出的数是25,则输入的数x的值为.13.已知2a-3b2=5,则10-2a+3b2的值是.14.代数式“0.8a”可以解释为:一件商品原价为a元,现按原价的八折出售,这件商品现售价是0.8a元.请你对“0.8a”再赋予另一个实际含义:.15.按如图的计算程序计算,若开始输入的数为2-,则最后输出的结果是 . 16.观察下列等式:11122=+=-;3121222=+=-;5232322=+=-;7343422=+=-;……若字母n表示自然数,把你观察到的规律用字母n的式子表示出来为: .三、计算与求解(共29分)17.(3分)17)25()12(14--+--18.(3分))15(60)3(4-÷+-⨯19.(4分)32)154(21÷-⨯20.(5分))57()4()2(83+-⨯-÷-+21.(3分))3(25b a b a -++22.(4分))63(3132y y -++23.(7分)先化简 ,再求值:mn mn m mn m 2)32(3)54(22----,其中m =21-,n =2-.四、解下列各题(共39分)24.(6分)如图,正方形的边长为a .(1)用代数式表示阴影部分的面积;(2)当a =8m ,π取3.14时,计算阴影部分的面积.25.(7分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足用正数或负数表示,记录如下表: (1)这批样品的平均质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为250克,则抽样检测的总质量是多少?26.(8分)做大小两个长方体纸盒,尺寸如图(单位:㎝)与标准质量的差值(单位:g )-4 -3 0 1 2 6 袋 数143453aa(第24题)a1.5ac2cb2b(第26题)(1)用a、b、c的代数式表示做这两个纸盒各需用料多少㎝2?(2)当a=10㎝,b=8㎝,c=6㎝时,试计算做大纸盒比做小纸盒多用料多少㎝2?27.(10分)平安加气站某日7︰00前的储气量为10000立方米.加气站在加气过程中每把加气枪均以每小时200立方米的速度为汽车加气.设加气站从7︰00开始加气总时间为x(小时)(加气期间关闭加气枪的时间忽略不计).另外,加气站在不同时间段加气枪的使用数量如下:(1)7︰30时加气站的储气量为立方米;(2)当x>1时,试用含x的代数式表示加气站加气x小时后的储气量(答案要求化简);(3)若每辆车的加气量均为20立方米,试说明前70辆车能否在当天8︰30之前加完气?若能,请加以说明;若不能,则8︰00以后至少还需添加几把枪加气才能保证在当天8︰30之前加完气?28.(8分)(1)阅读下面问题的解法,并填空:4位朋友在一起,每两人握一次手,共握多少次手?小莉是这样分析的:每一位朋友都与其他3位握手,共握3次手,则4位朋友共与其他3人握手3×4次.但以上算法中,将每两位朋友的1次握手重复计算成了2次,因此4 位朋友实际共握手243=6次.用上面的方法思考:n位朋友在一起,每两人握一次手,共握多少次手?每一位朋友都与其他(n-1)位握手,共握(n-1)次手,则n位朋友共与其他(n-1)人握手次.但以上算法中,将每两位朋友的1次握手重复计算成了2次,因此n位朋友实际共握手次.(2)试解决与上面类似的问题:在平面内画50条直线,最多有多少个交点?(要求:写出说理过程)答案一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案 BDBABC二、填空题(每小题2分,共20分)7.31-; 8.5--; 9. 3-; 10.-1、4; 11.)21(2r ab π-;12.4和-6(写一个得1分); 13.5; 14.略; 15.-10; 16.)(121)1(22为自然数n n n n n n +=++=-+.三、计算与求解(共29分)17.解:原式=17251214--+ (1分) 18.解:原式=)4(12-+- (2分)= 26-42 (2分) =16- (3分) =16- (3分)19.解:原式=23)154(21⨯-⨯(1分) 20.解:原式=)2()4()8(8-⨯-÷-+(2分)= 2315421⨯⨯- (2分) =)2(28-⨯+ (3分) = 51-(4分) =4 (5分)21.解:原式= b a b a 325-++ (1分) 22. 解:原式= y y 2132-++(2分)= b b a a 325-++ = 1322++-y y = b a -6 (3分) = 4 (4分)23.解:原式= mn mn m mn m 2965422-+-- (2分)= mn mn mn m m 2956422-+-- = mn m 222+- (4分)当m =21-,n =2-时. 原式= = )2()21(2)21(22-⨯-⨯+-⨯- (5分) =2412+⨯-= 23(7分) 四、解下列各题(共39分)24.解:①阴影部分的面积为22)2(a a π- (3分)②当a =8m ,π取3.14时,22)2(aa π-=22414.38⨯-=13.76 (6分)25.解: (1) 1663251403)3(4)4(1=⨯+⨯+⨯+⨯+-⨯+-⨯, (2分)8.02016= (3分) 所以这批样品的平均质量比标准质量多0.8克 (4分)(2)若每袋标准质量为250克,则抽样检测的总质量=250×20+16=5016克.(7分)26. (1)小长方体用料为:ac bc ab 222++ (2分)大长方体用料为:c a c b b a 25.1222225.12⨯⨯+⨯⨯+⨯⨯= ac bc ab 686++ (4分)(2)(ac bc ab 686++))222(ac bc ab ++-=ac bc ab 464++ (6分)当a =10 ,b =8 ,c =6 时,ac bc ab 464++=61046868104⨯⨯+⨯⨯+⨯⨯=848答:做大纸盒比小纸盒多用料多848㎝2. (8分)27.(1) 9800 (2分)(2)加气x 小时(x >1)加气站的储气量为:)1(620021420021220010000-⨯-⨯⨯-⨯⨯-x =-1200x +10600 . (6分)(3)不能. 因为(2×12×200+4×12×200+6×12×200)÷20=60<70,所以前70辆车不能在8:30之前加完气. (8分)多余车还需要加气:20020)6070(=⨯-, 2)21200(200=⨯÷即8︰00以后至少还需添加2把枪加气才能保证在当天8︰30之前加完气.(10分)28.(8分) (1) 2)1(-n n 次 (2)法一:每一直线都与其它49直线相交,共有49个交点, (4分)则50条直线共与其它49直线相交有49×50个交点, (6分) 但以两条直线相交的每个交点被重复计算了2次,因此平面内画50条直线,最多有25049⨯=1225 个交点. (8分) 法二:当每两条直线都相交且交点不重合时,交点的个数最多. (4分) 此时,求50条直线两两相交有多少个交点个数问题,相当于求50个朋友每两位握 手一次,共握多少次手的问题. (6分) 由(1)当50=n 时,握手次数为12252)150(50=- 即50多直线两两相交,最多共有1225个交点. (8分)法三:可用归纳法得出最多共有1+2+3+…+49个交点.(参照给分)n (n -1) ,; (第1空1分,第2空2分,共3分)。
苏科版七年级上册数学期中试题一、单选题1.下列各组数中,互为相反数的是()A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|2.下列说法不正确的是()A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数3.下列运用等式性质进行的变形,正确的是()A .如果a =b ,那么a +c =b ﹣cB .如果a 2=3a ,那么a =3C .如果a =b ,那么a b c c =D .如果a bc c=,那么a =b 4.有理数a 、b 在数轴上的对应的位置如图所示,则正确的是()A .a ﹣b >0B .a ﹣b <0C .a ﹣b=0D .a+b <05.代数式y 2-2y+7的值是-3,则3y 2-6y-5的值是()A .35B .-25C .-35D .76.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A .3B .12-C .23D .-3二、填空题7.-2.5的倒数是______,(2)--的相反数是_______;53-的倒数的绝对值是_____.8.单项式23x y-的系数是______,次数______,多项式2xy 2-3x 2y 3-8是____次____项式.9.点A 在数轴上距离原点3个单位长度,将A 向左移动2个单位长度,再向右移动4个单位长度,此时A 点所表示的数是_____________.10.绝对值大于2而小于6的所有整数的和是__________.11.﹣38040000000用科学记数表示为_____.12.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.三、解答题13.计算:(1)—7.5×(—42)—(—3)3÷(—1)2017;(2)()271112669126⎛⎫--+⨯- ⎪⎝⎭14.化简下列各式:(1)()()2232157a a a a --++-+(2)()()()()4567a b a b a b a b +----++15.解方程:4 1.50.59x x x -=--16.如果关于m 的方程21m b m +=-的解是4-,求b 的值?17.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.18.已知2(x 3)+与y 2-互为相反数,z 是绝对值最小的有理数,求y (x y)xyz ++的值.19.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,则()a ba b cd m m m++++-的值?20.化简计算:求当输入x =0.5,y =7时输出结果.21.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?22.如果两个关于x 、y 的单项式2mx a y 3与﹣4nx 3a ﹣6y 3是同类项(其中xy ≠0).(1)求a 的值;(2)如果他们的和为零,求(m ﹣2n ﹣1)2016的值.23.观察下列等式:111111111111,,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭请解答下列问题:(1)按以上规律列出第5个算式:(2)由此计算:11111 (1335572013201520152017)+++++⨯⨯⨯⨯⨯()()(3)用含n 的代式表示第n 个等式:a n =(n 为正整数);参考答案1.