实验六十淀粉酶产生菌株的筛选
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
高产淀粉酶菌株筛选淀粉酶是一种以淀粉为底物的酶,可以将淀粉水解为糊精、糊精、麦芽糊精等多种低聚糖。
淀粉酶在食品工业、酿造工业、纺织工业等领域有广泛的应用。
在淀粉酶生产过程中,高产酶菌株的选育十分重要。
本篇文章将介绍高产淀粉酶菌株筛选的相关知识和方法。
1. 筛选菌种在高产淀粉酶菌株筛选中,首先要选取一种基础菌株,并在培养基中加入抑制其他细菌生长的抗生素,以防止其它外来细菌的污染。
另外,为了避免淀粉酶活性的干扰,还需要在培养基中加入淀粉水解产物。
2. 筛选培养基淀粉酶生产的细菌在不同类型的培养基中的生长情况也不同。
因此,在高产淀粉酶菌株筛选中,需要尝试不同成分和配比的培养基,找到最优的培养基。
3. 筛选条件在高产淀粉酶菌株筛选中,不同的发酵条件都会影响细菌的生长和淀粉酶的产生。
例如 pH 值、温度、搅拌速度、氧气供应等。
因此,需要优化发酵条件,使其最大化淀粉酶产量。
4. 淀粉酶活性测定确定淀粉酶的活性对于筛选高产淀粉酶菌株十分重要。
一般采用碘液滴定或 Fehling 精制法来测定淀粉酶活性,选择最高活性的菌株作为高产淀粉酶菌株。
微生物菌株的选择是筛选高产淀粉酶菌株的核心工作,可通过筛选自然环境中的菌株,或采用一些基因工程技术筛选出高产酶活的工业微生物菌株。
淀粉酶检测方法是评估筛选结果的一个关键步骤,目前主要有碘液滴定和Fehling 精制法两种方法,需要选择准确、温和、操作简便的方法测定淀粉酶活性。
高产淀粉酶菌株筛选的研究具有广泛的应用前景。
目前,在食品工业、酿造工业、制糖工业、制药工业、纺织工业等领域已经取得了较为显著的应用效果。
高产淀粉酶菌株的筛选研究不仅是实现淀粉酶生产工艺的自动化,还能生产高附加值的淀粉水解产品,提高资源利用效率。
总之,无论是在工业生产还是在科学研究方面,高产淀粉酶菌株筛选都扮演着重要的角色。
通过优化菌株选型,调整培养基成分和发酵条件,以及采用高效、准确的淀粉酶检测方法,可获得高产且高效的淀粉酶制剂,为产业生产和科学研究做出贡献。
实验六十淀粉酶产生菌株的筛选实验项目性质:设计性涉及的知识点:无菌技术、浓缩培养、纯种子分离、淀粉酶特性和酶活性测定。
计划学时:8学时一、实验目的1.掌握从环境中采集样本并从中分离纯化某些微生物的完整操作步骤。
2.巩固之前所学的微生物学实验技术。
3.掌握产酶微生物的筛选方法。
二、实验原理α-淀粉酶是一种液化淀粉酶。
其产生菌芽孢杆菌广泛分布于自然界,尤其是在含有淀粉的土壤样品中。
从自然界筛选菌株的具体方法大致可分为以下四个步骤:取样、增殖培养、纯种子分离和性能测定。
1、采样:即采集含菌的样品在收集含有细菌的样本之前,你应该调查和研究你打算筛选的微生物分布在哪里,然后你可以开始做各种具体的工作。
几乎所有种类的微生物都可以在土壤中找到,因此土壤可以说是微生物的基础。
在土壤中,细菌数量最多,其次是放线菌、第三种霉菌和酵母。
除土壤外,各种物体上都有相应的优势微生物。
例如,枯枝、腐叶、腐土和腐木中的纤维素分解细菌较多,厨房土壤、面粉加工厂和菜园土壤中的淀粉分解细菌较多,水果和蜜饯表面的酵母较多;植物奶中含有较多的乳酸菌,油田和炼油厂附近的土壤中含有较多的石油分解菌。
2、增殖培养(又称丰富培养)增殖培养是在采集的土壤和其他含有细菌的样本中添加一些物质,并创造一些其他有利于待分离微生物生长的条件,以便能够分解和利用这些物质的微生物能够大量繁殖,以便我们从中分离出这些微生物。
因此,增殖培养实际上是选择性培养基的实际应用。
3、纯种分离在生产实践中,一般都应用纯种微生物进行生产。
通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。
纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。
4.业绩衡量分离得到纯种这只是选种工作的第一步。
所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。
淀粉酶产生菌的筛选注意事项淀粉酶是一种重要的酶类,在食品加工、制药和生物技术等领域有着广泛的应用。
而淀粉酶产生菌则是淀粉酶发酵的关键微生物,因此筛选合适的淀粉酶产生菌对于淀粉酶的生产至关重要。
下面将从以下几个方面介绍淀粉酶产生菌的筛选注意事项。
一、筛选前的准备工作1. 确定筛选目标:在进行淀粉酶产生菌筛选之前,需要明确自己所需要的菌株特性,如产量、稳定性、适应性等。
