200个世界数学奥林匹克不等式题
- 格式:docx
- 大小:1.95 MB
- 文档页数:38
目录奥地利历年奥林匹克竞赛试题精选 (2)巴西历年revenge奥林匹克竞赛试题精选 (3)德国历年奥林匹克竞赛试题精选 (4)俄罗斯+立陶宛数学奥林匹克历年竞赛试题精选 (5)法国历年奥林匹克竞赛试题精选 (8)芬兰历年奥林匹克竞赛试题精选 (9)哥斯达黎加历年奥林匹克竞赛试题精选 (9)韩国历年奥林匹克竞赛试题精选 (10)荷兰历年奥林匹克竞赛试题精选 (11)捷克历年奥林匹克竞赛试题精选 (12)科索沃历年奥林匹克竞赛试题精选 (12)克罗地亚历年奥林匹克竞赛试题精选 (13)马其顿历年奥林匹克竞赛试题精选 (14)美国ELMO奥林匹克竞赛试题精选 (15)摩尔多瓦历年奥林匹克竞赛试题精选 (16)瑞士历年奥林匹克竞赛试题精选 (18)台湾历年奥林匹克竞赛试题精选 (19)乌克兰历年奥林匹克竞赛试题精选 (20)西班牙历年奥林匹克竞赛试题精选 (23)希腊历年奥林匹克竞赛试题精选 (24)香港历年奥林匹克竞赛试题精选 (26)意大利历年奥林匹克竞赛试题精选 (27)印度历年奥林匹克竞赛试题精选 (28)奥地利历年奥林匹克竞赛试题精选巴西历年revenge奥林匹克竞赛试题精选德国历年奥林匹克竞赛试题精选俄罗斯+立陶宛数学奥林匹克历年竞赛试题精选法国历年奥林匹克竞赛试题精选哥斯达黎加历年奥林匹克竞赛试题精选荷兰历年奥林匹克竞赛试题精选捷克历年奥林匹克竞赛试题精选科索沃历年奥林匹克竞赛试题精选克罗地亚历年奥林匹克竞赛试题精选马其顿历年奥林匹克竞赛试题精选美国ELMO奥林匹克竞赛试题精选摩尔多瓦历年奥林匹克竞赛试题精选乌克兰历年奥林匹克竞赛试题精选西班牙历年奥林匹克竞赛试题精选希腊历年奥林匹克竞赛试题精选香港历年奥林匹克竞赛试题精选意大利历年奥林匹克竞赛试题精选印度历年奥林匹克竞赛试题精选31。
第二章代数第三节不等式B3-001 北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,a n为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,b n使1.a k<b k, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设b k=a1q k-1+a2q k-2+…+a k-1q+a k+a k+1q+…+a n q n-k(k=1,2,…,n).1.显然b k>a k对k=1,2,…,n成立.2.比较b k+1=q k a1+q k-1a2+…+qa k+a k+1+…+q n-k-1a n与qb k=q k a1+…+q2a k-1+qa k+q2a k+1+…+q n-k+1a n,qb k的前面k项与bk+1的前面k项相等,其余的项小于b k+1的相应项(因为q<1).因此b k+1>qb k.因此,b1,b2,…,b n满足题目的要求.B3-008求满足条件:x≥1,y≥1,z≥1,xyz=10,x lgx y lgy z lgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1(3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得 uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)·(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、a n是给定不全为0的实数,r1、r2、…、r n是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+r n(x n-a n)对任何实数x1、x2、…、x n成立,求,r1、r2、…、r n的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取x i=a i,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|x i|<1 ,又设|x1|+|x2|+…+|x n|=19+|x1+…+x n|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 a max=3因为 m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)a=3maxB3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0 B3-020 怎样的整数a,b,c满足不等式 a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021有限数a1,a2,…,a n(n≥3)满足关系式a1=a n=0,a k-1+a k+1≥2a k(k=2,3,…,n-1),证明:数a1,a2,…,a n中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,a n中,a r最大,s是满足等式a s=a r的最小下标.若n>s>1,则a s-1;<a s,a s+1≤a s,从而a s-1+a s+1<2a s,与已知条件a s-1+a s+1≥2a s矛盾.故只有s=1或s=n,于是a r=0,数a1,a2,…,a n中没有正数,B3-022设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab,矛盾.B3-023 证明:任何正数a1,a2,…,a n满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n ≥27不成立.B3-024证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,A n-1和A n 是a进制数系中的数,B n-1和B n是b进制数系中的数.A n-1、A n、B n-1和B n呈如下形式:A n-1=x n-1x n-2…x0,A n=x n x n-1…x0(a进制的位置表示法);B n-1=x n-1x n-2…x0,B n=x n x n-1…x0(b进制的位置表示法).其中x n≠0,x n-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故A n B n-1-A n-1B n=(x n a n-1+A n-1)B n-1-(x n b n-1+B n-1)A n-1=x n[x n-1(a n-1b n-2-a n-2b n-1)+…+x0(a n-1-b n-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,a n都有(a1-a2)·(a1-a3)…(a1-a n)+(a2-a1)·(a2-a3)…(a2-a n)+…+(a n-a1)·(a n-a2)…(a n-a n-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤a n.若n为偶数,令a1<a2=a3=…=a n,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=a n则左边只有一个非零项(a4-a1)(a4-a2)…(a4-a n)<0故不等式不成立.B3-027 A=(a ij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一a ij=0,那么对i和j有a i1+a i2+…+a in+a1j+a2j+…+a nj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=a kk=0.此时对于i,j>k有a ij≠0.对于i≤k,j>k,若a ij=0,则a ji≠0,因若不然,交换i,j行,就会使a11=a22=…=a kk=a jj=0,与k的极大性矛盾.因而对于j>k,仍有a j1+…+a jn+a1j+…+a nj≥nB3-028求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=x i,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果x i都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而 c3+abc≥ac2+bc2 (2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030已知a1,a2,…,a n为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=b a+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设x i、y i是实数(i=1,…,n).且x1≥x2≥…≥x n;y1≥y2≥…≥y n;z1、z2、…、z n是y1、y2、…、y n的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034有n个数a1,a2,…,a n.假设C=(a1-b1)2+(a2-b2)2+…+(a n-b n)2D=(a1-b n)2+(a2-b n)2+…+(a n-b n)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2则 f(x)=n(x-b n)2+f(b n)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,a n中添一个数a n+1,此时C 增加了(a n+1-b n+1)2,而D增加了(a n+1-b n+1)2+f(b n+1)-f(b n).在(1)式中,令x=bn+1,得这样,D增加的值(a n+1-b n+1)2+f(b n+1)-f(b n)在(a n+1-b n+1)2与2(a n+1-b n+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,a n,满足1≤a1<a2<…<a n 时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若a k>2k,则若a k≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{a i},i=1,2,…,n.没有两个差|a i-a j|相等,1≤i<j ≤n.求证:【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<a n,r为整数且2≤r≤n.对于1≤所以, a r≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kx k=kx k-1+[kx]=(k-1)x k-1+x k-1+[kx] (2)(k-1)x k-1=(k-2)x k-2+x k-2+[(k-1)x] (3)…2x2=x1+x1+[2x](k)将(2)至(k)式相加,得kx k=x k-1+x k-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kx k≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kx k≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即x k≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b -c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,x n都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044设P(x)=a0+a1x+…+a k x k为整系数多项式,其中奇系数的个数由W(P)来表示,设Q i(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,i n是整数,且0≤i1<i2<…<i n,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当i n=1时,命题显然成立.设i n>1并且命题在i n换为较小的数时成立.令k=2m<i n<2m+1,(1)i1<k.设i r<k,i r+1>k,Q=R+(1+x)k S,其中的次数均小于K,由(1)(1+x)k≡1+x k(mod2),故W(Q)=W(R+S+x k S)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+x k S)=2W(S)≥2W(R)=W(R+x k R)=W((1+x k)R)045 证明:对于任意的正数a1,a2,…,a n不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤a n.