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.2.A【解析】A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.3.D【解析】【分析】根据等式的基本性质逐一判断即可.【详解】A.当a=b时,a+c=b+c,故A错误;B.当a=0时,此时a≠3,故B错误;C.当c=0时,此时ac与bc无意义,故C错误;D.当a bc c 时,等式两边同时乘c,那么a=b,故D正确.故选:D.【点睛】此题考查的是等式的基本性质,利用等式的基本性质将等式变形是解决此题的关键. 4.A【解析】【分析】根据题意和图形可知a,b取值范围,a>1,﹣1<b<0,由此即可得到结论.【详解】∵﹣1<b<0.又∵a>1,∴a﹣b>0,a+b>0.故选A.【点睛】注意原点左边的为负数,右边的为正数.且绝对值越大到原点的距离就越大.5.C【解析】【分析】先求出y2﹣2y=﹣10,变形后代入,即可求出答案.【详解】根据题意得:y2﹣2y+7=﹣3,y2﹣2y=﹣10,所以3y2﹣6y﹣5=3(y2﹣2y)﹣5=3×(﹣10)﹣5=﹣35.故选C.【点睛】本题考查了求代数式的值,能够整体代入是解答此题的关键.6.C【解析】【分析】直接利用已知得出第一次与第二次输出的结果即可.【详解】由题意可得:1﹣3=﹣2,则输出﹣12,故第二次输入﹣12,得到:1﹣(﹣12)=32,输出23.故选C.【点睛】本题主要考查了倒数以及有理数的减法运算,正确理解题意是解题的关键.7.25--235【解析】【分析】根据倒数的意义,相反数的意义,绝对值的性质,可得答案.【详解】﹣2.5的倒数是﹣25,﹣(﹣2)的相反数是﹣2;﹣53的倒数的绝对值是35.故答案为﹣25,﹣2,35.【点睛】本题考查了倒数、相反数、绝对值,理解倒数的意义、相反数的意义是解题的关键.8.13-,3,五,三.【解析】【分析】根据单项式系数、次数的定义,多项式次数、项数的定义,进行解答即可.【详解】单项式﹣23x y的系数是﹣13,次数是3次,多项式2xy2﹣3x2y3﹣8是五次三项式.故答案为﹣13、3、五、三.【点睛】本题考查了单项式及多项式的知识,掌握多项式次数的定义及单项式系数、次数的定义是解题的关键.9.-1或5.【解析】【分析】由于点A与原点0的距离为3,那么A应有两个点,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是﹣3和3.A向左移动2个单位长度,再向右移动4个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】∵点A在数轴上距原点3个单位长度,∴点A表示的数为3或﹣3;当点A表示的数是﹣3时,移动后的点A所表示的数为:﹣3﹣2+4=﹣1;当点A表示的数是3时,移动后的点A所表示的数为:3﹣2+4=5;综上所述:移动后点A所表示的数是:﹣1或5.故答案为:﹣1或5.【点睛】本题考查了数轴.根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.10.0.【解析】【分析】根据题意画出图形,由绝对值的几何意义可知:绝对值大于2小于6的所有整数即为到原点的距离大于2小于6,观察数轴即可得到满足题意的所有整数,求出这些整数之和即可.【详解】根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.故答案为0.【点睛】本题考查了绝对值的几何意义,即一个数的绝对值就是在数轴上表示这个数的点到原点的距离,离原点越近,绝对值越小;离原点越远,绝对值越大.另外在求和时利用加法的运算律可以简化运算,同时注意数形结合思想的灵活运用.11.-3.804×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】-38040000000用科学记数表示为-3.804×1010.故答案为-3.804×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.2n+1.【解析】试题分析:搭第一个图形需要3根火柴棒,结合图形,发现:后边每多一个三角形,则多用2根火柴.解:结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+1.考点:规律型:图形的变化类.13.(1)93(2)25【解析】【分析】(1)根据有理数混合运算法则计算可得出结果;(2)利用乘法分配律给括号中每一项都乘以36,然后根据有理数加减法混合运算法则计算即可.【详解】(1)原式=7.5×16-27÷1=120-27=93;(2)原式=7111 26369126⎛⎫--+⨯⎪⎝⎭=26-(28-33+6)=26-1=25.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解答本题的关键.14.(1)-2a2-3a+6(2)22b【解析】【分析】(1)首先利用去括号法则化简,进而合并同类项得出答案;(2)首先将(a+b),(a﹣b)看作整体合并同类项,进而利用去括号法则求出即可.【详解】(1)原式=﹣3a2+2a﹣1+a2﹣5a+7=﹣2a2﹣3a+6;(2)原式=11(a+b)﹣11(a﹣b)=11a+11b-11a+11b=22b.【点睛】本题主要考查了去括号法则以及合并同类项,正确掌握去括号法则是解题的关键.15.x=-3【解析】【分析】先移项得到4x﹣1.5x+0.5x=﹣9,然后合并同类项,再把x的系数化为1即可.【详解】移项得:4x﹣1.5x+0.5x=﹣9合并得:3x=﹣9系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.16.b=3【解析】【分析】将m =﹣4代入可得关于b 的方程,解出即可.【详解】把m =﹣4代入方程2m +b =m ﹣1中,得:2×(﹣4)+b =(﹣4)﹣1,解得:b =3.【点睛】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.17.正确【解析】【分析】设此整数是a ,再根据题意列出式子进行计算即可.【详解】正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a=a+20-2=18,所以说小张说的对.【点睛】本题考查了整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.1.【解析】试题分析:由题意可得2(3)200x y z ++-==,,由此可求出x y 、的值,再代值计算即可.试题解析:由题意可得2(3)200x y z ++-==,,∴3020x y +=-=,,解得32x y =-=,.∴()y x y xyz ++=2(32)(3)201-++-⨯⨯=.点睛:(1)互为相反数的两个式子的和为0;(2)两个非负数的和为0,则这两个数都为0;(3)绝对值最小的数是0.19.0或-2.【解析】【分析】利用相反数,倒数,以及绝对值的定义求出a +b ,cd ,及m 的值,代入计算即可求出值.【详解】根据题意得:a +b =0,cd =1,m =±1.①当m =1时,原式=1﹣1=0;②当m =﹣1时,原式=﹣1﹣1=﹣2.【点睛】本题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解答本题的关键.20.618.【解析】【分析】根据流程图可得输出结果为2(21)2x y ++÷,代入求值即可.【详解】根据流程图可得输出结果为2(21)2x y ++÷.当输入x =0.5,y =7时,原式=2(0.5271)2+⨯+÷=618.【点睛】本题考查了有理数的混合运算.读懂流程图是解答本题的关键.21.(1)170米;(2)128升.【解析】【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离;(2)根据路程乘以5个人的单位耗氧量,可得答案.【详解】(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.04)=640×0.2=128(升).答:他们共耗氧气128升.【点睛】本题考查了正数和负数,利用有理数的加法是解题的关键,注意路程乘以5个人的单位耗氧量是总耗氧量.22.(1)a=3;(2)1.【解析】【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得答案;(2)根据单项式的和为零,可得单项式的系数互为相反数,根据互为相反数的和为零,可得m,n的关系,根据负数的偶数次幂是正数,可得答案.【详解】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2016=(﹣1)2016=1.【点睛】本题考查了同类项的定义及合并同类项,利用同类项是字母相同且相同字母的指数也相同得出关于a的方程是解题关键.23.(1)1111;9112911⎛⎫=⨯-⎪⨯⎝⎭(2)10082017;(3)()()1111212122121n n n n⎛⎫=-⎪-+-+⎝⎭.【解析】【分析】(1)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可;(2)利用发现的规律代入计算即可;(3)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可.【详解】(1)第5个等式:a 5=1911⨯=12×(19﹣111);(2)原式=12×(1﹣13)+12×(13﹣15)+12×(15﹣17)+…+12×(12015﹣12017)=12×(1﹣13+13﹣15+15﹣17+…+12015﹣12017)=12×(1﹣12017)=12×20162017=10082017;(3)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用运算规律解决问题.。
苏教版七年级数学上册期中考试测试卷一、选择题(2′×10=20′)1、某市2013年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( ) A .-10℃ B .-6℃ C .6℃ D .10℃2、-6的相反数为( ) A .6B .16C .-16D .-63、.若是方程260x m +-=的解,则m 的值是A .-4B .4C .-8D .84、下列计算正确的是( ) A .277a a a =+ B .235=-yyC .y x y x y x 22223=- D.ab b a 523=+5、在数轴上,到表示-1的点的距离等于6的点表示的数是 ( ) A 、5 B 、-7 C 、-5或7 D 、5或-76、已知代数式165m a b --和212nab 是同类项,则m n -的值是 A .1 B .-1 C .-2 D .-37、小明要为自己和弟弟各买一套相同的运动服.已知甲、乙两家商店该种运动服每套的售价相同,但甲店规定:若一次买两套,则其中一套可享受七折优惠;乙店规定:若一次买两套,则可按总价的80%收费.下列判断正确的是( ).A .甲店比乙店优惠B .乙店比甲店优惠C .甲、乙两店收费相同D .以上都有可能 8、下列各式成立的是( )A 、a-b+c=a-(b-c)B 、3a -a = 3C 、8a -4 = 4aD 、-2(a-b)=-2a+b 9、给出下列判断:① 2πa 2b 与b a 231是同类项; ②多项式5a+4b-1中,常数项是1;③4yx +,12+x ,4a都是整式; ④几个数相乘,积的符号一定由负因数的个数决定.其中判断正确的是 ( )A .①②③B .①③C .①③④D .①②③④10、如下数表是由从1 开始的连续自然数组成。