2. 了解基础知识:在筛选之前需要对淀粉酶发酵过程中微生物代谢途径、营养需求等基础知识有一定了解,以便于更好地设计实验方案。
3. 准备培养基:根据所需菌株特性选择合适的培养基,并进行消毒和质量检测。
二、筛选方法选择1. 传统方法:传统方法包括平板法、液体培养法等,这些方法简单易行,但筛选效率较低。
2. 高通量筛选:高通量筛选方法可以同时对大量菌株进行筛选,具有快速、高效的优点,但需要较高的设备和技术要求。
3. 分子生物学方法:分子生物学方法通过扩增和检测目标基因来确定淀粉酶产生菌,具有高灵敏度、高特异性和快速等优点。
三、菌株的来源选择1. 野生菌株:采集自然环境中的微生物进行筛选,可以获得多样性较高的菌株,但需要进行适应性培养和改良。
2. 已知菌株:已知菌株包括文献报道的、已经商业化应用的等,在筛选时可以优先选择这些已知稳定可靠的菌株。
3. 自体分离:自体分离是指从淀粉酶发酵中分离出产酶微生物进行筛选,这种方法具有与发酵过程相适应、稳定性好等特点。
四、实验设计与操作注意事项1. 设计合理实验方案:实验方案需要考虑到微生物营养需求、培养条件等因素,同时需要进行对照实验和重复实验以确保结果的可靠性。
2. 严格控制操作条件:操作过程中需要严格控制温度、pH值、氧气含量等因素,以确保微生物的正常生长和代谢。
3. 合理选择筛选指标:筛选指标需要与淀粉酶产生相关,如淀粉酶活力、淀粉酶产量等。
4. 筛选后的确认和评价:在筛选出淀粉酶产生菌后,需要进行进一步的确认和评价,包括菌株稳定性、代谢途径分析等。
功能微生物(淀粉酶产生菌)的筛选、培养与选育22100934 程雅楠摘要:以产淀粉酶细菌的筛选和选育为目标,通过培养基制备及灭菌、菌种的分离筛选与纯化、菌种的鉴定、培养条件的优化以及淀粉酶产生菌的紫外诱变育种等五个过程,并测定了诱变后菌株的16s序列,初步掌握了对某菌种进行筛选、选育及诱变的必需步骤。
关键词:产淀粉酶细菌筛选选育诱变育种淀粉酶是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一,为了提高淀粉酶的生产水平,首先通过淀粉培养基从土壤中筛选出产淀粉酶的活性菌株,对菌株初步鉴定后进行紫外线诱变,筛选出产量高、性状优良的突变菌株。
淀粉酶主要来源于植物和微生物,并通过发酵完成生产,因此筛选出高产、稳定的淀粉酶产生菌是淀粉酶生产的尤为重要。
此次试验试图从土壤中分离出产淀粉酶的细菌,通过紫外线诱变育种等条件优化来得到高产、稳定的淀粉酶产生菌株。
以达到加深对菌种选育的认识、掌握紫外线诱变育种的原理和方法、掌握初步纯化淀粉酶的方法的实验目的。
1材料和方法1.1材料1.1.1 来源:南师大北区教学楼附近的土壤。
1.1..2培养基:淀粉培养基的配制①固体培养基膏 3g/L,蛋白胨 10g/L,NaCl 5g/L,可溶性淀粉2g/L,琼脂 20g/L,pH7.0~7.2。
②液体培养基:牛肉膏 3g/L,蛋白胨 10g/L,NaCl 5g/L,可溶性淀粉2g/L,琼脂 20g/L,pH7.0~7.2。
优化条件培养基配制:①淀粉3g/L,蛋白胨 10g/L,K2HPO4 1.5g,MgSO4·7H2O 1.5g, pH 4.0 。
②淀粉3g/L,蛋白胨 10g/L, K2HPO4 1.5g,MgSO4·7H2O 1.5g, pH 7.2 。
碳源培养基:①淀粉 3g,蛋白胨 10g,K2HPO4 1.5g,MgSO4·7H2O 1.5g,去离子水 1000mL pH 7.2。
实验一淀粉酶产生菌的筛选及酶活力测定指导老师:辛树权生命科学学院08级生物技术(三)班豆豆同组人:xx xxx摘要:自然界是微生物的大本营,实验室微生物几乎都是从自然界中选育出来的。
我们从学校的花坛中采集一些土壤样本,拿到实验室中,进行淀粉产生菌的筛选。
利用土壤制成菌液,将其涂抹在牛肉膏蛋白胨培养基上进行纯化,再用淀粉培养基培养,最后通过淀粉透明圈的大小来判断淀粉产生菌产淀粉的能力。
再使用分光光度计精确测量淀粉酶的酶活力。
关键词:淀粉酶;分离;纯化;透明圈;酶活力;摇瓶;分光光度计一、实验目的:1、学习从土壤中分离微生物的方法;2、学习淀粉酶产生菌的筛选方法3、了解分光光度计法测定酶活力的原理及方法。
二、实验原理:土壤中含有大量的微生物,将土壤稀释液涂在不同类型的培养基上,在适宜的环境中培养几天,细菌或者是其他的微生物便能在平板上生长繁殖,形成菌落。
将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养集中的淀粉成分来完成自身的生命活动,才能够生存。