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA <k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即 aB+bC+cA<k2B3-048证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n 成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n -a n-b n≥22n-2n+1【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-a k-b k≥22k-2k+1当n=k+1时,左边=(a+b)k+1-a k+l-b k+1=(a+b)[(a+b)k-a k-b k]+a k b+ab k从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2(2)由(2)知 a>0且a≠1(1)÷a得 a4-a2+1=2/a (3)(1)×a得 a6-a4+a2=2a (4)(3)+(4)得 a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3故 a3<2(6)由(5)和(6)得3<a6<4.B3-051已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)(3)(2)÷(3)即得结论.B3-052已知x i∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053已知a1,a2,…,a n是n个正数,满足a1·a2…a n=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+x n=0,那么x1x2+x2x3+…+x n-1x n+x n x1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=x n=0,则x1+x2+x3+x4+…+x n=0而 x1x2+x2x3+x3x4+…+x n-1x n+x n x1=l>0 所以n≥5时,命题不成立.B3-055证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z (1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知 -1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1(2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得 -1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而 |4a±2b+c|=|2(a±b+c)+2a-c| ≤2|a±b+c|+2|a|+|c|≤7即 |f(±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058证明:对于和为1的正数a1,a2,…,a n,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=a n=时,上式取等号.B3-059设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知所以B3-060设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8;【题说】1991年中国国家教委数学试验班招生数学题3.【证】≥0并且由柯西不等式,y≥x2,所以B3-061已知0<a<1,x2+y=0,求证:【题说】1991年全国联赛一试题5.B3-063已知a1,a2,…,a n>1(n≥2),且|a k+1-a k|<1,k=1,2,…,n-1.证明: a1/a2+a2/a3+…+a n-1/a n+a n/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若a k≤a k+1(k=1,2,…,n-1),则a k/a k+1≤1,故a1/a2+a2/a3+…+a n-1/a n+a n/a1<(n-1)+na1/a1=2n-1(n≥2)若有a k>a k+1,则由|a k+1-a k|<1知a k/a k+1<1+1/a k+1<2设有p个k值使a k≤a k+1,(n-1-p)个k值使a k>a k+1,则a1/a2+a2/a3+…+a n-1/a n≤p+2(n-1-p)同时 a n/a1=[(a n-a n-1)+…+(a2-a1)+a1]/a1<p+1因此 a1/a2+a2/a3+…+a n-1/a n+a n/a1<p+2(n-1-p)+p+1=2n-1B3-064令其中m,n∈N,证明a m+a n≥m m+n n【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有m m-a m=(m-a)(m m-1+m m-2a+…+a m-1)≤(m-a)(m m-1+m m-1+…+a m-1)=(m-a)m m (2)a n-n n=(a-n)(a n-1+a n-2+…+n n-1)≥(a-n)n n由(1)有(m-a)m m=(a-n)n n (3)将(2)、(3)代入,即得a n-n n≥m m-a m或a m+a n≥m m+n n此即所求证之式.B3-065设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066设a i≥0(i=1,2,…,n),a=min{a1,a2,…,a n},试证式中a n+1=a1.【题说】1992年第七届数学冬令营题2.B3-067设n(≥2)是整数,证明:【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明:【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071设A是一个有n个元素的集合,A的m个子集A1,A2,…,A n两两互不包含,证明:其中a i为A i中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头a i个元素取自A i中的,有a i!(n-a i)!个.由于A i与A j(i≠j)互不包含,故这些排列与开头a j个元素取自A j中的不同.由柯西不等式,结合(1)便得(2).B3-073设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥f n-1(x n)所以(1)对所有的自然数n成立.B3-075设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076设a1,a2,…,a n为n个非负实数,且a1+a2+…a n=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077已知f(z)=c0z n+c1z n-1+…+c n (1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|c n|(2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与c n辐角相同,从而|βn c0+c n|=|βn c0|+|c n|=|c0|+|c n|再令ω=e2πi/n,a k=β·ωk(0≤k≤n-1)故必有一个k,使 |f(αk)|≥|c0|+|c n|显然,|αk|=1,于是αk就是所求的z0。
数学奥林匹克竞赛题目尽管数学奥林匹克竞赛的题目复杂多样,但它们都有一个共同点,那就是挑战参赛者的思维能力和数学解题技巧。
以下是一些数学奥林匹克竞赛题目的示例,展示了数学之美以及对于问题求解的创新思维。
1. 最长公共子序列题目:给定两个字符串s1和s2,找出它们最长的公共子序列的长度。
解析:这是一个经典的动态规划问题。
我们可以使用一个二维数组dp来记录状态,其中dp[i][j]表示s1的前i个字符和s2的前j个字符的最长公共子序列的长度。
通过状态转移方程,我们可以逐步填充整个dp数组,最后的答案即为dp[m][n],其中m和n分别为s1和s2的长度。
2. 素数判定题目:给定一个正整数n,判断它是否为素数。
解析:素数判定是一个经典的数论问题。
可以使用试除法来判断一个数是否为素数,即判断它是否有除了1和它自身以外的因子。
从2开始到根号n,依次判断n是否能整除这些数,如果能整除,则n不是素数,反之,则是素数。
3. 数字组合题目:给定一个正整数n,找出所有由1到n个数字组成的排列。
解析:这是一个典型的回溯算法问题。
我们可以使用递归的方式来生成所有的排列。
每次递归时,从1到n中选择一个数字,并将其加入当前排列中,在继续递归生成剩余的排列。
我们使用一个布尔数组visited来记录某个数字是否已经在当前排列中出现过,以防止重复选择。
4. 数列求和题目:给定一个数列1, 3, 5, 7, 9, ...,求前n个数的和。
解析:这是一个等差数列的求和问题。
可以使用数学公式来解决,即等差数列的和公式:S = (首项 + 末项) * 项数 / 2。
根据题目给出的数列,我们可以得到首项为1,末项为(2n - 1),项数为n,代入公式即可求得和。
5. 二进制矩阵计算题目:给定一个二进制矩阵,求相邻的1所组成的区域的面积。
解析:这是一个图的深度优先搜索问题。
我们可以遍历整个二进制矩阵,对于每个为1的位置,递归地搜索与其相邻的1,并计算区域的面积。
1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,由于剖分图中的三角形互不交叉,而而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++. 原不等式成为22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式 222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++6223414())42()||162||8x y s x y s xyzs +=+≥(≥ 即9232M =时原不等式成立. 等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =. 4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m e -=+g ,其中m 为正的奇数,1e =±.代入化简得2212(8)x m m e --=-.若1e =,2801m m -=≤,.不满足上式.故必1e =-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x =L L ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ¹.作递推数列1()(012)i i x P x i +==L ,,.它以 k 为周期.差分数列1(12)i i i xxi -D =-=L ,,的每一项整除后一项.由周期性及10D ¹,所有||i D 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-=L ,,,,,. 数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A L ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i AA+=).设i i n A A +与11i i n A A+++交于 i O (i n i OO+=),由面积关系得到,11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++=g g ,故i i n i i O A O A +和11i i n i i O A O A +++ 中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积 11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△. 对于每条有向线段i i n A A +uuuuuu r ,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A +uuuuuu r 和12111n n n A A A A +++=uuuuuuuuu r uuuuuu r 的相反侧,故必有i 使得T 在i i n A A +uuuuuu r 和11i i n A A +++uuuuuuuuu r 的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211n i i i i O A A P +=ÊU △.于是 221111()2()2()nn i i i i i i i S A A S O A A S P ++==åå≥△≥ P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。
竞赛中著名不等式汇集作者 阿道夫 (配以典型的例题) 2013.2.28在数学领域里,不等式知识占有广阔的天地。
不等式常以其优美的结构、严谨的解法、恢弘的气势、广阔的知识容纳性、深层的数学背景等,而被众多竞赛大家所看重,也被莘莘学子所追崇。
以下根据自己在前些年教学中的总结并引学了其他贤人的智慧汇集如下,希望对同学们有所帮助。