下面所给的判断中,不正确的是 ( ) A 表中第8行的最后一个数是64; B 第n 行的第一个数是(n-1)2+1;C 第n 行的最后一个数是n 2; D 第n 行共有2n 个数.二、填空题(2′ ×7+3′×3=23′) 11、321-的倒数是__________。
苏州市2024-2025学年上学期初一数学期中模拟卷(考试时间:90分钟 试卷满分:100分)一、选择题,本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填涂在答题卷相应位置上......... 1. 2的相反数是( )A. 2B. 12C. 2−D. 4−【答案】C【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:2的相反数是-2,故选C .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 下列计算正确的是( )A. 326=B. 2416−=−C. 880−−=D. 523−−=− 【答案】B【解析】【分析】根据有理数的加法法则和减法法则与乘方法则进行计算即可.【详解】解:A. 328=,故错误;B. 2416−=−,故正确;C. 88-16−−=,故错误;D. 527−−=−,故错误.故选B.【点睛】本题主要考查了有理数与实数的运算,熟练掌握运算法则是解题的关键. 3. 单项式32−23x y z 的系数和次数分别为( ) A. ﹣3,5 B. 32−,5 C. ﹣3,6 D. 32−,6 【答案】D【解析】【分析】根据单项式系数和次数的定义计算即可. 【详解】∵32−23x y z 的系数和次数分别为32−,6, 故选D .【点睛】本题考查了单项式的概念,熟练掌握单项式的系数即单项式中的数字因数,单项式的次数即单项式中所有字母的指数和是解题的关键.4. 化简()221x x −−++的结果为( )A. 221x x −++B. 221x x −+C. 221x x −−D. 221x x −−+ 【答案】C【解析】【分析】根据去括号法则“如果括号外因数是负数,去括号后原括号内各项的符号与原来符号相反”化简,选择答案即可.【详解】解: 222121x x x x ,故选:C .【点睛】本题主要考查了整式的化简,熟记去括号法则是解题的关键.5. 下列说法中正确的是( )A. 2不是单项式B. 2abc −的系数是12−C. 单项式23r 的次数是3D. 多项式25612a ab −+的次数是4 【答案】B【解析】【分析】本题考查单项式与多项式定义,涉及单项式识别、单项式系数、次数及多项式次数等知识,熟记单项式及多项式定义,逐项验证是解决问题的关键.【详解】解:A 、2是单项式,该选项错误,不符合题意;B 、2abc −的系数是12−,该选项正确,符合题意; C 、单项式23r 的次数是2,该选项错误,不符合题意;D 、多项式25612a ab −+的次数是25a 或6ab 的次数,是2,该选项错误,不符合题意;故选:B .的6. 已知有理数a b 、,则a b b a b a a b +−−+、、在数轴上表示的点在原点右侧的个数为( ) A. 0个B. 1个C. 2个D. 无法确定 【答案】B【解析】 【分析】本题考查了有理数符号的判断,需分类讨论,当a b 、同号时,当a b 、异号且0a b +>时,当a b 、异号且0a b +<时,分别判断即可.【详解】解:当a b 、同号时,a b a b a b +--+、是负数,b a是正数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +>时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +<时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,综上所述,在数轴上表示的点在原点右侧的个数为1个.故选:B .7. 某临江的县城为进一步提升旅游业质量和档次,满足游客消费需求,开通了甲、乙两地沿江旅游航线,已知游艇在江中来往航行于甲、乙两地之间,顺流航行全程需2小时,逆流航行全程需3小时(实际船速=静水船±水速).已知水流速度为每小时3km ,求该县甲、乙两地的距离,若设该县甲、乙两地的距离为km x ,则所列方程为( ) A. 323x x += B. 923xx =+ C. 3323x x −=+ D. 3323x x +=− 【答案】C【解析】【分析】本题主要考查了由实际问题抽象出一元一次方程,明确题意,准确得到等量关系是解题的关键.设甲、乙两地的距离为km x ,根据题意,列出方程,即可求解.【详解】解:设甲、乙两地的距离为km x , 根据题意得:3323x x −=+. 故选:C .8. 已知方程()||110k k x −+=是关于x 的一元一次方程,则方程的解等于( ) A. 1B. 0C. 1−D. 12 【答案】D【解析】【分析】本题考查的是解一元一次方程和一元一次方程的定义,掌握一元一次方程的定义与求解是解题的关键.根据一元一次方程的定义,即含有1个未知数,且未知数的最高次数是1的整式方程是一元一次方程,据此求出k 的值,然后再求解方程即可.【详解】解:根据一元一次方程的定义可知,||1k =且10k −≠,解得:1k =−,原方程为:210x −+=, 解得:12x =, 故选:D9. 对于有理数a 、b ,定义一种新运算“※”,规定:a ※b =|a|﹣|b|﹣|a ﹣b|,则2※(﹣3)等于( )A. ﹣2B. ﹣6C. 0D. 2 【答案】B【解析】【分析】根据a ※b=|a|-|b|-|a-b|,可以求得所求式子的值.【详解】解:∵a ※b=|a|-|b|-|a-b|,∴2※(-3)=|2|-|-3|-|2-(-3)|=2-3-|2+3|=2-3-5=-6,故选:B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10. 已知一列数123a a a ,,,…,具体如下规律:2112n n n n n a a a a a ++=+=,(n 是正整数).若11a =,则61a 的值为( )A. 9B. 10C. 11D. 12【答案】A【解析】【分析】根据数列中的各项关系求出61a 和1a 的关系即可.【详解】∵2112n n n n n a a a a a ++=+=,(n 是正整数), ∴613031a a a =+151516a a a =++1582a a +()7842a a a =++74222a a a =++()344122a a a a =+++()1222122a a a a a =++++()1111122a a a a a =++++111232a a a =×++19a =∵11a =,∴619a =,故选:A .【点睛】此题考查了数字的变化规律,根据数列中的各项关系得到61a 和1a 的关系是解题的关键.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卷相应位置上......... 11. 单项式23ax −的系数和次数依次是________.【答案】-3,3【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:单项式23ax −的系数和次数依次是-3,3,故答案:-3,3.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数是解题关键.12. 比较大小:()8−+______9−−; 23−______3(4−填“>”、“<”、或“=”符号). 【答案】 ①. > ②. >【解析】【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小.①首先化简,然后比较大小即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出答案. 【详解】解:()88−+=− ①,99−=−,89−>−, ()89∴−+>−;2283312−== ②,3394412−==,891212 , 2334∴−>−. 故答案为:>;>.【点睛】本题主要考查了有理数大小比较,熟练掌握有理数比较大小的方法是解题关键.13. 台湾省自古以来就是中国领土不可分割的一部分,祖国统一是两岸人民的共同心愿.据统计,2022年台湾省常住人口总数约为23410000人,数据23410000用科学记数法可表示为______.【答案】72.34110×【解析】【分析】根据绝对值大于1的数表示为科学记数法的形式为10n a ×,n 为整数位数减去1,据此求解即可.【详解】723410000 2.34110=×,故答案为:72.34110×.【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示方法是解题关键. 14. 若x 与3互为相反数,则6x +的值为______.【答案】3【解析】为【分析】根据相反数的定义可得3x =−,再代入所求式子计算即可.【详解】解:x 与3互为相反数,3x ∴=−,6363x ∴+=−+=.故答案为:3.【点睛】本题考查了相反数,掌握相反数的定义是解答本题的关键.15. 按如图所示的程序计算,当输入x 的值为3−时,输出的值为_____.【答案】63【解析】【分析】本题主要与程序流程图有关的有理数计算,先输入3−,计算出结果,如果大于10则输出,如果小于10,则把计算的结果作为新的数输入,如此往复,直至计算的结果大于10进行输出即可.【详解】解:当输入3−时,计算的结果为()23191810−−=−=<,当输入8时,计算的结果为()2816416310−=−=>,∴输出结果为63,故答案为:63. 16. 已知23x y +=,则124x y −−=______. 【答案】5−【解析】【分析】本题考查了已知式子的值求代数式的值,先整理()124122x y x y −−=−+,再代入23x y +=,即可计算进行作答.【详解】解:∵23x y +=. ∴()1241221235x y x y −−=−+=−×=−,故答案为:5−.17. 关于x ,y 的代数式2232axy x xy bx y −+++中不含二次项,则()2023a b +=______.