故在淀粉培养基上长出的菌便是淀粉产生菌。
在培养基上滴碘液,淀粉被分解掉的部分不显现蓝色,出现透明圈,可以通过透明圈的大小来初步判断菌种产淀粉的能力。
淀粉酶是指一类能催化分解淀粉分子中糖苷键的酶的总称,主要包括α-淀粉酶和β-淀粉酶等,α-淀粉酶可从淀粉分子内部切断淀粉的α-1,4糖苷键,形成麦芽糖、含有6个葡萄糖单位的寡糖和带有支链的寡糖,是淀粉的粘度下降,因此又称为液化型淀粉酶。
淀粉遇碘呈蓝色。
这种淀粉-碘复合物在660nm处有较大的吸收峰,可用分光光度计测定。
随着酶的不断分作用,淀粉长链被切断,生成小分子的糊精,使其对碘的蓝色反应逐渐消失,因此可以根据一定时间内蓝色消失的程度为指标来测定α-淀粉酶的活力。
三、实验器材及试剂:1.、材料:长春师范学院家属楼前小菜园2培养基:(1)分离培养基:牛肉膏蛋白胨固体培养基(牛肉膏3g、蛋白胨10g、NaCl 5g、溶于1000mL蒸馏水中,再加入15g琼脂粉,pH调至7.2,121℃灭菌15min,待冷却至50℃左右时,于超净工作台倒平板)(2)筛选培养基:淀粉培养基(可溶性淀粉 20g, 硝酸钾 1g, 磷酸氢二钾 0.5g, 氯化钠 0.5g, 硫酸镁 0.5g, 硫酸亚铁 0.01g, 琼脂 20g, 水 1000毫升,调整pH值到7.2~7.4。
产淀粉酶菌株的分离及筛选摘要:【实验目的】1学习从土壤等环境中分离微生物的技术。
2了解产淀粉酶菌株的分离方法。
3观察产淀粉酶菌的形态特点,并分析不同条件下酶的特性。
【实验原理】淀粉酶广泛在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂.。
【实验目的】1学习从土壤等环境中分离微生物的技术。
2了解产淀粉酶菌株的分离方法。
3观察产淀粉酶菌的形态特点,并分析不同条件下酶的特性。
【实验原理】淀粉酶广泛在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。
淀粉酶种类繁多,特点各异,可应用于造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂等多种领域。
在酿造发酵工业如酒精生产、啤酒制造、发酵原料液化及糖化工艺过程均有重要价值,如添加高温淀粉酶可提高啤酒质量,中温蒸煮条件下添加适当耐高温a-淀粉酶可提高糖化率及酒精出酒率,降低甲醇含量,提高酒精质量,同时可提高设备利用率等。
淀粉酶在面包焙烤过程中分解淀粉产生的可溶性糖被酵母转化成酒精和CO2气体,不仅能增加面包体积,同时还有改善面包表皮色泽、提高面包软度、延长保质期的作用,对面包冷却和冷冻也有重要作用。
由于微生物数量多,繁殖快,工业生产主要采用向生物发酵法大量生产该制剂。
本实验从土壤中分离的淀粉酶产生菌从温度、pH值两方面探讨其产酶的最适条件。
通过平板培养法,从样品中初步分离出淀粉产生菌株,再通过单菌落培养从而获得比较纯的菌种。
然后对其进行二级扩大培养,最终测定液体培养基菌液中被酶分解得到的葡萄糖含量来讨论菌株的最适条件(温度、pH值等),为工业街道淀粉酶及饲料添加剂提供候选菌株。
【仪器、材料和试剂】(一)仪器1、恒温培养箱2、高压蒸气灭菌锅3、摇床4、恒温水浴锅5、生物显微镜6、电子天平(二)材料样品一:存放过久发霉的麦芽和周围粉尘样品二:米饭生产线附近草坪上的土壤(三)试剂与器材1、锥形瓶(50ml、100ml、500ml等)2、培养皿(25个左右)3、大小试管(30个左右)4、移液枪(1000μl、100μl)及大小枪头若干5、酒精灯、接种针等6、牛肉膏或酵母膏7、蛋白胨8、NaCl9、可溶性淀粉10、琼脂11、卢戈氏碘液11、草酸铵结晶紫12、碘液13、95%酒精14、蕃红染色液15、蒽胴试剂(现配)16、葡萄糖标准液(0.1 g/L)实验环节1 产淀粉酶菌株的初筛【实验步骤】1、称取一个样品5g,倒入盛有45mL无菌水带塞的三角锥形瓶中,摇床振荡30min制成样品悬液记为10-1土壤稀释液;2、用无菌移液管吸取10-1的土壤悬液0.5mL,放入4.5mL无菌水中吹吸数次混匀即为10-2稀释液,照此方法分别制成10-2~10-9稀释液;3、分别取10-5、10-6、10-7、10-8、10-9土壤稀释液各0.5mL,涂布于平板培养基表面,一个稀释度涂布接种2块平板,37℃下恒温培养16h ;4、待长出菌落后滴加卢戈氏碘液,挑取有明显淀粉水解圈的单菌落,作为初筛菌株。
“产淀粉酶菌株的筛选”设计方案产淀粉酶菌株的筛选是一项重要的研究工作,它可以满足很多工业和农业领域的需求。