1. 平均不等式(均值不等式)2. 柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)3. 排序不等式(排序原理)4. 契比雪夫不等式5. 贝努利不等式6. 琴生不等式7. 含有绝对值的不等式 8. 舒尔不等式 9. 一些几何不等式01 佩多不等式02外森比克不等式03 三角形内角的嵌入不等式10. 内斯比特不等式 11. Holder 不等式.12. 闵可夫斯基(Minkowski )不等式1. 平均不等式(均值不等式)设n a a a ,,,21 是n 个正数,令na a a nn H 111)(21+++=(调和平均值),n n a a a n G 21)(= (几何平均值),na a a n A n+++=21)( (算术平均值),na a a n Q n22221)(+++= (平方平均值), 则有(I )(调和平均几何平均不等式) )()(n G n H ≤; (II )(几何平均算术平均不等式) )()(n A n G ≤; (III )(算术平均平方平均不等式) )()(n Q n A ≤.这些不等式又统称为均值不等式.等号成立的充要条件是n a a a === 21. (I ) )()(n G n H ≤ ⇔na a a n11121+++ ≤n n a a a 21⇔n a a a a a a a a a a a a n nnnnnn≥+++21221121 (1)121221121=⋅nnnnnnna a a a a a a a a a a a,由3的推论2知(1)式成立,故(I )成立.等号成立的充要条件是nnnnnnna a a a a a a a a a a a 21221121===,即n a a a === 21.(II ))()(n A n G ≤ ⇔nn a a a 21≤na a a n+++ 21⇔n a a a a a a a a a a a a nnnnnnn≥+++21212211(2)121212211=⋅nnnnnnna a a a a a a a a a a a,所以由3的推论2知(2)成立,故(II )成立.显然等号成立的充要条件是n a a a === 21.(III ) 令na a a c n+++= 21,再令ii a c α=+ ,n i ,,2,1 =,则1212n n a a a nc ααα+++=++++1212n n a a a ααα=+++++++().∴ 12n ααα+++=0 ,222212()()()n n a c c c ααα++++++++=c =≥=.等号成立的充要条件是222120n ααα+++=,即n a a a === 21.另:G,Q 证明还可以借助2维形式加以证明练习:1).设 的最小值为 .2). 设A 、B 、C 、D 为空间中的四点,求证:证明:如图,取BD 的中点E ,连结AE 和EC ,则在△ABD 和△BCD 中,根据中线的性质,有3). (2005年日本数学奥林匹克)若正实数,,,c b a 满足1=++c b a ,求证1111333≤-++-++-+b a c a c b c b a .证 ∵021>+=-+++=-+b a c b c b a c b , 由均值不等式,得313)1(1113cb c b c b -+=-+++≤-+, ∴ 313acab a c b a -+≤-+.同理可得,313babc b a c b -+≤-+ .313cbca c b a c -+≤-+将上述3个不等式相加,得333111b a c a c b c b a -++-++-+c b a ++≤ 1=.4).(2004年中国香港数学集训队试题)证明对于任意正实数,,,c b a 均有.222444c b a abc ca b bc a ++≥++解:,422244a c b bc a bc a ≥+++,422244b c a ac b ac b ≥+++,422244c b a abc ab c ≥+++ 上述3个式子相加,得)(4)(2)(2222222444c b a c b a abc ac b bc a ++≥+++++, 所以.222444c b a abc ca b bc a ++≥++2. 柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式) 对任意两组实数 ,,…,;,,…,,有,其中等号当且仅当时成立。
代数-不等式北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003 甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,an为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,bn使1.ak<bk, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设bk=a1qk-1+a2qk-2+…+ak-1q+ak+ak+1q+…+anqn-k(k=1,2,…,n).1.显然bk>ak对k=1,2,…,n成立.2.比较bk+1=qka1+qk-1a2+…+qak+ak+1+…+qn-k-1an与qbk=qka1+…+q2ak-1+qak+q2ak+1+…+qn-k+1an,qbk的前面k项与bk+1的前面k项相等,其余的项小于bk+1的相应项(因为q<1).因此bk+1>qbk.因此,b1,b2,…,bn满足题目的要求.B3-008 求满足条件:x≥1,y≥1,z≥1,xyz=10,xlgxylgyzlgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1 (3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009 长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、an是给定不全为0的实数,r1、r2、…、rn是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+rn(xn-an)对任何实数x1、x2、…、xn成立,求,r1、r2、…、rn的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取xi=ai,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|xi|<1 ,又设|x1|+|x2|+…+|xn|=19+|x1+…+xn|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 amax=3因为m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)amax=3B3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0B3-020 怎样的整数a,b,c满足不等式a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021 有限数a1,a2,…,an(n≥3)满足关系式a1=an=0,ak-1+ak+1≥2ak(k=2,3,…,n-1),证明:数a1,a2,…,an中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,an中,ar最大,s是满足等式as=ar的最小下标.若n>s>1,则as-1;<as,as+1≤as,从而as-1+as+1<2as,与已知条件as-1+as+1≥2as矛盾.故只有s=1或s=n,于是ar=0,数a1,a2,…,an中没有正数,B3-022 设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab,矛盾.B3-023 证明:任何正数a1,a2,…,an满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n≥27不成立.B3-024 证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,An-1和An是a进制数系中的数,Bn-1和Bn 是b进制数系中的数.An-1、An、Bn-1和Bn呈如下形式:An-1=xn-1xn-2…x0,An=xnxn-1…x0(a进制的位置表示法);Bn-1=xn-1xn-2…x0,Bn=xnxn-1…x0(b进制的位置表示法).其中xn≠0,xn-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故AnBn-1-An-1Bn=(xnan-1+An-1)Bn-1-(xnbn-1+Bn-1)An-1=xn[xn-1(an-1bn-2-an-2bn-1)+…+x0(an-1-bn-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,an都有(a1-a2)·(a1-a3)…(a1-an)+(a2-a1)·(a2-a3)…(a2-an)+…+(an-a1)·(an-a2)…(an-an-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤an.若n为偶数,令a1<a2=a3=…=an,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=an则左边只有一个非零项(a4-a1)(a4-a2)…(a4-an)<0故不等式不成立.B3-027 A=(aij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一aij=0,那么对i和j有ai1+ai2+…+ain+a1j+a2j+…+anj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=akk=0.此时对于i,j>k有aij≠0.对于i≤k,j>k,若aij=0,则aji≠0,因若不然,交换i,j行,就会使a11=a22=…=akk=ajj=0,与k的极大性矛盾.因而对于j>k,仍有aj1+…+ajn+a1j+…+anj≥nB3-028 求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=xi,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果xi都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而c3+abc≥ac2+bc2(2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030 已知a1,a2,…,an为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032 设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=ba+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设xi、yi是实数(i=1,…,n).且x1≥x2≥ (x)y1≥y2≥…≥ynz1、z2、…、zn是y1、y2、…、yn的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034 有n个数a1,a2,…,an.假设C=(a1-b1)2+(a2-b2)2+…+(an-bn)2D=(a1-bn)2+(a2-bn)2+…+(an-bn)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-an)2则f(x)=n(x-bn)2+f (bn)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,an中添一个数an+1,此时C增加了(an+1-bn+1)2,而D增加了(an+1-bn+1)2+f(bn+1)-f(bn).在(1)式中,令x=bn+1,得这样,D增加的值(an+1-bn+1)2+f(bn+1)-f(bn)在(an+1-bn+1)2与2(an+1-bn+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,an,满足1≤a1<a2<…<an时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若ak>2k,则若ak≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{ai},i=1,2,…,n.没有两个差|ai-aj|相等,1≤i<j≤n.求证【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<an,r为整数且2≤r≤n.对于1≤所以, ar≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037 对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038 若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kxk=kxk-1+[kx]=(k-1)xk-1+xk-1+[kx](2)(k-1)xk-1=(k-2)xk-2+xk-2+[(k-1)x](3)…2x2=x1+x1+[2x] (k)将(2)至(k)式相加,得kxk=xk-1+xk-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kxk≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kxk≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即xk≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b-c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,xn都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044 设P(x)=a0+a1x+…+akxk为整系数多项式,其中奇系数的个数由W(P)来表示,设Qi(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,in是整数,且0≤i1<i2<…<in,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当in=1时,命题显然成立.