【答案】1【解析】【分析】将原式进行合并同类项,由题意可知,所有二次项的系数为0,则可确定a 、b 的值,再代入()2023a b +求值即可,本题考查了合并同类项,解题的关键是:充分理解多项式系数的定义.【详解】将代数式2232axy x xy bx y −+++合并同类项得: ()()223a xy b x y ++−+,由题意得二次项系数为0,则:20a +=,30b −=, 解得:2a =−,3b =,代入()2023a b +得:()202320233112=+=−,故答案为:1.18. 已知x ,a ,b 为互不相等的三个有理数,且a b >,若式子x a x b −+−的最小值为3,则2020a b +−的值为______.【答案】2023【解析】 【分析】本题考查绝对值,有理数的减法,由数轴上x a x b −+−表示的几何意义,求出a b −的值,即可得到答案. 【详解】解:∵x a x b −+−的最小值为3,且a b >,∴3a b −=,∴2020a b +−20203+2023=,∴2020a b +−的值为2023.故答案为:2023.三、解答题:本大题共8小题,共64分.19. 计算:(1)()11324234 +−×−; (2)()()2213442−×+−÷−. 【答案】(1)2−(2)172【解析】【分析】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,然后算加法即可.【小问1详解】 解:()11324234 +−×− 113(24)(24)(24)234×−+×−−×− 12(8)18=−+−+2;=−【小问2详解】 解:()()2213442−×+−÷− 1916(4)2=−×+÷− 9(4)2=−+− 17.2=− 20. 解方程:(1)2(1)25(2)x x −=−+;(2)5172124x x ++−=. 【答案】(1)67x =− (2)43x =【解析】 【分析】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【小问1详解】解: 2(1)25(2)x x −=−+,∴222510x x −=−−,∴252102x x +=−+,∴76x =−, ∴67x =−; 【小问2详解】 解:5172124x x ++−=, ∴2(51)(72)4x x +−+=, ∴102724x x +−−=,∴107422x x −=−+,∴34x =, ∴43x =. 21. 先化简再求值:(3a 2b -2ab 2)-2(ab 2-3a 2b ),其中12,2a b == 【答案】2294a b ab −,16【解析】 【分析】先去括号,再合并同类项,然后将12,2a b ==代入,即可求解. 【详解】解:原式=22223226a b ab ab a b −−+=2294a b ab −当2a =,12b =时, 原式=2211924222××−××()=16. 【点睛】本题主要考查了整式加减混合运算中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.22. 已知()2120a b −++=,c 和d 互为倒数,e 和f 互为相反数,求()35332a cd e b f +−+−值. 【答案】4−的【解析】【分析】先根据非负数性质求解1a =,2b =−,再根据倒数,相反数的含义求解1cd =,0e f +=,再把原代数式变形,再代入求值即可.【详解】解:∵ ()2120a b −++=,∴10a −=,20b +=, 解得:1a =,2b =−,∵c 和d 互为倒数,e 和f 互为相反数, ∴1cd =,0e f +=, ∴()35332a cd e b f +−+−()3653a b cd e f =++−+31250=−+−4=−.【点睛】本题考查的是倒数,相反数的含义,绝对值,偶次方的非负性的应用,求解代数式的值,掌握“代入法求解代数式的值”是解本题的关键.23. 高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):17+,9−,10+,15−,3−,11+,6−,8−,(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.1升/千米,则这次养护共耗油多少升?(3)养护过程中,最远处离出发点有多远?【答案】(1)养护小组最后到达的地方在出发点的西方,距出发点3千米(2)这次养护小组的汽车共耗油7.9升(3)最远处离出发点有18千米【解析】【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果.(2)利用绝对值性质以及有理数加法法则求出即可;(3)分别求出每次养护距离出发点的距离,进而作出比较.【小问1详解】解:1791015311683−+−−+−−=−(千米), 所以养护小组最后到达的地方在出发点的西方,距出发点3千米;的的【小问2详解】 解:17910153116879+−++−+−++−+−=(千米), 790.17.9×=(升); 所以这次养护小组的汽车共耗油7.9升;【小问3详解】解:第一次:17,第二次:1798−=;第三次:81018+=;第四次:18153−=;第五次:330−=;第六次:01111+=;第七次:1165−=;第八次:583−=−;所以养护过程中,最远处离出发点有18千米.【点睛】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.24. 学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b −米.(1)求护栏的总长度;(2)若3010a b =,,每米护栏造价80元,求建此停车场所需的费用.【答案】(1)()411a b +米(2)建此停车场所需的费用为18400元.【解析】【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【小问1详解】解:由题意可得宽为:()()23234a b a b a b a b a b +−−=+−+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b =+++()411a b +米;【小问2详解】解:由(1)得:当3010a b =,时,原式4301110230=×+×=(米), ∵每米护栏造价80元,∴2308018400×=(元), 答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.25. 已知数轴上两点A ,B 对应的数分别为1−,3,点P 为数轴上一动点,其对应的数为x .(1)若点P 为AB 的中点,则点P 对应的数是 .(2)数轴的原点右侧有点P ,使点P 到点A ,点B 的距离之和为8.请你求出x 的值.(3)现在点A ,点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,直接写出点P 对应的数.【答案】(1)1 (2)x 的值是5(3)点P 对应的数是3−或27−【解析】【分析】本题考查数轴上点表示的数及两点间距离,解题的关键是掌握点运动后表示的数与运动前表示的数的关系.(1)根据点P 为AB 的中点列方程即可解得答案;(2)分两种情况,当P 在线段AB 上时,由()()1348PA PB x x +=−−+−=≠ ,知这种情况不存在;当P 在B 右侧时,()()138x x −−+−=,求解即可; (3)设运动的时间是t 秒,表示出运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −,根据点A 与点B 之间的距离为3个单位长度得:()()1230.53t t −+−+=,解出t 的值,即可得到答案.【小问1详解】解:∵A ,B 对应的数分别为1−,3,点P 为AB 的中点,∴()31x x −=−−,解得1x =,∴点P 对应的数是1;【小问2详解】解:当P 在线段AB 上时,()()1348PA PB x x +=−−+−=≠ , ∴这种情况不存在;当P 在B 右侧时,()()138x x −−+−=, 解得5x =,答:x 的值是5;【小问3详解】解:设运动的时间是t 秒,则运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −, 根据题意得:()()1230.53t t −+−+=, 解得23t =或143t =, 当23t =时,P 表示的数是2161633t −=−×=−, 当143t =时,P 表示的数是141616273t −=−×=−, 答:点P 对应的数是3−或27−.26. 观察下列新的定义心运算:(2)(10)12 ++=+☆;(2)(10)12 −−=+☆;(4)(6)10++=+☆;(8)(2)10−−=+☆;(2)(10)12−+=−☆;(2)(10)12+−=−☆;(4)(6)10−+=−☆;(8)(2)10 +−=−☆. 0(12)12−=+☆;0(12)12+=+☆;(8)08+=+☆;(8)08−=+☆;(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆运算时,异号两数运算结果取 号,并把 ;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于 ;(2)计算:()()902 −−=☆☆ ; (3)若()3314a a ×−=☆,试判断a 的值能否为0?若不能,求出a 符合条件所有可能的值. 【答案】(1)负,绝对值相加,这个数的绝对值(2)11−(3)a 的值不能为0,a 的值为8或10−【解析】【分析】本题考查了新定义,根据所给算式总结出运算法则是解答本题的关键. (1)观察所给算式总结即可;(2)根据新定义运算即可;(3)先判断a 不等于0,再根据新定义转化为一元一次方程求解即可.【小问1详解】两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值. 故答案为:负,绝对值相加,这个数的绝对值【小问2详解】()()()929211−+=−+=−☆. 故答案为:11−;【小问3详解】当0a =时,∵()3313318a ×−=×−=☆,40a =,∴()3314a a ×−≠☆.∴a 的值不能为0.当0a >时,∵()3314a a ×−=☆,∴()3314a a ×−=+, ∴8a =;当0a <时, ∵()3314a a ×−=☆, ∴()3314a a ×−−−= , ∴10a =−. ∴a 的值为8或10−.。