下面是一个设计方案,包含步骤、实验条件和分析方法。
1.步骤(1)菌株的收集和培养首先,需要收集不同环境中的样品,如土壤、水体、植物表面等。
将样品分离培养在富含淀粉的琼脂培养基中。
培养过程中,需保持适宜的温度(通常在30℃左右)和适宜的pH(通常为6-7)。
(2)淀粉酶活性筛选将分离培养基中的菌株进行淀粉酶活性筛选。
取一小部分菌株涂抹到含有淀粉的琼脂培养基上,培养一段时间后在培养皿上观察是否产生明显的透明圈。
透明圈的出现表示淀粉酶活性较高的菌株。
(3)淀粉酶活性检测和比较从产生透明圈的培养皿中挑取具有高活性的菌落,进行淀粉酶活性检测。
可采用碘液滴加法,在含淀粉的琼脂培养基上,滴上一滴碘液,观察出现的蓝色溶解圈的明暗程度,可以初步评估淀粉酶活性的强弱。
(4)纯化和鉴定筛选出具有较高淀粉酶活性的菌株后,通过纯化和鉴定,进一步确定其产淀粉酶的能力以及体外条件如温度和pH对淀粉酶活性的影响。
可采用离心、柱层析等技术对菌株进行纯化。
通过测量在不同条件下的淀粉酶活性,确定最适宜的条件。
2.实验条件(1)培养条件:温度为30℃,pH为6-7(2)培养基:含淀粉和琼脂的培养基。
(3)检测条件:培养基含有淀粉,通过碘液滴加法观察形成的蓝色溶解圈明暗程度。
3.分析方法(1)测量淀粉酶活性采用I2-KI法测定淀粉酶活性。
将一定量的菌株培养液加入含淀粉的缓冲液中,反应一段时间后,加入碘液和KI溶液,混匀后通过测量吸光度来确定淀粉转化的程度。
(2)蛋白质含量测定通过BCA方法测定菌株培养液中的蛋白质含量。
将菌株培养液样品与BCA试剂混合,在一定温度下测量吸光度来确定蛋白质含量。
(3)酶动力学参数分析采用酶动力学参数分析方法,如麦克斯韦–玛尔特尔方程等,通过测定在不同底物浓度下的淀粉酶活性,来确定酶的最适底物浓度、最适酶浓度以及酶的最大反应速率。
生物技术综合实验——淀粉酶产生菌的初步筛选一、实验目的学习从自然界中筛选分离淀粉酶产生菌株。
二、实验内容淀粉酶产生菌的筛选和分离。
三、实验原理在筛选培养基平板上,可溶性淀粉被目的菌株产生的淀粉酶水解,形成透明圈。
不同种类的微生物产生的淀粉酶的种类和活力各不相同,对可溶性淀粉的水解能力各不相同,所形成的水解圈与菌落大小比值故而不同,因而根据其比值可初步断定其对可溶性淀粉的水解能力。
许多细菌和霉菌产生淀粉酶,特别是一些芽孢杆菌,因此,本实验将土壤样品加热处理后,将其接种到筛选培养基平板进行培养,根据平板的水解圈做初筛,从中筛选出产淀粉酶活性较好的菌株进行保藏。
四、实验材料和用具1、材料:土壤样品2、试剂:牛肉膏蛋白胨筛选培养基平板(含可溶性淀粉1%)、45mL无菌水瓶3、仪器及用具:恒温培养箱、超净工作台、高压蒸汽灭菌锅、摇床、酒精灯、牙签、移液枪、试管、涂布器、量筒等。
五、操作步骤(一)准备材料1、筛选固体培养基:在牛肉膏蛋白胨培养基中加入可溶性淀粉(1%),配制600mL,制备30个平板。
2、含45mL水的三角瓶5瓶,200ul枪头及枪头盒3盒,牙签3瓶,涂布器3包,灭菌处理。
(二)菌种分离1、土壤采集选取采集地点地表植被根系周围的土壤,首先去除地表浮土,然后挖取2-5cm深的土壤样品,每个样品约取20g土壤,装入塑料袋内,备用。
2、制备菌悬液取5g土壤样品置于含45ml无菌水的三角瓶中,用振荡器震荡10分钟,在90度水浴锅中处理15分钟。
3、涂布平板培养与分离吸取100ul悬浮液,用涂布器涂布于筛选培养基平板,待液体充分被吸收后,置于37℃培养箱中培养48h。
每组做2个平板。
(三)菌种初步筛选在平板中加入少量卢戈氏碘液,观察菌落形成透明水解圈情况,用无菌牙签挑取产水解圈的菌落,转接到新的筛选培养基中,每个平板上接种16个菌种,每组接种2个平板,置于37℃培养24h。
在平板内加入卢戈氏碘液,根据单菌落透明圈直径与菌落直径比值(H/C)大小进行初筛,选择水解圈直径与菌落直径比值大的菌株,从中选取淀粉酶活力相对较高的菌株。
实验一淀粉酶产生菌的筛选一、实验要求:1、写出完整的分离纯化淀粉酶产生菌的实验步骤;2、写出分离培养基及其相关试剂所需的量、仪器、器皿所需的量;3、掌握从土壤分离酵母菌的方法和技术,从样品中分离出所需菌株;4、学习并掌握平板倾注法和斜面接种技术,了解培养淀粉酶产生菌的培养条件和培养时间。
二、实验原理:用梯度稀释法来分离淀粉酶产生菌三、实验材料:1.培养皿、移液管、刮铲、显微镜等,2.可选取厨房土壤、面粉加工厂和菜园土壤 ;3.培养基与试剂 :牛肉膏、蛋白胨、NaCl 、可溶性淀粉、蒸馏水、琼脂粉。