设in>1并且命题在in换为较小的数时成立.令k=2m<in<2m+1,(1)i1<k.设ir<k,ir+1>k,Q=R+(1+x)kS,其中的次数均小于K,由(1)(1+x)k≡1+xk(mod2),故W(Q)=W(R+S+xkS)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+xkS)=2W(S)≥2W(R)=W(R+xkR)=W((1+xk)R)045 证明:对于任意的正数a1,a2,…,an不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤an.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA<k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即aB+bC+cA<k2B3-048 证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049 已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n-an-bn≥22n-2n+1 【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-ak-bk≥22k-2k+1当n=k+1时,左边=(a+b)k+1-ak+l-bk+1=(a+b)[(a+b)k-ak-bk]+akb+abk从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050 已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2 (2)由(2)知 a>0且a≠1(1)÷a 得a4-a2+1=2/a(3)(1)×a得a6-a4+a2=2a (4)(3)+(4)得a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3 故a3<2(6)由(5)和(6)得3<a6<4.B3-051 已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)2(3)(2)÷(3)即得结论.B3-052 已知xi∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053 已知a1,a2,…,an是n个正数,满足a1·a2…an=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054 对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+xn=0,那么x1x2+x2x3+…+xn-1xn+xnx1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=xn=0,则x1+x2+x3+x4+…+xn=0而 x1x2+x2x3+x3x4+…+xn-1xn+xnx1=l>0 所以n≥5时,命题不成立.B3-055 证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z(1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056 证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057 已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知-1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1 (2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得-1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而|4a±2b+c|=|2(a±b+c)+2a-c|≤2|a±b+c|+2|a|+|c|≤7即|f (±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058 证明:对于和为1的正数a1,a2,…,an,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=an=时,上式取等号.B3-059 设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知所以B3-060 设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8【题说】1991年中国国家教委数学试验班招生数学题3.【证】≥0并且由柯西不等式,y≥x2,所以B3-061 已知0<a<1,x2+y=0,求证【题说】1991年全国联赛一试题5.B3-063 已知a1,a2,…,an>1(n≥2),且|ak+1-ak|<1,k=1,2,…,n-1.证明:a1/a2+a2/a3+…+an-1/an+an/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若ak≤ak+1(k=1,2,…,n-1),则ak/ak+1≤1,故a1/a2+a2/a3+…+an-1/an+an/a1<(n-1)+na1/a1=2n-1(n≥2)若有ak>ak+1,则由|ak+1-ak|<1知ak/ak+1<1+1/ak+1<2设有p个k值使ak≤ak+1,(n-1-p)个k值使ak>ak+1,则a1/a2+a2/a3+…+an-1/an≤p+2(n-1-p)同时an/a1=[(an-an-1)+…+(a2-a1)+a1]/a1<p+1因此a1/a2+a2/a3+…+an-1/an+an/a1<p+2(n-1-p)+p+1=2n-1B3-064 令其中m,n∈N,证明am+an≥mm+nn【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有mm-am=(m-a)(mm-1+mm-2a+…+am-1)≤(m-a)(mm-1+mm-1+…+am-1)=(m-a)mm(2)an-nn=(a-n)(an-1+an-2+…+nn-1)≥(a-n)nn由(1)有(m-a)mm=(a-n)nn(3)将(2)、(3)代入,即得an-nn≥mm-am或am+an≥mm+nn此即所求证之式.B3-065 设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066 设ai≥0(i=1,2,…,n),a=min{a1,a2,…,an},试证式中an+1=a1.【题说】1992年第七届数学冬令营题2.B3-067 设n(≥2)是整数,证明【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069 对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070 设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071 设A是一个有n个元素的集合,A的m个子集A1,A2,…,An两两互不包含,证明:其中ai为Ai中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头ai个元素取自Ai中的,有ai!(n-ai)!个.由于Ai与Aj(i≠j)互不包含,故这些排列与开头aj个元素取自Aj中的不同.由柯西不等式,结合(1)便得(2).B3-073 设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥fn-1(xn)所以(1)对所有的自然数n成立.B3-075 设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076 设a1,a2,…,an为n个非负实数,且a1+a2+…an=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077 已知f(z)=c0zn+c1zn-1+…+cn(1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|cn| (2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与cn辐角相同,从而|βnc0+cn|=|βnc0|+|cn|=|c0|+|cn|再令ω=e2πi/n,ak=β·ωk(0≤k≤n-1)故必有一个k,使|f(αk)|≥|c0|+|cn|显然,|αk|=1,于是αk就是所求的z0。
数学奥林匹克竞赛初试二试试题1. 线性代数1.1 行列式的定义、性质及计算方法。
1.2 矩阵的逆、秩、特征值与特征向量及其应用。
1.3 向量组的线性相关性、线性空间、基、维数、坐标与坐标变换。
1.4 线性变换的概念、矩阵表达式及其特征值与特征向量。
2. 解析几何2.1 空间直线、平面及其位置关系。
2.2 曲面方程的参数化与一般式,对称性与坐标面的交线,降阶法及其应用。
2.3 空间直线、平面、曲面及其交线、交面的方程式。
2.4 球面、柱面、圆锥面及其方程。
3. 数学分析3.1 极限的概念,性质及掌握极限的方法。
3.2 连续的概念,性质及其应用。
3.3 导数和微分的定义,性质及其计算方法。
3.4 函数的极值,最大值和最小值的求法。
4. 数学推理与证明4.1 命题、命题联结词、命题逻辑运算与真值表。
4.2 证明方法、基本结论及其应用。
4.3 数学归纳法、反证法、直接证明法,素数定理及其推论。
4.4 解不等式及求极限的证明。
5. 组合数学5.1 排列与组合的定义,性质及公式。
5.2 常见的组合数学问题,鸽巢原理,容斥原理。
5.3 二项式定理及其欧拉公式,二项式系数的性质,斯特林数定理及其应用。
5.4 组合问题的应用。
6. 数论6.1 基本性质和公式,辗转相除法及其应用。
6.2 质数的性质和证明,数的质因数分解及其应用。
6.3 同余式的概念、性质和定理。
6.4 素数定理及其应用。
以上为数学奥林匹克竞赛初试二试可能出现的题目范围及参考内容。
第二章代数第三节不等式B3-001 北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省?【题说】1960年上海市赛高一复赛题6.【解】设北京调给重庆x台,上海调给重庆y台,则0≤x≤10,0≤y≤4x+y=8总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0.答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省.B3-002 x取什么值时,不等式成立?【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.将原不等式化简得 x2(8x-45)<0,因此,原不等式的解为B3-003甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法?【题说】1962年上海市赛高三决赛题4.【解】抽出的人数必须满足解得m=5.故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有选法.B3-004 求出所有满足不等式的实数.【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.B3-007 设a1,a2,…,a n为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,b n使1.a k<b k, k=1,2,…,n.【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供.【解】设b k=a1q k-1+a2q k-2+…+a k-1q+a k+a k+1q+…+a n q n-k(k=1,2,…,n).1.显然b k>a k对k=1,2,…,n成立.2.比较b k+1=q k a1+q k-1a2+…+qa k+a k+1+…+q n-k-1a n与qb k=q k a1+…+q2a k-1+qa k+q2a k+1+…+q n-k+1a n,qb k的前面k项与bk+1的前面k项相等,其余的项小于b k+1的相应项(因为q<1).因此b k+1>qb k.因此,b1,b2,…,b n满足题目的要求.B3-008求满足条件:x≥1,y≥1,z≥1,xyz=10,x lgx y lgy z lgz≥10的x、y、z的值.【题说】1979年黑龙江省赛二试题3.【解】设lgx=u,lgy=v,lgz=w,则原题条件就变为:u≥0,v≥0,w≥0 (1)u+v+w=1(2)u2+v2+w2≥1(3)(2)平方得 u2+v2+w2+2(uv+vw+wu)=1 (4)(4)-(3)得 uv+vw+wu≤0由(1)得 uv=vw=wu=0(5)由(2)及(5)得:因此满足题意的解为:B3-009长方形的一边长为1cm已知它被两条相互垂直的直线分成四个小长方形,其中三个的面积不小于1cm2,第四个的面积不小于2cm2.