(第6题)cB A C苏教版七年级数学上册第一学期期中考试试卷(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.如果向东走3 km 记作+3 km ,那么向西走5 km 记作( )A .-5 kmB .-2 kmC .+5 kmD .+8 km2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为( )A .110.510⨯千克B .95010⨯千克C .9510⨯千克D . 10510⨯千克.3.下列各式中结果为负数的是( )A .(3)--B .2(3)-C .3--D .3- 4.设边长为a 的正方形的面积为2.下列关于a 的三种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③0<a <1.其中,所有正确的序号是 ( ) A .①② B .①③ C .②③ D .①②③5.下列关于单项式-352xy 的说法中,正确的是( ) A .系数是25-,次数是3 B .系数是25-,次数是4 C .系数是5-,次数是4 D .系数是5-,次数是36.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,点A 与点C 到点B 的距离相等,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( ) A .点A 的左边 B .点A 与点B 之间 C .点B 与点C 之间 D .点C 的右边二、填空题(每小题2分,共20分)7. 13的相反数是 ,倒数是 .8.比较大小:109- 1110-.9.用代数式表示“m 与n 积的平方”: .10.数轴上点A 表示-1,到点A 距离3个单位长度的点B 所表示的数是_________. 11.如果x -y =3,m +n =2,则 (y +m )-(x -n )的值是 .12.若单项式n y ax 275与457y ax m -的差仍是单项式,则n m 2-=_________. 13.某超市的苹果价格如图所示,试说明代数式100-9.8x 的实际意义 .14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为51,则这三个数中最后一天为2014年11月 号.15.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:……第一个 第二个 第三个 …… 第n 个图案中有白色纸片 张.16.如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为 .三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.计算(每题5分,共15分)(1))16()7(1723-+---; (2)123(24)(1)238-⨯--; (3)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦.苹果:9.8元/斤(第13题)x 21 输出输入xx +3x 为偶数x 为奇数(第16题)(第14题)19.(5分) 化简:2(2x 2-9x ) -3(3x 2+4x -1) .20.(5分) 先化简,再求值:)4(3)32(2722222ab b a ab b a b a ---+,其中2-=a ,21=b .21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+0.2,-0.2,+0.7,-0.3,-0.4,+0.6,0,-0.1,+0.3,-0.2 (1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为(15±0.5)千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,阴影部分的面积是多少(π取值为3.14)?23.(7分)(南京青奥会期间,某数学兴趣小组调查了奥运村某个体水果店经销香蕉情况,每千克进价4.5元,售价6.5元,8月16日至8月20日经销情况如下表:日期 16日 17日 18日 19日 20日 购进(kg ) 55 50 50 55 50 售出(kg ) 44.5 51 38 50.5 51 损耗(kg )52126(1)若8月15日晚库存为0,则8月16日晚库存 kg ;(2)从8月18日这一天的香蕉经销情况看,规定赚钱为正,当天是赚钱还是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b是直角边.正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积: 方法一: ; 方法二: ;(2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系; (3)利用你发现的结论,求:299769979+⨯+的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额. 注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000⨯(1-80%)+60=260(元). (1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(x >1250)的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(x >1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.①苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7.31-;3 8. < 9.(mn )2 10. –4或2 11. -1 12. –6 13. 用100元买每斤9.8元的苹果x 斤余下的钱 14. 24 15. 3n +1 16. 2 三、解答题(本大题共9小题,共68分)17.(1)解:原式23-177-16 =+……………………………………3分-3 = ……………………………………5分(2)解:原式153242424238=-⨯+⨯+⨯ ……………………………………3分12409=-++ ……………………………………4分37= ……………………………………5分(3)解:原式3135=--⨯⨯(46-) ……………………………………2分3135=--⨯⨯(2-) ……………………………………3分1=--(185-) ……………………………………4分135= ……………………………………5分 18.(1)解: 463x x -=- ……………………………………2分22x = ……………………………………4分 1x = ……………………………………5分(2)解:6-3(1x +)2=(2x -) ……………………………………1分6-3342x x -=- ……………………………………2分1x -= ……………………………………4分1x =- ……………………………………5分19.解:原式=4x 2-18x -9x 2-12x +3 ……………………………………3分=-5x 2-30x +3 ……………………………………5分20.解:原式22222746123a b a b ab a b ab =+--+ ……………………………………2分223a b ab =-- ……………………………………3分 当2-=a ,21=b 时, 原式=-(2-)212⨯3-⨯(2-)⨯(12)2 ……………………………………4分1432=-⨯-⨯(2-)14⨯322=-+12=- ……………………………………5分21.解:(1) (+0.2)+(—0.2)+(+0.7)+(—0.3)+(—0.4)+( +0.6)+0+(—0.1)+(+0.3)+(—0.2) = 0.6(千克) ……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+0.6 =150.6(千克) ……………………………4分 (2)这10箱有2箱不符合标准. ………………………………………………………6分 22.解:(1)22b ab π-……………………………………………………………….3分(2)14.88 ………………………………………………………….6分 23.(1)5.5 kg ……………………………………………2分 (2)当天赚钱因为38 6.5247⨯=元 4.550225⨯=元则247>225,所以当天赚钱. ……………………………………………4分(3)(5055505550++++)-(44.5513850.551++++)-(521260++++)0=所以该个体户最后一天香蕉全部售完. ……………………………………………5分 (44.5513850.551++++) 6.5⨯-(5055505550++++) 4.5⨯357.5=元 答:该个体户卖香蕉共赚了357.5元钱. ……………………………………………7分24.(1)(a b +)2;222a ab b ++ ……………………………………………2分(2)(a b +)2=222a ab b ++ ……………………………………………4分(3)解:299769979+⨯+22997299720133=+⨯⨯+=(9973+)2210001000000== ……………………………………………7分(特别说明:本题第(1)问的添法不唯一,只要两种不同的方法填写正确均得2分) 25.解:(1)标价为1600元的商品按80%的价格出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元, 则顾客获得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分 (2)当1000<0.81500x ≤时,(0.2100x +)元;……………………………………………3分当0.8x >1500时,(0.2150x +)元; ……………………………………………4分(3)2000 (当1250<x ≤1875时,0.2x+100+500×0.2=650,得x=2250不合题意;当x>1875时,0.2x+150+500×0.2=650,得x=2000符合)……………………………………………7分。