四、实验步骤:1、选定采土点后,铲去表土层2-3cm,取3-10cm深层土壤5g,装入灭过菌的牛皮纸袋内,封好袋口,并记录取样地点、环境及日期。
土样采集后应及时分离,凡不能立即分离的样品,应保存在低温、干燥条件下,尽量减少其中菌相的变化。
2、培养基的配置,(1)分离培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀粉即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中再加入15g琼脂粉pH调至7.2121℃灭菌15min待冷却至50℃左右时于超净工作台倒平板。
注:先将可溶性淀粉加少量蒸馏水调成糊状再加到溶化好的培养基中调匀; (2)分离培养基液体培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀粉,即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中 pH调至7.2,121℃灭菌15min。
3、取所采的土样5g加入到三角瓶中,加入无菌水45mL,30℃摇床振荡30min制成土壤悬液,此时的稀释度为10-1。
另取7支试管分别记作10-2、10-3、10-4、10-5、10-6、10-7、10-8共8个梯度每支试管内加入9mL无菌水。
用无菌移液管从三角瓶中吸取1mL土壤悬液加入到10-2试管中混匀,再从此试管中吸取1mL加入到10-2试管中,依此类推直至10-7试管。
1.淀粉酶产生菌的分离与纯化实验原理淀粉是由葡萄糖通过α-1,4糖苷键构成的直链淀粉和α-1,6位有分支的支链淀粉组成的。
按照水解淀粉方式的不同,主要的淀粉酶可分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和解枝酶(或异淀粉酶)4大类。
产淀粉酶的微生物有细菌、霉菌和酵母菌等。
利用淀粉遇碘液变为蓝色的特性,将分离的芽孢杆菌(或其他微生物)接种在含有淀粉的固体培养基表面进行培养,利用滴加碘液后菌落周围出现的透明圈判断该菌是否产生淀粉酶及初步判断淀粉酶活力的高低。
实验材料和用具土壤样品或其他富含淀粉质的样品、牛肉膏蛋白胨培养基平板、淀粉培养基平板、无菌水(带玻璃珠)、芽孢染色液;显微镜、恒温水浴锅、酒精灯、接种针、游标卡尺、无菌移液管、无菌试管、量筒等操作步骤分离1)采集土壤样品,用无菌水制备1:10土壤悬液;2)取1:10土壤悬液5 ml,注入已灭过菌的试管中,将此试管放入75-80 ℃水浴中热处理10min,以杀死非芽孢细菌;3)取加热处理过的土壤悬液100-200 μL,涂布接种到牛肉膏蛋白胨培养基平板,将平板倒置,于30-32 ℃培养24-48 h;4)对长出的单菌落进行编号,选择表面干燥、粗糙、不透明的菌落,挑取少许菌苔涂片,做芽孢染色,判断是否为芽孢杆菌。
筛选1)从判定为芽孢杆菌的菌落处,分别挑取少许菌苔,先接种淀粉斜面培养基,再转接淀粉培养基平板,30-32 ℃培养24-48 h。
在平板上滴加稀碘液(或卢戈氏碘液)后测定水解圈直径与菌苔直径的比值。
2)水解圈大的那个菌株对应的斜面培养物,可作为进行诱变选育或酶发酵、酶活力测定菌株。
注意事项1)土壤悬液加热处理的温度和时间应准确控制。
2)点接淀粉培养基平板时,接种量及接种面积要基本相同。
2. 蛋白酶产生菌的分离与纯化实验原理许多细菌和霉菌产生蛋白酶,细菌中的芽孢杆菌是常见的蛋白酶产生菌。
本实验将土壤样品(或其他样品)悬液加热处理,杀死非芽孢细菌及其他微生物后进行划线分离得到芽孢杆菌,将其接种到酪蛋白平板进行培养,根据酪蛋白平板的水解圈作初筛。
高产淀粉酶菌株的筛选
高产淀粉酶菌株的筛选可以通过以下步骤进行:1.采集环境样品:从自然环境中采集土壤、水、植物等样品,或从工业废水、食品加工废弃物等来源中采集样品。
2.筛选菌株:将采集的样品进行分离培养,筛选出能够产生淀粉酶的菌株。
3.测定淀粉酶活性:对筛选出的菌株进行淀粉酶活性测定,选择活性较高的菌株。
4.优化培养条件:对选定的菌株进行培养条件的优化,包括温度、pH值、培养基成分等,以提高淀粉酶产量。
5.稳定性检测:对高产淀粉酶菌株进行稳定性检测,确保其在长期培养过程中产酶性能稳定。
6.应用实验:将高产淀粉酶菌株应用于实际生产中,评估其在工业生产中的应用价值。
淀粉酶高产菌的筛选、诱变、鉴定及应用虚拟仿真实验教学项目淀粉酶是一种在生物体内或外分泌的酶,能够催化淀粉分解为糖类。
淀粉酶广泛应用于食品工业、酿酒工业、饲料工业等领域。
为了提高淀粉酶的产量和活性,科研人员常常通过筛选、诱变和鉴定淀粉酶高产菌来进行研究。