问原长方形另一边至少要多长?【题说】第十七届(1983年)全苏数学奥林匹克九年级题6.【解】设小长方形的边长如图所示,则我们要求c+d的最小值,由题设c+d=(a+b)·(c+d)=ac+bd+ad+bcB3-010 m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有的这样的m与n,问3m+4n的最大值是多少?请证明你的结论.【题说】第二届(1987年)全国冬令营赛题6.【解】1987≥2+4+6+2m+1+3+…+(2n-1)=m(m+1)+n2因此,由柯西不等式于是221为3m+4n的上界,当m=27,n=35时,3m+4n取得最大值221.B3-011 求最大的正整数n,使不等式只对一个整数k成立.【题说】第五届(1987年)美国数学邀请赛题8.【解】原式等价于取n=112,则k只能取唯一的整数值97.另一方面,在n>112时,因此满足要求的n=112.B3-012 非负数a和d,正数b和c满足条件b+c≥a+d,这时【题说】第二十二届(1988年)全苏数学奥林匹克九年级题7.【证】不妨设a+b≥c+dc≤c+dB3-013 设a1、a2、…、a n是给定不全为0的实数,r1、r2、…、r n是实数,如果不等式r1(x1-a1)+r2(x2-a2)+…+r n(x n-a n)对任何实数x1、x2、…、x n成立,求,r1、r2、…、r n的值.【题说】第三届(1988年)全国冬令营赛题1.【解】取x i=a i,i=2,3,…,n代入原不等式,得当x1>a1时,由上式得当x1<a1时,上述不等式反号.令x1分别从大于a1与小于a1的方向趋于a1,得到B3-014 对于i=1,2,…,n,有|x i|<1 ,又设|x1|+|x2|+…+|x n|=19+|x1+…+x n|.那么整数n的最小值是多少?【题说】第六届(1988年)美国数学邀请赛题4.另一方面,令x1=x2=…=x10=0.95,x11=x12=…=x20=-0.95,则有故n=20即为所求最小值.B3-015 设m、n为正整数,证明存在与m、n无关的常数a【题说】1989年瑞典数学奥林匹克题5.【解】 a max=3因为 m2≡0,1,2,4(mod7)所以 7n2-m2≡-m2≡0,6,5,3(mod7)a=3maxB3-016 设x、y、z>0且x+y+z=1.求1/x+4/y+9/z的最小值.【题说】1990年日本第一轮选拔赛题10.【解】 1/x+4/y+9/z=(x+y+z)(1/x+4/y+9/z)B3-017 设n为自然数,对任意实数x、y、z,恒有(x2+y2+z2)2≤n(x4+y4+z4)成立,求n的最小值.【题说】1990年全国联赛一试题2(3).原题为填空题.【解】(x2+y2+z2)2=x4+y4+z4+2x2y2+2y2z2+2z2x2≤x4+y4+z4+(x4+y4)+(y4+z4)+(z4+x4)=3(x4+y4+z4)当x=y=z>0时,原不等式化为9x4≤3nx4,故n≥3.所以,n的最小值是3.B3-019 a、b、c是一个任意三角形的三边长,证明:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【题说】第六届(1964年)国际数学奥林匹克题2.本题由匈牙利提供.【证】不妨设a≤b≤c.3abc-a2(b+c-a)-b2(c+a-b)-c2(a+b-c)=a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)≥b(b-c)(b-a)+c(c-a)(c-b)≥c(c-b)[(c-a)(b-a)]=c(c-b)2≥0 B3-020 怎样的整数a,b,c满足不等式 a2+b2+c2+3<ab+3b+2c?【题说】1965年匈牙利数学奥林匹克题1.【解】对于整数a、b、c,所要解的不等式等价于a2+b2+c2+4≤ab+3b+2c这个不等式可以变成由此可知,原不等式只可能有唯一的一组解a=1,b=2,c=1.B3-021有限数a1,a2,…,a n(n≥3)满足关系式a1=a n=0,a k-1+a k+1≥2a k(k=2,3,…,n-1),证明:数a1,a2,…,a n中没有正数.【题说】1966年~1967年波兰数学奥林匹克二试题1.【证】设a1,a2,…,a n中,a r最大,s是满足等式a s=a r的最小下标.若n>s>1,则a s-1;<a s,a s+1≤a s,从而a s-1+a s+1<2a s,与已知条件a s-1+a s+1≥2a s矛盾.故只有s=1或s=n,于是a r=0,数a1,a2,…,a n中没有正数,B3-022设a、b、c、d是正数,证明不等式a+b<c+d(1)(a+b)(c+d)<ab+cd (2)(a+b)cd<ab(c+d)(3)中至少有一个不正确.【题说】第三届(1969年)全苏数学奥林匹克九年级题1.【证】假定(1)、(2)、(3)都正确.则(a+b)2(c+d)<(a+b)(ab+cd)<ab(a+b)+ab(c+d)<2ab(c+d)从而(a+b)2<2ab,矛盾.B3-023 证明:任何正数a1,a2,…,a n满足不等式【题说】第三届(1969年)全苏数学奥林匹克十年级题6.原不等式左端的和大于故原不等式得证.【注】可以考虑更强的不等式(1954年美国数学家夏皮罗提出的猜测)对n≤12上式成立.对偶数n≥14与奇数n ≥27不成立.B3-024证明:对所有满足条件x1>0,x2>0,x1y1-成立,并求出等号成立的充要条件.【题说】第十一届(1969年)国际数学奥林匹克题6.本题由原苏联提供.所以当且仅当x1=x2,y1=y2,z1=z2时,等号成立.B3-025 设a、b、n都是自然数,且a>1,b>1,n>1,A n-1和A n 是a进制数系中的数,B n-1和B n是b进制数系中的数.A n-1、A n、B n-1和B n呈如下形式:A n-1=x n-1x n-2…x0,A n=x n x n-1…x0(a进制的位置表示法);B n-1=x n-1x n-2…x0,B n=x n x n-1…x0(b进制的位置表示法).其中x n≠0,x n-1≠0.证明:当a>b时,有【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】由于a>b,故A n B n-1-A n-1B n=(x n a n-1+A n-1)B n-1-(x n b n-1+B n-1)A n-1=x n[x n-1(a n-1b n-2-a n-2b n-1)+…+x0(a n-1-b n-1)]>0B3-026 (n>2)是自然数,证明下述论断仅对n=3和n=5成立:对任意实数a1,a2,…,a n都有(a1-a2)·(a1-a3)…(a1-a n)+(a2-a1)·(a2-a3)…(a2-a n)+…+(a n-a1)·(a n-a2)…(a n-a n-1)≥0【题说】第十三届(1971年)国际数学奥林匹克题1.本题由匈牙利提供.1979年湖南省赛二试题4.【证】不妨设a1≤a2≤a3≤…≤a n.若n为偶数,令a1<a2=a3=…=a n,则左边小于0,因而不等式不成立;若n=3,则左边前两项的和为(a1-a2)2≥0第三项不小于0,故不等式成立;若n=5,则同样可知左边前两项的和不小于0,末两项的和也不小于0,第三项不小于0,因此左边总不小于0,不等式成立;若n≥7,令a1=a2=a3<a4<a5=a6=…=a n则左边只有一个非零项(a4-a1)(a4-a2)…(a4-a n)<0故不等式不成立.B3-027 A=(a ij)是一个元素为非负整数的矩阵,其中i、j=1,2,…,n.该矩阵有如下性质:如果某一a ij=0,那么对i和j有a i1+a i2+…+a in+a1j+a2j+…+a nj≥n证明:这个矩阵所有元素的和不小于0.5n2.【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=a kk=0.此时对于i,j>k有a ij≠0.对于i≤k,j>k,若a ij=0,则a ji≠0,因若不然,交换i,j行,就会使a11=a22=…=a kk=a jj=0,与k的极大性矛盾.因而对于j>k,仍有a j1+…+a jn+a1j+…+a nj≥nB3-028求出所有能使不等式组成立的所有解(x1,x2,x3,x4,x5),其中x1,x2,x3,x4,x5都是正实数.【题说】第十四届(1972年)国际数学奥林匹克题4.本题由荷兰提供.【解】为方便起见,令x5+i=x i,则可以把原不等式组简写为将它们加起来得=x5=x2=x4.反之,如果x i都相等,原不等式组当然成立.B3-029 证明:对于正数a、b、c,下述不等式成立:a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ac(a+c)(1)【题说】第九届(1975年)全苏数学奥林匹克十年级题2.【证】不失一般性,可假定a≥b≥c.那末c(a-c)(b-c)≥0,(a-b)2(a+b-c)≥0从而 c3+abc≥ac2+bc2 (2)a3+b3+2abc≥ab(a+b)+a2c+b2c (3)(2)、(3)两式相加即得(1)式.B3-030已知a1,a2,…,a n为任何两两各不相同的正整数,求证对任何正整数n,下列不等式成立;【题说】第二十届(1978年)国际数学奥林匹克题5.本题由法国提供.【证】由柯西不等式【别证】利用排序不等式.B3-031 已知0≤a1,0≤a2,0≤a3,a1+a2+a3=1,0<λ1<λ2<λ3.求证:下面不等式成立【题说】1979年北京市赛二试题5.本题是康托洛维奇不等式的特例.【证】对任意正实数x,B3-032设a、b、c为正实数,证明【题说】第三届(1974年)美国数学奥林匹克题2.注意:这是一个对称不等式.【证】不失一般性,可以假定a≥b≥c>0.原不等式即a2a-b-c·b2b-a-c·c2c-a-b≥1 (1)由2a-b-c>0,得a2a-b-c·b2b-a-c≥b2a-b-c·b2b-a-c=b a+b-2ca=b=c时,等号成立.【别证】可以利用等式然后证明右端括号为正.B3-033 设x i、y i是实数(i=1,…,n).且x1≥x2≥…≥x n;y1≥y2≥…≥y n;z1、z2、…、z n是y1、y2、…、y n的任一个排列,证明【题说】第十七届(1975年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.【证】由排序不等式所以原式成立.B3-034有n个数a1,a2,…,a n.假设C=(a1-b1)2+(a2-b2)2+…+(a n-b n)2D=(a1-b n)2+(a2-b n)2+…+(a n-b n)2证明:C≤D≤2C.【题说】第十三届(1978年)全苏数学奥林匹克十年级题10.【证】设f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2则 f(x)=n(x-b n)2+f(b n)(1)现在用归纳法来证明不等式C≤D≤2C.当n=1时,C=D,故有C≤D≤2C.假设当n时,不等式成立,往a1,a2,…,a n中添一个数a n+1,此时C 增加了(a n+1-b n+1)2,而D增加了(a n+1-b n+1)2+f(b n+1)-f(b n).在(1)式中,令x=bn+1,得这样,D增加的值(a n+1-b n+1)2+f(b n+1)-f(b n)在(a n+1-b n+1)2与2(a n+1-b n+1)2之间,从而,对于n+1时,也有C≤D≤2C所以,对一切n,都有C≤D≤2CB3-035 a、b、c、d、e为整数,满足1≤a<b<c<d<e其中[m,n]为m、n的最小公倍数.【题说】第十一届(1979年)加拿大数学奥林匹克题3.【证】更一般地,可以证明:对于n个整数a1,a2,…,a n,满足1≤a1<a2<…<a n 时,有n=2时,(1)显然成立.假设n=k-1时(1)成立,考虑n=k的情况:若a k>2k,则若a k≤2k,则其中(m,n)为m、n的最大公约数,从而B3-036 S为正奇数集{a i},i=1,2,…,n.没有两个差|a i-a j|相等,1≤i<j ≤n.求证:【题说】1979年英国数学奥林匹克题3.【证】不妨设a1<a2<…<a n,r为整数且2≤r≤n.对于1≤所以, a r≥a1+r(r-1)≥1+r(r-1)r=1时,上式也成立,故B3-037对于n为一正整数,以p(n)表示将n表为一个或较多个正整数的和的方法数,例如p(4)=5,因为有5个不同的和,即1+1+1+1,1+1+21+3,2+2,4证明:当n>1时,p(n+1)-2p(n)+p(n-1)≥0【题说】1979年英国数学奥林匹克题5.【证】将n的p(n)个不同的表达式各加上1,得到p(n)个n+1的不同表达式,每一个都包含加数1.而且,n+1的每一个含有加数1的表达式,都可由这方法得到.因此将n+1表为大于1的整数的和的方法数q(n+1)=p(n+1)-p(n)同样将n+1表为大于2的整数的和的方法数即q(n+1)-q(n).显然q(n+1)-q(n)≥0因此p(n+1)-2p(n)+p(n-1)≥0B3-038若0≤a,b,c≤1,证明:【题说】第九届(1980年)美国数学奥林匹克题5.结论可以推广到n个数的情形.【证】令因为(1-b)(1-c)(1+b+c)≤(1-b)(1-c)(1+b)(1+c)=(1-b2)(1-c2)≤1(当a、b、c轮换时均成立)因此δ≥0.B3-039 若x为正实数,n为正整数.证明:其中[t]表示不超过t的最大整数.【题说】第十届(1981年)美国数学奥林匹克题5.【证】用数学归纳法.当n=1,2时,(1)显然成立.