第一学期期中调研测试卷初一 数学一、选择题(本题27分,每题3分)1. 2-的相反数是( ) A .-2 B .2 C .21-D .21 2. 某种面粉包装袋上的质量标识为“25±0.5kg ”,则下列四袋面粉中不合格的是( )A. 26.1kgB. 25.5kgC. 24.8kgD. 24.5kg3.下列各数22200923122(3) ,0 ,() , ,(1) ,2 ,(8) , 274---------中,负数有 ( )A .2个B .3个C .4个D .5个4. 据统计,截止2010年10月31日上海世博会累计入园人数为 7308万, 这个数字用科学记数法表示为 ( )A .7×107B .7.308×106C .7.308×107D .7308×1045. 下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零 6.下列各组式子中为同类项的是( )A .5x 2y 与-2xy 2B .-3x 2y 与13yx 2C .4x 与4x 2D .6x 3y 4与-6x 3z 47.如下图是一数值转换机的示意图,若输入的x 值为32,,则输出的结果为( ).A .50B .80C .110D .130 8.已知x 、y 互为相反数,a 、b 互为倒数,m 的绝对值是3,则=+++myx ab m 22( ) A .12 B .10 C .9 D .119.已知:230x y -+=,则代数式2(2)241y x x y --+-的值为( ).A .5B .14C .13D .7二、填空题(本题24分,每题3分)10.-3的倒数是 ,|-5|= . 11.比较大小,用“<”“>”或“=”连接:(1)-56 ______-67; (2)-3.14 -︱-π︱12.单项式- πab 3c 23 的系数是 多项式-a 3b +3a 2-9是 次三项式13.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了 3℃,这天傍晚北方某地的气温是______℃. 14.若4x2my m +n 与-3x 6y 2是同类项,则mn = .15. 一个三角形的第一条边为(x+2)cm,第二条边比第一条边长小3cm,第三条边长是第二边长的2倍,用含x 的代数式表示这个三角形的周长16.手工拉面是我国的传统面食.制作时,拉面师傅将一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条截成了许多细细的面条,请问这样第 次捏合后可拉出128根面条.17.定义:a 是不为1的有理数,我们把11a -称为a 的差倒数...,如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2010a = .三、耐心解一解,你笃定出色!(共79分)18.把下列各数填入表示它所在的数集的大括号内:(本小题4分)-2.4,3,2.008,-310,141,-••15.0,0,-(-2.28),4π-,-|-4|正数集合:{ …} 负有理数集合:{ …} 整数集合:{ …} 负分数集合:{ …}19.计算题:(本题4题,3*4=12分) (1)-9+12-(-3)+8 ;31)2(65)2(⨯-÷+-(3) (4) 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦20.化简或求值:(本题2题,3+3+6+6+=18分)( 1 ) 4x -(x -3y) ( 2 ) 5a 2-[3a -(2a -3)+4a 2](3)已知t =21-,求代数式)1(3)1()1(2222--+-----t t t t t t 的值.(4)如果代数式(2x 2+ax -y+6)-(2bx 2-3x+5y -1)的值与字母x 所取的值无关,试求代数式3232112334a b a b ⎛⎫--- ⎪⎝⎭的值.21.解方程(本小题2题,2*4=8分)(1) ()34254x x x -+=+ (2) 121146x x -+=+())319465(5412008+-⨯--22.若新规定这样一种运算法则:a ※b =a 2+2ab , (本小题5分)例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值(2)若(-2)※x = -2+ x , 求x 的值23.有理数a 、b 、c 在数轴上的位置如图, (本小题6分)(1)判断正负,用“>”或“<”填空: c -b 0, a -b 0, a +c 0. (2)化简: |c -b |+|a -b |-|a +c |24. (本题6分) 国庆前夕,我国首个空间实验室“天宫一号”顺利升空,同学们倍受鼓舞,开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形. (1)用a 、b 的代数式表示该截面的面积S ;(2)当a =2cm ,b =3cm 时,求这个截面的面积.cb0 a班级 姓名 考试号25.(本题6分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期六生产自行车___________ __辆;(2)根据记录的数据可知该厂本周实际生产自行车_____________辆;(3)产量最多的一天比产量最少的一天多生产自行车____________辆;(4)该厂实行每周计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?26.(本题共6分)张家港市出租车收费标准如下:乘车里程3公里以内的收起步价10元,超过3公里的部分,每公里2元,超过15公里的部分,每公里3元.(1)如果有人乘出租车行驶了10公里,那么他应付车费_______元;(2)如果有人乘出租车行驶了x公里(x为大于15的整数),那么他应付多少车费?(3)某乘客乘出租车从张家港到江阴,共付车费43元,试估算从张家港到江阴大约多少公里?(结果取整数)27.(本题共6分).观察下列有规律的数:12,16,112,120,130,142……根据规律可知(1)第7个数_____________,第n个数是______________(n是正整数)(2)1132是第__________个数(3)计算1111111+261220304220102011++++++⨯……。
精心整理苏教版初一数学上册期中试卷。
数是。
7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。
将这个数字用科学计数法表示并保留三个有效数字为元。
8.长方形的长是a米,宽比长的2倍少b米,则宽为米。
9.若m、n满足=0,则10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x万元,则可列出的方程为15.若a+b A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能16.下列计算正确的是()A.4x-9x+6x=-xB.xy-2xy=3xyC.x3-x2=xD.a-a=017.数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度,此时点M表示的数是()A.-6B.2C.-6或2D.都不正确()22.解方程(本题8分)(1)x+3x=-12(2)3x+7=32-2x23.(6分)将下列各数在数轴上表示出来,并用“-22,-(-1),0,,-2.524.(6分)若a是绝对值最小的数,b是的负整数。
先化简,再求值:25.(6分)列方程解应用题。
把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,超过部:12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)若n=8时,则S的值为_____________.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=____________.或1.57(3)-(4)-2522、(8分)(1)x=-3(2)x=2523、(6分)-22 24、(6分)解:由题意,得a=0,b=-1原式=2a2-4ab-2b2-a2+3ab+3b2=a2-ab+b2当a=0,b=-1时,原式=(-1)2=125、(6分)这个班有45名学生26、(9分)解:(1)-2+5-1+1-6-2=-5一、精心选一选(本大题共10小题,每题3分,共30分)1.方程5(x-1)=5的解是………………………………………………()A.x=1B.x=2C.x=3D.x=42.下列关于单项式一的说法中,正确的是…………………………()A.系数是-,次数是4B.系数是-,次数是3C.系数是-5,次数是4D.系数是-5,次数是33.甲、乙、丙三地的海拔高度分别为20m、-15m和-10m,那么的方106800套示确的对值相等,那么点A与点D表示的数分别是……………………………………………()A.—2,2B.—4,1C.—5,1D.—6,27.若A、B都是五次多项式,则A-B一定是………………………………()A.四次多项式B.五次多项式C.十次多项式D.不高于五次的多项式8.下列计算中正确的的值间有26分)12.当x=时,代数式的值是0.已知多项式2x2-4x的值为10,则多项式x2−2x+6的值为.13.若4x4yn+1与-5xmy2的和仍为单项式,则m=,n=.14.方程x+a=2的解与方程2x+3=-5的解相同,则a=15.已知|a-2|+(b+1)2=0,则(a+b)2012=16.如图所示的运算程序中,若开始输入的x的值为10,我们发现第一次输出的结果为5,第二次输出的结果为8,…,则第10次输出的结果为m的正22.(本题5分)已知,(1)求的值;(结果用x、y表示)(2)当与互为相反数时,求(1)中代数式的值.23.(本题5分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5-2-4+13-10+16-9(1)产量最多的一天比产量最少的一天多生产辆;10平面图外框大正方形的周长及每个休息厅的图形周长.(用含y的代数式表示)(3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。
(第6题)cabB A C苏教版七年级数学上册第一学期期中考试试卷(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.如果向东走3 km 记作+3 km ,那么向西走5 km 记作( )A .-5 kmB .-2 kmC .+5 kmD .+8 km2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为( )A .110.510⨯千克 B .95010⨯千克 C .9510⨯千克 D . 10510⨯千克. 3.下列各式中结果为负数的是( )A .(3)--B .2(3)-C .3--D .3- 4.设边长为a 的正方形的面积为2.下列关于a 的三种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③0<a <1.其中,所有正确的序号是 ( ) A .①② B .①③ C .②③ D .①②③5.下列关于单项式-352xy 的说法中,正确的是( ) A .系数是25-,次数是3 B .系数是25-,次数是4 C .系数是5-,次数是4 D .系数是5-,次数是36.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,点A 与点C 到点B 的距离相等,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( ) A .点A 的左边 B .点A 与点B 之间 C .点B 与点C 之间 D .点C 的右边二、填空题(每小题2分,共20分)7. 13的相反数是 ,倒数是 .8.