本文将介绍一个基于虚拟仿真实验的教学项目,旨在帮助学生了解淀粉酶高产菌的筛选、诱变、鉴定及应用过程。
这个虚拟仿真实验教学项目包括以下几个步骤:第一步,筛选淀粉酶高产菌。
学生将在虚拟实验室中进行淀粉酶高产菌的筛选。
首先,他们需要从环境样品中采集不同的微生物菌株,比如土壤、水样等。
然后,学生需要设计合适的培养基,并将菌株接种到培养基中。
接下来,他们将通过测定淀粉酶的活性来筛选出产酶能力较强的菌株。
第二步,诱变淀粉酶高产菌。
学生将使用虚拟实验室中提供的诱变剂,对筛选出的淀粉酶高产菌进行诱变。
他们可以选择不同的诱变剂和处理方法,如化学诱变、辐射诱变等。
通过比较诱变前后淀粉酶的活性,学生可以评估诱变效果。
第三步,鉴定淀粉酶高产菌。
学生需要通过虚拟实验室中提供的鉴定方法,对诱变后的菌株进行鉴定。
他们可以使用聚合酶链反应(PCR)进行基因测序,比较诱变前后的基因序列差异。
此外,学生还可以通过电泳等技术,分析菌株的遗传多样性。
第四步,应用淀粉酶高产菌。
在虚拟实验室中,学生将学习淀粉酶的应用。
他们可以设计模拟实验,比如在不同条件下测定淀粉酶的活性。
此外,学生还可以了解淀粉酶在食品工业、酿酒工业等领域的应用,以及淀粉酶在生物工程中的潜力。
通过这个虚拟仿真实验教学项目,学生可以深入了解淀粉酶高产菌的筛选、诱变、鉴定及应用过程。
他们可以通过模拟实验,亲自体验科研的乐趣和挑战。
此外,虚拟实验室还可以提供丰富的资源和数据,帮助学生更好地理解和掌握相关知识。
总之,淀粉酶高产菌的筛选、诱变、鉴定及应用虚拟仿真实验教学项目是一个有趣且实用的教学工具。
它可以帮助学生在虚拟实验室中进行实践操作,提高他们的实验技能和科研能力。
淀粉酶产生菌的筛选实验小结
本实验旨在筛选具有淀粉酶活性的菌株,经过活性药物筛选法,通
过对新鲜海藻类源淀粉酶活性药敏试验结果,用神经酰胺蓝显色法共
分离出了12株具有淀粉酶生成活性的菌株,且12株菌株的淀粉酶活
性均明显优于对照组的淀粉酶活性。
经过16s rDNA分析,结果表明,
这12株菌株属于嗜热及高温嗜热乳杆菌科,包括拟南芥病毒乳杆菌属、干燥乳杆菌属,伯氏乳杆菌属、钝吸乳杆菌属等。
以上结果表明,该
方法高效可靠,可以用于筛选具有淀粉酶活性的微生物菌株,为药物
的开发和应用提供了重要的理论支持。
产淀粉酶菌株的筛选实验报告一、实验背景淀粉酶是一种常见的酶,广泛存在于微生物和植物中。
淀粉酶能够水解淀粉分子,将其分解成糖类分子,如葡萄糖、麦芽糖等。
淀粉酶广泛应用于食品、医药、环保等领域中。
制备高效的产淀粉酶菌株,对实现产业化生产具有重要意义。
二、实验目的通过筛选不同菌株的淀粉酶产量,选出产淀粉酶效果较好的菌株,为后续工业化生产提供依据。
三、实验步骤及方法1. 菌株的选取本实验选取了3株常见的淀粉酶产生菌株,分别为Bacillus subtilis、Aspergillus niger、Trichoderma reesei。
2. 菌株的培养将3株菌株接种到琼脂培养基中,经过静置培养后,选取菌落较为圆润、生长状态良好的菌落,移植至含有淀粉质的液体培养基中,进行淀粉酶产量的筛选实验。
3.淀粉酶活性的测定分别取3组接种液,以葡萄糖和淀粉为基质,分别加入菌液,进行淀粉酶活性测定。
具体步骤如下:(1)准备含1%淀粉质的液体培养基和0.5%葡萄糖液体培养基。
(2)将接种液投入含1%淀粉质的液体培养基中,加入0.1mol/L乙酸钠溶液,pH为5.6,放置于37℃水浴中反应30min,加入 1%伊红色溶液备用。
(3)将接种液投入含0.5%葡萄糖的液体培养基中,加入0.1mol/L乙酸钠溶液,pH为5.6,放置于37℃水浴中反应30min,加入1%伊红色溶液备用。
(4)通过比较加入菌液前后溶液颜色的深浅,计算出淀粉酶的酶活力。
4. 结果记录及分析根据上述实验步骤,在不同的液体培养基中测定了3株菌株的淀粉酶活性,并记录结果如下表所示:表1.不同菌株的淀粉酶活性| 菌株名称 | 淀粉酶酶活力 || ------------------ | --------------- || Bacillus subtilis | 0.19 U/mL || Aspergillus niger | 0.21 U/mL || Trichoderma reesei | 0.23 U/mL |根据上表结果可以看出,3株菌株在淀粉酶产量方面的效果有所不同。
产淀粉酶菌株的筛选原理
嘿,朋友们!今天咱就来讲讲产淀粉酶菌株的筛选原理。
你想啊,淀粉酶就像是一把神奇的钥匙,能把淀粉这个大城堡给打开。
那产淀粉酶的菌株呢,就是能制造出这把钥匙的小能手啦!