假设(1)对n≤k-1均成立.kx k=kx k-1+[kx]=(k-1)x k-1+x k-1+[kx] (2)(k-1)x k-1=(k-2)x k-2+x k-2+[(k-1)x] (3)…2x2=x1+x1+[2x](k)将(2)至(k)式相加,得kx k=x k-1+x k-2+…+x1+x1+[kx]+[(k-1)x]+…+[2x]因此,由归纳假定,kx k≤[kx]+2([(k-1)x]+[(k-2)x]+…+[x])但是[(k-m)x]+[mx]≤[(k-m)x+mx](m<k),所以kx k≤[kx]+([(k-1)x)]+[x])+…+([x]+[(k-1)x])≤k[kx]即x k≤[kx].此即所欲证之(1)式.B3-041 设a、b、c是三角形的边长,证明:a2b(a-b)+b2c(b -c)+c2a(c-a)≥0,并说明等号何时成立.【题说】第二十四届(1983年)国际数学奥林匹克题6.本题由美国提供.【证】设a是最大边,原式左边=a(b-c)2(b+c-a)+b(a-b)(a-c)(a+b-c)显然上式是非负的,从而原式成立,当且仅当a=b=c,即这三角形为正三角形时等号成立.B3-043 设x1,x2,…,x n都是正整,求证:【题说】1984年全国联赛二试题5.本题可用柯西不等式、数学归纳法等多种方法证明.将以上各式相加,即得所要证的不等式.B3-044设P(x)=a0+a1x+…+a k x k为整系数多项式,其中奇系数的个数由W(P)来表示,设Q i(x)=(1+x)i,i=0,1,…,n.如果i1,i2,…,i n是整数,且0≤i1<i2<…<i n,证明:【题说】第二十六届(1985年)国际数学奥林匹克题3.本题由荷兰提供.当i n=1时,命题显然成立.设i n>1并且命题在i n换为较小的数时成立.令k=2m<i n<2m+1,(1)i1<k.设i r<k,i r+1>k,Q=R+(1+x)k S,其中的次数均小于K,由(1)(1+x)k≡1+x k(mod2),故W(Q)=W(R+S+x k S)=W(R+S)+W(S)≥W(R)的次数均小于K.W(Q)=W(S+x k S)=2W(S)≥2W(R)=W(R+x k R)=W((1+x k)R)045 证明:对于任意的正数a1,a2,…,a n不等式成立.【题说】第二十届(1986年)全苏数学奥林匹克十年级题2.【证】不妨设a1≤a2≤…≤a n.因为当2≤k≤(n+1)/2时【注】原不等式可加强为B3-046 正数a,b,c,A,B,C满足条件a+A=b+B=c+C=k证明: aB+bC+cA <k2【题说】第二十一届(1987年)全苏数学奥林匹克八年级题5.【证】由题设k3=(a+A)(b+B)(c+C)=abc+ABC+aB(c+C)+bC(a+A)+cA(b+B)=abc+ABC+k(aB+bC+cA)>k(aB+bC+cA)即 aB+bC+cA<k2B3-048证明:对于任意的正整数n,不等式(2n+1)n≥(2n)n+(2n-1)n 成立.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题8.【证】只须证明由恒等式所以(1)式成立.B3-049已知a、b为正实数,且1/a+1/b=1.试证:对每一个n∈N,有(a+b)n -a n-b n≥22n-2n+1【题说】1988年全国联赛一试题5.【证】用数学归纳法证.(1)当n=1时,左边=0=右边,命题成立.(2)假设n=k时,不等式成立,即(a+b)k-a k-b k≥22k-2k+1当n=k+1时,左边=(a+b)k+1-a k+l-b k+1=(a+b)[(a+b)k-a k-b k]+a k b+ab k从而有≥2·2k+1=2k+2所以,左边≥4(22k-2k+1)+2k+2=22(k+1)-2k+2=右边由(1)及(2),对一切n∈N,不等式成立.B3-050已知a5-a3+a=2.证明:3<a6<4.【题说】第十四届(1988年)全俄数学奥林匹克八年级题3.【证】由a5-a3+a=2,变形为(1)a[(a2-1)2+a2]=2(2)由(2)知 a>0且a≠1(1)÷a得 a4-a2+1=2/a (3)(1)×a得 a6-a4+a2=2a (4)(3)+(4)得 a6+1=2(a+1/a)>4 (5)又由(1)知 2=(a5+a)-a3>2a3-a3=a3故 a3<2(6)由(5)和(6)得3<a6<4.B3-051已知a、b、c、d是任意正数,求证:【题说】1989年四川省赛二试题1.由平均值不等式,(2)≤2ab+2ac+2ad+2bc+2bd+2cd+2a2+c2+b2+d2=(a+b+c+d)(3)(2)÷(3)即得结论.B3-052已知x i∈R(i=1,2,…,n,n≥2),满足【题说】1989年全国联赛二试题2.因为 A/n≤a≤A,B≤b≤B/nB3-053已知a1,a2,…,a n是n个正数,满足a1·a2…a n=1,求证(2+a1)(2+a2)…(2+an)≥3n【题说】1989年全国联赛一试题3.B3-054对于任何实数x1,x2,x3,如果x1+x2+x3=0,那么x1x2+x2x3+x3x1≤0,请证明之.又对于什么样的n(n≥4),如果x1+x2+…+x n=0,那么x1x2+x2x3+…+x n-1x n+x n x1≤0?【题说】1989年瑞典数学奥林匹克题3.【证】如果x1+x2+x3=0,则有当n=4时,若x1+x2+x3+x4=0,则即n=4时,命题成立.当n≥5时,令x1=x2=1,x4=-2,x3=x5=x6=…=x n=0,则x1+x2+x3+x4+…+x n=0而 x1x2+x2x3+x3x4+…+x n-1x n+x n x1=l>0 所以n≥5时,命题不成立.B3-055证明:对于任意的x、y、z∈(0,1),不等式x(1-y)+y(1-z)+z (1-x)<1成立.【题说】第十五届(1989年)全俄数学奥林匹克九年级题6.【证】设f(x)=(1-y-z)x+y(1-z)+z,它是x的一次函数,因此关于x是单调的.因为f(0)=y-yz+z=(y-1)(1-z)+1<1f(1)=1-yz<1所以当x∈(0,1)时,f(x)的最大值小于1,即x(1-y)+y(1-z)+z(1-x)<1B3-056证明:若a、b、c为三角形三边的长,且a+b+c=1,则【题说】第二十三届(1989年)全苏数学奥林匹克九年级题2.1990年意大利数学奥林匹克题4.所以B3-057已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1求证:当-2≤x≤2时,有-7≤f(x)≤7.【题说】1990年南昌市赛二试题1【证】由已知 -1≤f(1)=a+b+c≤1 (1)-1≤f(0)=c≤1(2)-1≤f(-1)=a-b+c≤1 (3)(1)+(3)得 -1≤a+c≤1 (4)由(4)、(2)得 -2≤a≤2从而 |4a±2b+c|=|2(a±b+c)+2a-c| ≤2|a±b+c|+2|a|+|c|≤7即 |f(±2)|≤7|f(x)|≤7所以,当|x|≤2时B3-058证明:对于和为1的正数a1,a2,…,a n,不等式成立.【题说】第二十四届(1990年)全苏数学奥林匹克十年级题2.当a1=a2=…=a n=时,上式取等号.B3-059设a、b、c、d是满足ab+bc+cd+da=1的非负数.试证:【题说】第三十一届(1990年)IMO预选题88.本题由泰国提供.【证】设则由柯西不等式熟知所以B3-060设a1≤a2≤…≤a7≤a8是8个给定的实数,且x=(a1+a2+…+a7+a8)/8;【题说】1991年中国国家教委数学试验班招生数学题3.【证】≥0并且由柯西不等式,y≥x2,所以B3-061已知0<a<1,x2+y=0,求证:【题说】1991年全国联赛一试题5.B3-063已知a1,a2,…,a n>1(n≥2),且|a k+1-a k|<1,k=1,2,…,n-1.证明: a1/a2+a2/a3+…+a n-1/a n+a n/a1<2n-1【题说】第十七届(1991年)全俄数学奥林匹克九年级题8.【证】若a k≤a k+1(k=1,2,…,n-1),则a k/a k+1≤1,故a1/a2+a2/a3+…+a n-1/a n+a n/a1<(n-1)+na1/a1=2n-1(n≥2)若有a k>a k+1,则由|a k+1-a k|<1知a k/a k+1<1+1/a k+1<2设有p个k值使a k≤a k+1,(n-1-p)个k值使a k>a k+1,则a1/a2+a2/a3+…+a n-1/a n≤p+2(n-1-p)同时 a n/a1=[(a n-a n-1)+…+(a2-a1)+a1]/a1<p+1因此 a1/a2+a2/a3+…+a n-1/a n+a n/a1<p+2(n-1-p)+p+1=2n-1B3-064令其中m,n∈N,证明a m+a n≥m m+n n【题说】第二十届(1991年)美国数学奥林匹克题4.【证】不妨设m≥n,则故n≤a≤m,而有m m-a m=(m-a)(m m-1+m m-2a+…+a m-1)≤(m-a)(m m-1+m m-1+…+a m-1)=(m-a)m m (2)a n-n n=(a-n)(a n-1+a n-2+…+n n-1)≥(a-n)n n由(1)有(m-a)m m=(a-n)n n (3)将(2)、(3)代入,即得a n-n n≥m m-a m或a m+a n≥m m+n n此即所求证之式.B3-065设a、b、c是非负数,证明:【题说】第二十五届(1991年)全苏数学奥林匹克十年级题1.【证】(a+b+c)2=(a2+bc)+(b2+ca)+(c2+ab)所以原不等式成立.B3-066设a i≥0(i=1,2,…,n),a=min{a1,a2,…,a n},试证式中a n+1=a1.【题说】1992年第七届数学冬令营题2.B3-067设n(≥2)是整数,证明:【题说】1992年日本数学奥林匹克题3.B3-068 n是正整数,证明:【题说】1992年澳大利亚数学奥林匹克题8.【证】因为B3-069对x、y、z≥0,证明不等式x(x-z)2+y(y-z)2≥(x-z)(y-z)(x+y-z)等号何时成立?【题说】第二十四届(1992年)加拿大数学奥林匹克题2.【解】原不等式即x3+y3+z3+3xyz≥x2y+xy2+y2z+yz2+z2x+zx2由对称性,可设x≥z≥y,于是x(x-z)2+y(y-z)2≥0≥(x-z)(y-z)(x+y+z)B3-070设实数x、y、z满足条件yz+zx+xy=-1,求x2+5y2+8z2的最小值和最大值.【题说】1992年英国数学奥林匹克题4.【解】由于(y-2z)2+(x+2y十2z)2≥0所以x2+5y2+8z2≥-4(xy+yz+zx)=4的最小值为4.x2+5y2+8z2>x2当y→0时,函数x2+5y2+8z2的值可趋于无穷大.B3-071设A是一个有n个元素的集合,A的m个子集A1,A2,…,A n两两互不包含,证明:其中a i为A i中元素个数.【题说】1993年全国联赛二试题2.【证】A中元素的全排列共n!个.其中开头a i个元素取自A i中的,有a i!(n-a i)!个.由于A i与A j(i≠j)互不包含,故这些排列与开头a j个元素取自A j中的不同.由柯西不等式,结合(1)便得(2).B3-073设函数f:R+→R+满足条件:对任意x、y∈R+,f(xy)≤f(x)f(y).试证:对任总x>0,n∈N,有【题说】1993年中国数学奥林匹克(第八届数学冬令营)题6.【证】f(x2)≤f2(x),所以f(x2)≤f(x)f1/2(x2).假设有则≥f n-1(x n)所以(1)对所有的自然数n成立.B3-075设a、b、c、d都是正实数,求证不等式【题说】第三十四届(1993年)IMO预选题本题由美国提供.【证】由柯西不等式即又(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2≥0结合(1)、(2)即得结论.B3-076设a1,a2,…,a n为n个非负实数,且a1+a2+…a n=n.证明:【题说】1994年合肥市赛题4.一方面由柯西不等式知B3-077已知f(z)=c0z n+c1z n-1+…+c n (1)是z的n次复系数多项式.求证:存在一个复数z0,|z0|=1,使|f(z0)|≥|c0|+|c n|(2)【题说】1994年中国数学奥林匹克(第九届数学冬令营)题4.【证】取复数β,使|β|=1且βn·c0与c n辐角相同,从而|βn c0+c n|=|βn c0|+|c n|=|c0|+|c n|再令ω=e2πi/n,a k=β·ωk(0≤k≤n-1)故必有一个k,使 |f(αk)|≥|c0|+|c n|显然,|αk|=1,于是αk就是所求的z0。
(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++-2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni ini i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a (2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J s e n不等式)若)(x f 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=证: 作变换 令i i x a =β,则β1i i x a = 则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。
一道数学奥林匹克问题的多种解法莱州市第一中学李明辉问题背景:本题被孙一鸣同学放在一个看板上,以求“挑战天下英雄”。
我看过这道题后觉得颇有意思,经过一番思索,确实发现了一些出乎我意料的解法,现将其中四种做法以及思考过程进行展示,以飨读者。
问题:α 13prove c b a cyc ≥+-∆∑cb a a ABC :三边是、、探究:刚拿到这道题时,我们会想到“内切圆代换”来突破“三边是、、ABC ∆c b a ”的束缚。