比较大小:109- 1110-.9.用代数式表示“m 与n 积的平方”: .10.数轴上点A 表示-1,到点A 距离3个单位长度的点B 所表示的数是_________. 11.如果x -y =3,m +n =2,则 (y +m )-(x -n )的值是 .12.若单项式n y ax 275与457y ax m -的差仍是单项式,则n m 2-=_________. 13.某超市的苹果价格如图所示,试说明代数式100-9.8x 的实际意义 .14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为51,则这三个数中最后一天为2014年11月 号.15.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:……第一个 第二个 第三个 …… 第n 个图案中有白色纸片 张.16.如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为 .三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.计算(每题5分,共15分)(1))16()7(1723-+---; (2)123(24)(1)238-⨯--;(3)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦.苹果:9.8元/斤(第13题)x 21 输出输入xx +3x 为偶数x 为奇数(第16题)(第14题)19.(5分) 化简:2(2x 2-9x ) -3(3x 2+4x -1) .20.(5分) 先化简,再求值:)4(3)32(2722222ab b a ab b a b a ---+,其中2-=a ,21=b .21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+0.2,-0.2,+0.7,-0.3,-0.4,+0.6,0,-0.1,+0.3,-0.2 (1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为(15±0.5)千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,阴影部分的面积是多少(π取值为3.14)?23.(7分)(南京青奥会期间,某数学兴趣小组调查了奥运村某个体水果店经销香蕉情况,每千克进价4.5元,售价6.5元,8月16日至8月20日经销情况如下表:日期 16日 17日 18日 19日 20日 购进(kg ) 55 50 50 55 50 售出(kg ) 44.5 51 38 50.5 51 损耗(kg )52126(1)若8月15日晚库存为0,则8月16日晚库存 kg ;(2)从8月18日这一天的香蕉经销情况看,规定赚钱为正,当天是赚钱还是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b是直角边.正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积: 方法一: ; 方法二: ;(2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系; (3)利用你发现的结论,求:299769979+⨯+的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额. 消费金额(元) 小于或等于500元500~10001000~15001500以上 返还金额(元)60100150注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000⨯(1-80%)+60=260(元). (1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(x >1250)的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(x >1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.ab①bc ab baaaabb②苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7. 31-;3 8. < 9.(mn )2 10. –4或2 11. -1 12. –6 13. 用100元买每斤9.8元的苹果x 斤余下的钱 14. 24 15. 3n +1 16. 2 三、解答题(本大题共9小题,共68分)17.(1)解:原式23-177-16 =+……………………………………3分-3 = ……………………………………5分(2)解:原式153242424238=-⨯+⨯+⨯ ……………………………………3分 12409=-++ ……………………………………4分37= ……………………………………5分(3)解:原式3135=--⨯⨯(46-) ……………………………………2分3135=--⨯⨯(2-) ……………………………………3分1=--(185-) ……………………………………4分135= ……………………………………5分 18.(1)解: 463x x -=- ……………………………………2分22x = ……………………………………4分 1x = ……………………………………5分(2)解:6-3(1x +)2=(2x -) ……………………………………1分题号 1 2 3 4 5 6 答案ADCABC6-3342x x -=- ……………………………………2分1x -= ……………………………………4分1x =- ……………………………………5分19.解:原式=4x 2-18x -9x 2-12x +3 ……………………………………3分=-5x 2-30x +3 ……………………………………5分20.解:原式22222746123a b a b ab a b ab =+--+ ……………………………………2分223a b ab =-- ……………………………………3分 当2-=a ,21=b 时, 原式=-(2-)212⨯3-⨯(2-)⨯(12)2 ……………………………………4分1432=-⨯-⨯(2-)14⨯322=-+12=- ……………………………………5分21.解:(1) (+0.2)+(—0.2)+(+0.7)+(—0.3)+(—0.4)+( +0.6)+0+(—0.1)+(+0.3)+(—0.2) = 0.6(千克) ……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+0.6 =150.6(千克) ……………………………4分 (2)这10箱有2箱不符合标准. ………………………………………………………6分 22.解:(1)22b ab π-……………………………………………………………….3分(2)14.88 ………………………………………………………….6分 23.(1)5.5 kg ……………………………………………2分 (2)当天赚钱因为38 6.5247⨯=元 4.550225⨯=元则247>225,所以当天赚钱. ……………………………………………4分(3)(5055505550++++)-(44.5513850.551++++)-(521260++++)0=所以该个体户最后一天香蕉全部售完. ……………………………………………5分 (44.5513850.551++++) 6.5⨯-(5055505550++++) 4.5⨯357.5=元 答:该个体户卖香蕉共赚了357.5元钱. ……………………………………………7分 24.(1)(a b +)2;222a ab b ++ ……………………………………………2分 (2)(a b +)2=222a ab b ++ ……………………………………………4分 (3)解:299769979+⨯+22997299720133=+⨯⨯+=(9973+)2210001000000== ……………………………………………7分(特别说明:本题第(1)问的添法不唯一,只要两种不同的方法填写正确均得2分) 25.解:(1)标价为1600元的商品按80%的价格出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元, 则顾客获得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分 (2)当1000<0.81500x ≤时,(0.2100x +)元;……………………………………………3分当0.8x >1500时,(0.2150x +)元; ……………………………………………4分(3)2000 (当1250<x ≤1875时,0.2x+100+500×0.2=650,得x=2250不合题意;当x>1875时,0.2x+150+500×0.2=650,得x=2000符合)……………………………………………7分。
2024-2025学年七年级数学上学期期中模拟卷(苏科版2024)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第3章。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2024的绝对值是( )A .2024-B .2024C .12024D .12024-2.下列各组整式中,不是同类项的是( )A .ab -与baB .25与52C .20.2a b 与212a b -D .23a b 与32a b -故选:D .3.下列各数中,最小的数是( )A .2B .4-C .p -D .0【答案】B【详解】解:∵402p -<-<<,∴所给的各数中,最小的数是4-.故选:B .4.若m 、n 满足()2|2|30m n -++=,则m n =( )A .9-B .9C .6D .6-5.甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( )A .33x yx y +-B .33x yx y -+C .33x yx y -+D .33x yx y+-6.若224a b -=,则代数式232a b -+的值为( )A .11B .7C .1-D .5-【答案】C【详解】解:∵224a b -=,∴()223232341a b a b -+=--=-=-.故选C .7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-【答案】C 【详解】解:当1x =时,()41411310x ---=-´+=-<,∴当3x =-时,()()414311310x ---=-´-+=>,符合要求,∴最后输出的结果是:13.故选:C .8.用大小完全相同的圆点按如图所示的规律拼图案,其中第①个图案中有5个圆点,第②个图案中有9个圆点,第③个图案中有13个圆点,第④个图案中有17个圆点,…,按此规律排列下去,则第⑨个图案中圆点的个数为( )A .29B .33C .37D .40第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