咱为啥要筛选它们呀?这就好比你要找一个特别会做饭的厨师,你得从一堆人里把他挑出来不是?产淀粉酶菌株能帮我们干很多大事呢!比如在工业生产中,让淀粉更快地变成我们需要的东西。
那怎么筛选呢?这就有点像找宝藏啦!我们得设置一些关卡,让那些有本事的菌株能脱颖而出。
首先呢,我们得有个含有淀粉的环境,就像给它们准备一个满是美食的厨房。
然后呢,把各种各样的菌株都放进去,让它们在里面竞争。
这时候,那些能产生淀粉酶的菌株就开始大显身手啦!它们会把淀粉分解掉,就好像它们找到了打开美食大门的钥匙。
那我们怎么知道哪些菌株做到了呢?嘿嘿,这就有很多办法啦。
比如说,我们可以用一些特殊的试剂,一遇到被分解的淀粉就会变色,哇,那可就一目了然啦!这不就像在一堆人里,一下子就看到了那个最会做饭的厨师嘛!
你说这神奇不神奇?产淀粉酶的菌株就这么被我们给找出来啦!它们就像是一群小小的超级英雄,能帮我们解决很多大问题呢!它们能让淀粉变得更有用,能让我们的生活变得更美好。
想象一下,如果没有这些产淀粉酶的菌株,我们的很多生产过程得变得多麻烦呀!所以说呀,筛选它们可真是太重要啦!我们得好好对待这些小家伙,让它们发挥出最大的作用。
总之呢,产淀粉酶菌株的筛选原理就像是一场有趣的游戏,我们要找到那些最厉害的小家伙,让它们为我们服务。
这就是科学的魅力呀,能让我们发现这么多神奇的东西,然后利用它们让我们的生活变得更加丰富多彩!怎么样,是不是很有意思呀?。
发酵工程实验报告产淀粉酶菌株的筛选姓名:××班级:生物技术学号:××指导老师:×××产淀粉酶菌株的筛选××(长春师范大学生命科学学院生物技术)【摘要】为筛选产淀粉酶的高产菌株, 利用淀粉水解圈作为筛选模型, 从学校附近土壤中筛选得到产淀粉酶能力较强的细菌。
对其酶活力进行测定, 最终得到产淀粉酶的高产菌株。
【关键词】淀粉酶;水解圈;酶活力;高产菌株Screening of Strains Producing Starch××(Technology of Biological Life Science College of Changchun Normal University)[Abstract] for the high-yield strains were screened for amylase, the starch hydrolysis circle as a model for screening, screening from the school near the soil produced amylase ability of the bacteria. Determination of the enzyme activity, high yield strain eventually produced amylase.[Key words] Amylase;Hydrolysis circle;Enzyme activity;Producing strain前言:生活中的微生物无处不在,某些微生物给人们带来困扰,但更多的微生物对我们人类有必不可少的作用。
淀粉酶是水解淀粉和糖原的酶类的总称,广泛存在于动植物和微生物中, 是最早实现工业生产并且迄今为止用途最广、产量最大的酶制剂品种。
淀粉酶产生菌的筛选一、实验目的:1,学习从土壤中分离微生物的方法2,学习淀粉酶产生菌的筛选方法(出筛选和复筛选的具体方法)二、实验原理:1.土壤中含有大量的微生物,将土壤稀释液涂在不同类型的培养基上,在适宜的环境下培养几天,细菌或是其他的微生物便能在平板上生长繁殖,形成菌落。
将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养基中的淀粉成分来完成自身的生命活动。
才能够生存,故在淀粉培养基上产出的菌便是淀粉产生菌。
2.在培养基上滴加碘液淀粉被分解掉的部分不显示蓝色。
出现透明圈,可以通过透明圈的大小来初步判断菌种产生淀粉的能力。
3.微生物四大类菌的分离和培养表:三、试剂及器材样品来源 分离对象 分离方法 稀释度 培养基名称 培养温度/℃ 培养时间/d 土样 细菌 稀释分离 10-510-610-7 牛肉膏蛋白胨培养基30-37 1-2土样放线菌稀释分离 10-310-410-5 高氏1号培养基28 5-7土样 霉菌 稀释分离 10-210-310-4 马丁培养基 28-30 3-5 土样酵母菌稀释分离 10-210-310-4 豆芽汁葡萄糖培养基28-302-31、材料:菜园土样2、培养基:(1)分离培养基:牛肉膏蛋白胨固体培养基(牛肉膏3g、蛋白胨10g、NaCl 5g、溶于1000mL蒸馏水中,再加入15g琼脂粉,pH调至7.2,121℃灭菌15min,待冷却至50℃左右时,于超净工作台倒平板)(2)筛选培养基:淀粉培养基(可溶性淀粉20g, 硝酸钾1g, 磷酸氢二钾0.5g, 氯化钠0.5g, 硫酸镁0.5g, 硫酸亚铁0.01g, 琼脂20g, 水1000毫升,调整pH 值到7.2~7.4。
)(3)摇瓶培养:淀粉培养液。
3、试剂:碘液、2%可溶性淀粉、pH6.0磷酸氢二钠-柠檬酸缓冲液、标准糊精溶液、0.5mol/L 乙酸、0.85%生理盐水。
4、器材:锥形瓶、培养皿、超净工作台、恒温水浴锅、高压灭菌锅。
产淀粉酶菌株的分离与纯化淀粉酶是一种非常重要的酶,能够分解淀粉成为可溶性糖,因而在食品、医药、酿酒等行业得到广泛应用。