βα 1222y 2222y x 1242424y x z y x x z c z y b y x a ≥+++++⇔≥++++++++⇔≥++++++++⇔∈+=+=+=+xz x z y z y x xz x z z y z y y x xz x z z y z y y x R )、、(其中,,设:对于β式,我们不难想到这样一种做法:[]done z y x z y x x z x z y z y x y z y x x z x z y z y x y z y x x z x z y z y x y x z x z y z y x y ,1)()(222)()2()2()2()(222)2()2()2(Cauchy 2222=++++≥+++++++=+++++++≥⎪⎪⎭⎫ ⎝⎛++++++++++故不等式,注意到:由我们继续对β进行探究:1121121121)1(,,1121121121≥+++++⇔=∈===≥+++++⇔+w v u uvw R w v u xz w z y v y x u xz z y y x ,且、、其中设β这样,我们不难发现这一问题的另一解法:doneu f v f u f v v u u f v u u f v u uv u u v v u f u f v u f v v uv u v u uv v u u f v uv v u uv v u 恒成立,综上所述,时,当时,时,时,注意到时,当下证恒成立时,显然,当:我们构造这样一个函数对于0)(0)1()(4010)(;100)(10)2()12()1)(4(2)(0)(40:0)(4121)2)(12()4(22121121)(,002212112112uv 1211210000020220000000000≥=≥<<><'<<>'==++--='≥<<≥≥++++-=+-+++=>∀≥+-+++⇔≥+++++⇔β接下来,我们再次对β式进行探索,以期得到更加出乎我们意料的解法:不等式,显然成立由AG xyzx z z y y x xy y x xyz xy y x xyz x z z y y x z y y x x x z y x z x z z y y cyc cyccyc 3249)(43)2)(2)(2()2)(2()2)(2()2)(2(2222222≥++⇔++≥++⇔+++≥++++++++⇔∑∑∑β经过一翻化简,竟然得到了一个简洁明了的式子,着实出乎我们意料,可见去分母的做法并非总使问题复杂化!最后,我们回到原题目α式,再次尝试,试图发现“三边是、、ABC ∆c b a ”这一条件的其他应用形式,即不通过“内切圆代换”将题目证明出来。
第23届ⅰmo试题解析第23届ⅰMO试题解析一、题目背景介绍第23届ⅰMO(国际数学奥林匹克初赛)是一项世界性的数学竞赛,吸引了来自全球各地优秀的中学生参与。
本届比赛共有六道题目,涉及了多个数学领域,难度较高。
下面我们将对这六道题目进行详细解析。
二、题目解析1. 题目一:矩形面积这道题目考察了几何和代数的结合。
首先,我们可以假设矩形的两个边长分别为a和b,并且设x为矩形的内切圆的半径。
通过观察可知,内切圆的直径等于矩形的较短边长,即2x=b。
通过这个等式,我们可以得到x与a和b之间的关系。
接下来,我们利用代数方法解方程组计算出矩形的面积。
2. 题目二:全排列这道题目考察了组合数学中的全排列问题。
首先,我们需要了解全排列的概念及计算方法。
然后,我们可以通过对给定的一组数进行全排列,并使用递归方法计算出满足条件的全排列个数。
3. 题目三:集合问题这道题目涉及到集合的运算和性质。
我们首先需要明确集合的定义和基本运算法则。
然后,通过对给定的一组集合进行运算,我们可以得到最终的结果。
在解答时,我们需要注意集合的交、并、差等运算的优先级以及符号运用的准确性。
4. 题目四:数列递推这道题目考察了数列的递推关系。
我们首先需要观察数列给出的前几项,然后通过找到数列递推的规律,得出递推公式。
接下来,我们可以根据递推公式计算出数列的特定项的数值。
5. 题目五:几何问题这道题目涉及到几何中的相似三角形和三向角梯形的性质。
我们首先需要利用已知条件,确定图形的几何特征。
然后,通过运用相似三角形和三向角梯形的性质,解出所求的角度或长度。
6. 题目六:不等式问题这道题目考察了不等式的基本概念和性质。
我们需要利用已知条件,通过代数方法求解不等式,并得出所求的数值范围。
在解答时,我们需要注意不等式符号的方向和操作的准确性。
三、解题技巧1. 提前熟悉数学知识点:在参加数学竞赛前,必须对重要的数学知识点进行深入理解,并熟练掌握解题方法。
高中数学竞赛专题三 不等式(一)● 高考风向标不等式的概念和性质,2元均值不等式.不等式的证明(比较法、分析法、综合法).不等式的解法(一元一次、一元二次、一元高次、分式、绝对值不等式)不等式的综合应用(求最值、求参数的取值范围、解答实际问题). ● 典型题选讲例1 已知(0x ,0y )是直线21x y k +=-与圆22223x y k k +=+-的交点,则当00x y 取最小值时,则实数k 的值等于()(A)42+ (B)42(C )1(D )3-讲解: 由交点满足方程,便得 002220021,2 3.x y k x y k k +=-⎧⎨+=+-⎩对第1个等式两边平方后减去第2个等式,立即得出 220023643(1)1x y k k k =-+=-+. 故当00x y 取最小值12时,实数k 对于的值等于1,应该选C . 点评: 此题是一道解析几何面孔呈现的代数最值问题,解答中建立函数00()x y f k =,而()f k 是二次函数,其求最值的方法自然就想到了是配方法!例2 设不等式2x -1>m(x 2-1)对满足|m|≤2的一切实数m 的取值都成立,求x 的取值范围.讲解:令f(m)=2x -1-m(x 2-1)=(1-x 2)m +2x -1,可看成是一条直线(由|m|≤2知它实质是一条线段),且使|m|≤2的一切实数都有2x -1>m(x 2-1)成立.所以 (2)0,f(2)0, f ⎧⎨⎩>-> 即 222x 2x 10,2x 2x 30,⎧⎨⎩-->+-<即x x x ⎧⎪⎪⎨⎪⎪⎩所以213x 217+<<-.点评:没有函数,构造函数,巧用线段函数的单调性质解题,这充分体现了函数思想在解答数学问题中的神奇作用.例3 若02πθ<<, 则函数224224sin cos ()sin cos sin cos f θθθθθθθ=+++的最大值是________.讲解: 由对称性,可以猜想:当sin cos θθ=时,函数()f θ取得最大值43.于是,就将求最值问题转化为不等式证明问题了.令22sin,cos a b θθ==,,ab t =则.410⎥⎦⎤ ⎝⎛∈,t 由,1=+b a 得,2122ab b a -=+ .3133ab b a -=+于是3422≤+++b a b b a a()()()()()()()()()()(),01140154443143213444334332222223322222222≥--⇔≥+-⇔++-≤+-⇔+++≤+++⇔++≤+++⇔ab ab ab b a b a ab ab ab ab ba ab b a b a abb a b a b a b a b b a a这是显然成立的, 故当,a b =即4πθ=时,max 4(),3f θ=应填4.3点评:换元法的美妙之处在于将三角问题化归为代数问题,而猜想最值又将问题转化为不等式证明.应用分析法是证明不等式的有效方法之一,它可以化生为熟、化繁为简.例4 某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防,规定每人每天早晚八时各服一片,现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,在体内的残留量超过386毫克,就将产生副作用.(1) 某人上午八时第一次服药,问到第二天上午八时服完药时,这种药在他体内还残留多少?(2) 长期服用的人这种药会不会产生副作用?讲解:(1)设人第n 次服药后,药在体内的残留量为n a 毫克.则4.1220%)601(220,220121⨯=-⨯+==a a a ,2.343%)601(22023=-⨯+=a a ,(2)由)2)(31100(4.0311004.022011≥-=-+=--n a a a a n n n n 可得, ⎭⎬⎫⎩⎨⎧-∴31100n a 是一个以数311001-a 为首项,0.4为公比的等比数列, 04.0)31100(3110011<⋅-=-∴-n n a a , 38631100<<∴n a , ∴ 不会产生副作用.点评:本题是一道数列与不等式综合的应用性问题,它紧密结合人们的生活实际,是一道既考知识,又考能力的好问题.例5 已知a>0,函数f(x)=ax -bx 2.(1) 当b>0时,若对任意x ∈R 都有f(x)≤1,证明a ≤2b ;(2) 当b>1时,证明对任意x ∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a ≤2b ; (3) 当0<b ≤1时,讨论:对任意x ∈[0,1],都有|f(x)|≤1的充要条件.讲解 (1) 对已知二次函数应用配方法,得22()()24a a f x b x b b =--+,当x ∈R 时,f(x)max = ba 42,于是,对任意x ∈R 都有f(x)≤1⇔ f(x)max = ba 42≤1⇔ a ≤2b .(2) 用f(x)max 、f(x)min 表示f(x)在[0,1]上的最大值、最小值,则对任意x ∈[0,1],都有|f(x)|≤1当且仅当max min ()1,()1,f x f x ≤⎧⎨≥-⎩ (*)而 f(x)=-b(x -2)2b a +ba 42,(x ∈[0,1])当2b a ≥时,0<b a 2≤1,f(x)max =ba 42,f(x)min =f(0)或f(1); 当2b<a 时,ba2>1, f(x)max = f(1),f(x)min =f(0). 于是(*)⇔212,1,4(0)01,(1)1,b b a a b f f a b >≥⎧⎪⎪≤⎪⎨⎪=≥-⎪=-≥-⎪⎩且 或12,(1)1,(0)0 1.b b a f a b f ><⎧⎪=-≤⎨⎪=≥-⎩且⇔b-1≤a ≤2b 或x φ∈⇔b-1≤a ≤2b .故对任意x ∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a ≤2b . (3) 由(2)的解答知,对任意x ∈[0,1],都有|f(x)|≤1当且仅当22001,1,4(0)01,(1)1,b a b a bf f a b ≥><≤⎧⎪⎪≤⎪⎨⎪=≥-⎪=-≥-⎪⎩且 或201,(1)1,(0)0 1.b a b f a b f <<≤⎧⎪=-≤⎨⎪=≥-⎩且 ⇔0<a ≤2b 或2b<a ≤b+1 ⇔0<a ≤b+1.故当0<b ≤1时,对任意x ∈[0,1],都有|f(x)|≤1的充要条件为0<a ≤b+1.点评:含参数的二次函数与绝对值不等式相综合,这是历年高考命题的热点之一.读者在备考复习时,应当重视这类题型的解题技巧,掌握一些解题的套路,领悟当中的变化技能,反复思考参数的处理艺术.例6(1)已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;(2)利用(1)的结论求函数29()12f x x x =+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.讲解:(1)应用2元均值不等式,得22222222()()a b y x x y a b a b a b x y x y ++=+++≥++2()a b =+, 故 222()a b a b x y x y++≥+. 当且仅当22y x ab x y =,即a bx y=时上式取等号. (2)由(1)22223(23)()252122(12)f x x x x x +=+≥=-+-.当且仅当23212x x =-,即15x =时上式取最小值,即min [()]25f x =. 点评:给你一种解题工具,让你应用它来解答某一问题,这是近年考试命题的一种新颖的题型之一,很值得读者深刻反思和领悟当中的思维本质.例7 如图,A 、B 为函数y x x =-≤≤3112()图像上两点,且AB ∥x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点.(1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.讲解:先引如点A ,B 的坐标,再逐步展开解题思维.(1)设B ()t t ,32,A ()-t t ,32,]10(,∈t ,M 是△ABC 边AC 的中点,则 )3(2)3(2212222t m t t m t S S ABM -=-==··△, ∴S f t t m t t ==-<≤()()()23012.(2)∵C x y ()00,,M (1,m )是△ABC 边AC 的中点∴ 002200122323.2x t x t y t y m t m -⎧=⎪=+⎧⎪⎪⇒⎨⎨+=-⎪⎩⎪=⎪⎩,,, ∴点,C t m t ()2232+-. 当39<≤m 时,S t m t t m t m t m m =-=--≤432363349222222()()()·. 当且仅当2236t m t -=,即3mt =时,S 的最大值是m m 94,此时点C 的坐标是⎪⎪⎭⎫⎝⎛-+32322m m m ,. 当m>9时,)(t f S =在区间(0,1)上是增函数,证明如下:设22121212112201()()2()[3()]t t f t f t t t m t t t t <<≤-=--++,则.∵01011212<<<<t t t ,,0122<≤t ,3)(30222121<++<t t t t ,又3>m , ∴0)(3222121>++-t t t t m .