苏教版初一数学(上)期中模拟试卷(分值:100分;考试用时:120分钟.) 一、选择题:(本题共10小题,每小题2分,共20分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D .2.下列说法中,正确的是……………………………………………………………………………( )A .正数和负数统称为有理数;B .互为相反数的两个数之和为零;C .如果两个数的绝对值相等,那么这两个数一定相等;D .0是最小的有理数;3.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A . |a |<1<|b |B . 1<﹣a <bC . 1<|a |<bD . ﹣b <a <﹣1班级 姓名 考试号4.下列各式成立的是…………………………………………………………………………………( )A .()a b c a b c -+=-+;B .()a b c a b c +-=--;C .()a b c a b c --=-+ ;D .()()a b c d a c b d -+-=+--;5.用代数式表示“m 的3倍与n 的差的平方”,正确的是………………………… ………………( )A .()23m n -; B .()23m n - ; C .23m n - ; D .()23m n -6.下列说法正确的是……………………………………………………………………………… ( )A .a -一定是负数;B .一个数的绝对值一定是正数;C .一个数的平方等于36,则这个数是6;D .平方等于本身的数是0和1; 7.下列各式的计算结果正确的是……………………………………………………………………( ) A. 235x y xy +=; B. 2532x x x -=;C. 22752y y -=;D. 222945a b ba a b -=; 8.已知23a b -=,则924a b-+的值是……………………………………………………( ) A .0 B .3 C .6 D .9 9.已知单项式1312a x y -与43b xy +是同类项,那么a 、b 的值分别是………………………… ( )A .21a b =⎧⎨=⎩; B .21a b =⎧⎨=-⎩ ; C .21a b =-⎧⎨=-⎩ ; D .21a b =-⎧⎨=⎩;10.下列比较大小正确的是………………………………………………………………………( ) A .5465-<-; B .()()2121--<+-;C .1210823-->; D .227733⎛⎫--=-- ⎪⎝⎭; 二、填空题:(本题共10小题,每小题2分,共20分) 11. -212的相反数是_______,倒数是________.12. 杨絮纤维的直径约为0.000 010 5m ,该直径用科学记数法表示为 m13. 若方程()2370a a x ---=是一个一元一次方程,则a 等于 .14.若a 和b 互为相反数,c 和d 互为倒数,则20112010a b cd+-的值是 .15.若3x y +=,4xy =-.则()32(43)x xy y +--=_________.16.有理数a、b、c在数轴上的位置如图所示,则2a b a c---=____ ___.17.如下图所示是计算机程序计算,若开始输入1x=-,则最后输出的结果是 .18.已知当1x=时,代数式35ax bx++的值为-9,那么当1x=-时,代数式35ax bx++的值为_______.19. 一副羽毛球拍按进价提高40%后标价,然后再打八折卖出,结果仍能获利15元,为求这副羽毛球拍的进价,设这幅羽毛球拍的进价为x元,则依题意列出的方程为.20.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2013的点与圆周上表示数字的点重合.三、解答题:(本大题共12小题,共60分)21. (本题满分4分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.()213,2,0,5.1,1,3------;按照从小到大的顺序排列为 .22.计算:(本题共4小题,每小题4分,共16分) (1))6()1()3()2(--+--+-;(2)315(24)()468-⨯-+-;(3)()252134211255⎛⎫⎛⎫-⨯--÷--- ⎪ ⎪⎝⎭⎝⎭;(4)()()()233131682234⎡⎤⨯-+--⨯-⨯÷-⎢⎥⎣⎦23.(本题满分4分)已知:a =3,24b =,0ab <,求a b -的值.24.化简或求值:(本题共2小题,每小题4分,共8分) (1))2(3)3(22222b a b a a ----;(2)已知:02)3(2=++-y x ,求代数式)2(2)22(222222y xy x y xy x x +--+--+的值.25.解方程:(本题共2小题,每小题4分,共8分) (1)()()322553x x x x --=+-;(2) 3535132x x ---=;26.(本题满分6分)“*”是规定的一种运算法则:2a b a b *=-. (1)求()51*-的值; (2)若()4423x x -*=+,求x 的值.27. (本题满分6分)小黄同学做一道题“已知两个多项式A 、B ,计算2A B -”,小黄误将2A B -看作2A B +,求得结果是C .若2233B x x =+-,C = 2927x x -+,请你帮助小黄求出2A B -的正确答案.28. (本题6分)已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1⑴求4A -(3A -2B)的值; ⑵若A +2B 的值与a 的取值无关,求b 的值.29.(本题4分)观察下列算式: ①2132341⨯-=-=-; ②2243891⨯-=-=-;③2⨯-=-=-;④_____________________;…………35415161(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母n的式子表示出来. .30.(本题满分8分)如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①.方法②;(3)观察图②,你能写出()2-,mn这三个代数式之间的等量m nm n+,()2关系吗答: .(4)根据(3)题中的等量关系,解决如下问题:若6ab=,则求a b+=,4()2-的值.a b31.(本题6分)A、B两地分别有水泥20吨和30吨,C、D两地分别需要水泥15吨和35吨;已知从A、B到C、D的运价如下表:⑴若从A地运到C地的水泥为x吨,则用含x的式子表示从A地运到D地的水泥为_________吨,从A地将水泥运到D地的运输费用为_________元.⑵用含x的代数式表示从A、B两地运到C、D两地的总运输费,并化简该式子.⑶当总费用为545元时水泥该如何运输调配32.(8分)在左边的日历中,用一个正方形任意圈出二行二列四个数,如若在第二行第二列的那个数表示为a,其余各数分别为b,c,d.如(1)分别用含a的代数式表示b,c,d这三个数.(2)求这四个数的和(用含a的代数式表示,要求合并同类项化简)(3)这四个数的和会等于51吗如果会,请算出此时a的值,如果不会,说明理由.(要求列方程解答)参考答案一、选择题:(每小题2分)二、填空题:(每小题2分)11. 122,25-;12. 1.05×10-5;;;;16. a b c +-; ;;19.()140%0.815x x +⨯-=;; 三、解答题:21.画数轴略(2分);用“<”号连接:()132 1.50132-<--<-<<--<……2分; 22.计算:(1)原式=-2-3-1+6……(1分)=0……4分;(2)原式=315242424468⎛⎫-⨯--⨯+⨯ ⎪⎝⎭……1分 18415=-+……2分;29=……4分;(3)原式=()1645412254⎛⎫-⨯-⨯--- ⎪⎝⎭……1分; 16215=-++……3分; 125=……4分;(4)原式=()()131********⎡⎤⨯-+-⨯-⨯÷-⎢⎥⎣⎦……1分7=-……4分;23.解得3a =±,2b =±……1分;求得32a b =⎧⎨=-⎩或32a b =-⎧⎨=⎩……2分;解得5a b -=±……4分;24.(1)解:原式=22222336a a b a b -+-+……2分; 2257a b =-+ ……4分.(2)解得3x =,2y =-……1分;将代数式化简得222x y --……2分;当3x =,2y =-时,原式=-17……4分. 25.解方程:(1)解:3410515x x x x -+=+-……2分;55x -=……3分;1x =-…4分. (2)()()6235335x x --=-……1分;解得15x =-……3分.26.(1)26;(3分);(2)41623x x -=+ (5分);6x =;(6分). 27.解:根据题意得:2A B C +=,即()222233927A x x x x ++-=-+, ∴25813A x x =-+……………………4分;则()()22222581323381929A B x x x x x x -=-+-+-=-+…………………………6分;28.解:⑴4A -(3A -2B) ⑵若A +2B 的值与a 的取值无关, =A +2B …1/ 则5ab -2a +1与a 的取值无关. …4/∵A =2a 2+3ab -2a -1,B =-a 2+ab -1 即:(5b -2)a +1与a 的取值无关 ∴原式=A +2B ∴5b -2=0 …5/=2a 2+3ab -2a -1+2(-a 2+ab -1) ∴b =25=5ab -2a +1 …3/ 答:b 的值为 25. …6/29. (1)24651⨯-=-……1分; (2)()22(1)1n n n +-+=-……4分;30.(1)m n -……2分;(2)()24m n mn +-……1分;()2m n -……1分; (3)()()224m n m n mn -=+-…2分; (4)()()22420a b a b ab -=+-=……2分;31.解:⑴ )20(x - , )20(12x - …2/ ⑵ )15(9)15(10)20(1215x x x x ++-+-+= 5252+x …4/⑶5455252=+x10=x …5/答:A 地运到C 地10吨,A 地运到D 地10吨,B地运到C地 5吨, B地运到D地25吨. …6/32.(1)在第二行第二列的数为a,则其余3个数分别是7b a=-,8c a=-,1d a=-;(3分)(2)a b c d+++=416a-;(2分)(3)假设这四个数的和等于51,由(2)知41651a-=,解得3164a=.∵3164不是正整数,不合题意.故这四个数的和不会等于51.(3分)。