又t t 120-<,∴0)()(21<-t f t f , ∴)()(21t f t f <,∴)(t f S =在(0,1)上为增函数,故1=t 时,62)1(max -==m f S ,此时)323(-m C ,. 点评:本题是笔者自编的一道试题,曾作为陕西省高三的会考试题.此题的解答如果改为应用导数知识,其解法就要简洁的多了,请读者不妨一试.例8 过点)0,1(P 作曲线kx y C =:(),0(+∞∈x ,+∈N k ,1>k )的切线切点为1Q ,设1Q 点在x 轴上的投影是点1P ;又过点1P 作曲线C 的切线切点为2Q ,设2Q 点在x 轴上的投影是点2P ;……;依此下去,得到一系列点 ,,,,21n Q Q Q ,设点n Q 的横坐标是n a .(1)求证:nn k k a )1(-=,+∈N n ;(2)求证:11-+≥k na n ;(3)求证:k k a i ni i-<∑=21(注:121ni n i a a a a ==+++∑ ). 讲解:(1)对k y x =求导数,得/1k y kx -=.若切点是(,)kn n n Q a a ,则切线方程是1()k k n n n y a ka x a --=-. 当1n =时,切线过点(1,0)P ,即11110(1)k k a ka a --=-,得11ka k =-; 当1n >时,切线过点11(,0)n n P a --,即110()k k n n n n a ka a a ---=-,得11n n a ka k -=-. 所以数列{}n a 是首项为1k k -,公比为1k k -的等比数列,nn k k a )1(-=,+∈N n . (2)应用二项式定理,得1()(1)11n nn k a k k ==+--0122011111()()111111n n n n n n n n n C C C C C C k k k k k =++++≥+=+-----至少2项. (3)记121121n n n n n S a a a a --=++++ ,则2311121n n n k n nS k a a a a +--⋅=++++, 两式相减,得121121111111(1)n n n nk n S k a a a a a a a +--=+++-<+++ , 11[1()]111nn k k k k S k k k---<<--,故 2n S k k <-.点评:本题综合解析几何、导数、数列、二项式定理、不等式等知识点,在解答时,需要较强的思维能力和排除万难的吃苦精神.针对性演练1. 已知b a ,是正实数,则不等式组,x y a b xy ab +>+⎧⎨>⎩是不等式组,x a y b>⎧⎨>⎩成立的( )(A )充分不必要条件 (B) 必要不充分条件(C) 充分且必要条件 (D) 既不充分又不必要条件2. 若a,b R ∈则|a| <1,|b|<1,是|a+b|+|a-b|<2成立的 ( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 3. 已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是(A )0≤m ≤4 (B )1≤m ≤4 (C )m ≥4或x ≤0 (D )m ≥1或m ≤04.若对任意的长方体A ,都存在一个与A 等高的长方体B ,使得B 与A 的侧面积之比和体积之比都等于k ,则k 的取值范围是( )(A )0>k (B )10≤<k(C )1>k (D )1≥k 5.不等式|x 2-x -6|>3-x 的解集是( )(A )(3,+∞) (B )(-∞,-3)∪(3,+∞) (C )(-∞,-3)∪(-1,+∞) (D )(-∞,-3)∪(-1,3)∪(3,+∞) 6.是否存在常数c ,使得不等式yx yy x x c y x y y x x +++≤≤+++2222对任意正实数x 、y 恒成立?证明你的结论. 7. 已知),,(42)(2R c b a c bx ax x f ∈++=(1)当0≠a 时,若函数f (x )的图象与直线x y ±=均无公共点,求证;4142>-b ac (2)时43,4==c b 对于给定的负数8-≤a ,有一个最大的正数M (a ),使得5|)(|)](,0[≤∈x f a M x 时都有,问a 为何值时,M(a )最大,并求出这个最大值M(a ),证明你的结论.8. 设(1,2,3,4)i x i =为正实数,满足11212312341,5,14,30,x x x x x x x x x x ≤+≤++≤+++≤求1234111234U x x x x =+++的最大值. 9. 已知函数xa ax x f --+=1)()(R ∈a .(1)证明函数)(x f y =的图象关于点(a ,-1)成中心对称图形; (2)当1[+∈a x ,]2+a 时,求证:2[)(-∈x f ,]23-;(3)我们利用函数)(x f y =构造一个数列}{n x ,方法如下:对于给定的定义域中的1x ,令)(12x f x =,)(23x f x =,…,)(1-=n n x f x ,…,在上述构造数列的过程中,如果i x (i =2,3,4,…)在定义域中,构造数列的过程将继续下去;如果i x 不在定义域中,构造数列的过程停止. ①如果可以用上述方法构造出一个常数列}{n x ,求实数a 的取值范围;②如果取定义域中任一值作为1x ,都可以用上述方法构造出一个无穷数列}{n x ,求实数a 的值.参考答案:1.B .2.C .3.C .4.D .5.D . 6.当y x =时,由已知不等式得32=c . 下面分两部分给出证明: ⑴先证3222≤+++y x y y x x ,此不等式⇔)2)(2(2)2(3)2(3y x y x y x y y x x ++≤+++ 222y x xy +≤⇔,此式显然成立;⑵再证3222≥+++y x y y x x ,此不等式⇔)2)(2(2)2(3)2(3y x y x y x y y x x ++≥+++xy y x 222≥+⇔,此式显然成立.综上可知,存在常数32=c ,是对任意的整数x 、y ,题中的不等式成立. 7. (1))(x f 的图象与y =x 无公共点.22222224,(21)40.(21)16416140.,(),4161401,4.4ax bx c x ax b x c b ac b ac b f x y x b ac b ac b ∴++=+-+=∆=--=-+-<=--++<->即无实根从而同理由的图象与无公共点得二式相加得(2)2max 2416()()3.160,()31648,35,().,()835.()8,.8,()f x a x a aa f x aa M a a aM a ax x M a a a M a =⋅++-<=-≤--≤>-++=-==≤==-=- 所以时此时所以是方程的较大根当且仅当时等号成立因此当时 8.令 112123123412341,5,14,30,y x y x x y x x x y x x x x =-⎧⎪=+-⎪⎨=++-⎪⎪=+++-⎩ 则 0(1,2,3,4)i y i ≤=,112123234341,4,9,16,x y x y y x y y x y y =+⎧⎪=-++⎪⎨=-++⎪⎪=-++⎩ 于是 ()()()()112223411114916234U y y y y y y y =++-+++-+++-++ 123411*********10.y y y y =++++≤ 当 1121231234123410,50,140,300,y x y x x y x x x y x x x x =-=⎧⎪=+-=⎪⎨=++-=⎪⎪=+++-=⎩即12341,4,9,16x x x x ====时,max 10.U = 9.(1)设点P (0x ,0y )是函数)(x f y =图象上一点,则0001x a a x y --+=, 点P 关于(a ,-1)的对称点02(x a P -',)20y --. ∵ax x a x a a a x a x a f --+=---+-=-000001)2(12)2(, a x x a x a a x y --+=--+--=--000001122, ∴002)2(y x a f --=-,即点P '在函数)(x f y =的图象上,∴函数)(x f y =的图象关于点(a ,-1)成中心对称图形.(2)∵x a x a x f x f --+=++1]23)(][2)([2)(2)2)(1()(22x a a x a x x a x a -----=--+⋅. 又1[+∈a x ,]2+a ,0)(2>-x a ,∴0)2)(1(≤----a x a x ,∴]2)([+x f 0]23)([≤+x f , ∴23)(2-≤≤-x f . (3)①根据题意,只需x ≠a 时,x x f =)(有实解,即x x a a x =--+1有实解,即01)1(2=-+-+a x a x 有不等于a 的解,∴0,.x a ∆≥⎧⎨≠⎩ 由0)1(4)1(2≥---=∆a a 得:a ≤-3或a ≥1, 由01)1(2≠++-+⇔≠a a a a a x 01≠⇔. 综上a ≤-3或a ≥1;②根据题意,应满足a x ≠时a x a a x =--+1无实解, 即a x ≠时1)1(2-+=+a a x a 无实解,由于a x =不是方程1)1(2-+=+a a x a 的解, ∴对于任意R ∈x ,1)1(2-+=+a a x a 无解, ∴a =-1.。
不等式证明的基本技巧数学竞赛的历史,可以追溯到16世纪意大利求解三次方程“擂台战”。
而1894年匈牙利举办的全国中学数学竞赛,可以说是开中学生数学竞赛的先河。
中国的少年在IMO 上屡屡夺标,不仅展示了炎黄子孙的才能和苦学精神,而且肯定了中国在数学教学和奥林匹克数学培训中的可贵经验。
如果说,一名中学生,他有可能选择是否接受竞赛数学的培训,那作为一名中学数学老师没有理由对中学数学中这块领域毫无所知,所以作为师范生的我们有必要学好数学竞赛这门课程。
在学习竞赛数学这门课程过程中,我比较注重它的思想和方法,课余时间我还会借阅有关课外书籍,这些有富于我们数学创造力和思维能力的提高。
对于不等式部分我很感兴趣,并做了一些研究。
竞赛数学中的不等式问题按范围可分为代数不等式、三角不等式与几何不等式,按可形式分为不等式求解、不等式证明与不等式应用,这些都是属于竞赛数学中较重要的部分。
下面就不等式证明这一部分我给大家做一些介绍。
证明不等式的主要方法是根据不等式的性质和已知的恒不等式,进行合乎逻辑的等价变换。
不等式证明基本方法与技巧主要有比较法、放缩法、代换法、分析综合法、反证法、数学归纳法、配方与判别式法、构造法、导数法、辅助函数法公式法、调整法等。
下面举例说明证明不等式的常用技巧。
例1 设a,b,c 为正数,证明⎪⎭⎫⎝⎛-++≤⎪⎭⎫⎝⎛-+33322abc c b a ab b a . 证()().23232233333ab abc c ab abc b a c b a ab b a abc c b a +-+-+-++⎪⎭⎫⎝⎛-+-⎪⎭⎫ ⎝⎛-++==xx y ab abc c x 32333623230y 0x c y ab +-+-=,,,则=,=设φφ ()()()()()()()()()022222222223223≥++--⎪⎭⎫ ⎝⎛-+----++---x y x y x y x y xy x y x y x y x y y y y x y x y x xx x y =====.2时等号成立=即=仅当c ab y x⎪⎭⎫⎝⎛-++≤⎪⎭⎫⎝⎛-+33322abc c b a ab b a 所以.例2 .1716,1801ππS kS k 求证=设=∑证 对自然数k ,显然成立,121+++-k k k k k ππ取倒数可得()(),12112,112111---+-+++k k kk k k k k k k ππππ对k 从m 到n 求和交叉相消可得 ()()12112---+∑m n km n nmk =π所以,在上式的左式中m =1,n =80,即得16<S ;在上式的右式中 令m =2,n =80,即得()1718021ππ-+s 因此16<S<17例3 .1111,,,c cb b a ac b a c b a R c b a +++++≤+++++∈求证:证 构造函数()[)时,则当=x x x xx f 210,0,1xπ≤+∞∈+ ()()()0111121121122φx x x x x x x x x f ++-+-+== 所以函数()[)上是严格递增的,由,在=∞++01xxx f()().c b a f c b a f c b a c b a ++≤++++≤++有 即cb ac b a cb ac b a +++++≤+++++11()()()c b a cc b a b c b a +++++++++++111a = cc bb aa +++++≤111分析 不等式中四个式子形式相似,相当于函数()xxx f +1=在相应四个点的函数值,由此我们设置辅助函数来研究不等式.利用不等式的特点,构造辅助函数,将不等式的证明转化为函数增减性或极值来研究,是很有效的方法。
全球数学竞赛题是指各个国际数学竞赛的题目,例如国际奥林匹克数学竞赛。
以下提供2022年国际奥林匹克数学竞赛的部分试题:
组合与排列题目包括:
1. 设有5个物品A、B、C、D、E,按3个组合地排列共有多少种排列方式?
2. 从9名学生中选出3名作为代表出席国际会议,种组合可能数共有多少种?
3. 若A、B、C是一个组合,它们有多少种排列方式?
直线与圆题目包括:
1. 在一个圆上,有7个点,要求找出它们中位数两点之间连线的最短距离是多少?
2. 若知一圆的圆心距离圆上某点为2,求该圆的半径。
3. 若知两条直线的斜率分别为3、-1,求这两条直线的夹角是多少?
如果想了解更多关于全球数学竞赛题的资讯,可以登录国际数学竞赛官网查看,也可以阅读数学题库等相关书籍。