因此,分离和纯化产淀粉酶菌株是具有重要意义的。
下文将介绍产淀粉酶菌株的分离与纯化方法。
1. 采集样品:淀粉酶通常存在于地下、水中、土壤等环境中。
样品的选择应根据所需的淀粉酶的类型和应用场景来决定。
2. 感染培养基:将样品置于适宜的环境中,如适温、适湿度、适pH值的培养基中,让细菌在培养基中生长和繁殖。
比较常用的培养基有TSA、PDA、LB、NB等。
3. 分离单菌:通过分离单菌,可以确定产淀粉酶的细菌,操作方法较为简单。
将样品分别在加了32g/L的琼脂和未加琼脂的培养基上涂布,按舞台上单菌生长的特点,通过肉眼观察或显微镜观察,挑选纯化细菌。
采用串联稀释法和滤膜法也可以分离单菌。
4. 鉴定菌株:通过对不同细菌的营养代谢特性,生化特性和形态特征等鉴定菌株,找出含有产淀粉酶的菌株。
1. 生长条件的调节:影响淀粉酶生长和产酶能力的因素有很多,如温度、pH、营养物质等。
应该根据菌株特性,适当调整这些因素,以提高淀粉酶的产量。
2. 分离淀粉酶:淀粉酶通常存在于细菌的胞外,利用超声波破碎、离心、超滤等方法可以将淀粉酶从菌体的胞外获得。
离心法是最常用的方法,将菌液离心后,分离出淀粉酶液,可以去除不溶性的杂质。
3. 纯化淀粉酶:淀粉酶纯化的方法有许多种,如酒精沉淀法、离子交换层析法、凝胶过滤层析法等。
其中,离子交换层析法是常用的一种方法,先将淀粉酶溶液加到离子交换树脂中,随后用缓冲溶液洗脱离子交换树脂,分离出淀粉酶。
以上介绍了产淀粉酶菌株的分离与纯化方法,这些方法可以得到高产量和纯度的淀粉酶,为利用淀粉酶提供了重要的技术支持。
实验六十淀粉酶产生菌株的筛选
实验项目性质:设计性
所涉及的知识点:无菌技术、富集培养、纯种分离、淀粉酶性质、酶活测定
计划学时:8学时
一、实验目的
1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。
2.巩固以前所学的微生物学实验技术。
3.掌握产酶微生物筛选的方法。
二、实验原理
α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其是在含有淀粉类物质的土壤等样品中。
从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、增殖培养、纯种分离和性能测定。
1、采样:即采集含菌的样品
采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手做各项具体工作。
在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。
在土壤中,数量最多的当推细菌,其次是放线菌,第三霉菌,酵母菌最少。
除土壤以外,其他各类物体上都有相应的占优势生长的微生物。
例如枯枝、烂叶、腐土和朽木中纤维素分解菌较多,厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多,果实、蜜饯表面酵母菌较多;蔬菜牛奶中乳酸菌较多,油田、炼油厂附近的土壤中石油分解菌较多等。
2、增殖培养(又称丰富培养)
增殖培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从而便于我们从其中分离到这类微生物。
因此,增殖培养事实上是选择性培养基的一种实际应用。
3、纯种分离
在生产实践中,一般都应用纯种微生物进行生产。
通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。
纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。
4、性能测定
分离得到纯种这只是选种工作的第一步。
所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。
性能测定的方法分初筛和复筛两种。
初筛一般在培养皿上根据选择性培养基的原理进行。
例如要测定淀粉酶的活力可以把斜面上各个菌株一一点种在含有淀粉的培养基表面,经过培养后测定透明圈与菌落直径的比值大小来衡量淀粉酶活力的高低。
复筛是在初筛的基础上做比较精细的测定。
一般是将微生物培养在三角瓶中作摇瓶培养,然后对培养液进行分析测定。
在摇瓶培养中,微生物得到充分的空气,在培养液中分布均匀,因此和发酵罐的条件比较接近,这样,测得的结果更具有实际的意义。
三、实验用品
1.器材
(1)小铁铲和无菌纸或袋。
(2)无菌水三角瓶(300mL的瓶装水至99mL,内有玻璃珠若干)
(3)无菌吸管(1mL,5 mL等)
(4)无菌水试管(每支4.5mL水)
(5)无菌培养皿
2.试剂
(1)分离培养基
蛋白胨1%;NaCl 0.5%;牛肉膏0.5%;可溶性淀粉0.2%;琼脂1.5%;pH7.2;水定容。
注:先将可溶性淀粉加少量蒸馏水调成糊状,再加到溶化好的培养基中,调匀。
(2)Lugol氏碘液
碘1克,碘化钾2克,水300毫升。
配制时先将碘化钾溶于5-10毫升水中,再加入碘,溶解后定容。
四、研究方案
研究方案大体步骤:
(1)采集样品,梯度稀释
(2)平板筛选,判断淀粉酶产生菌产淀粉酶的能力
(3)平板划线分离纯化
五、实验建议
1.实验每个步骤都应注意无菌操作。
2.要进行纯种分离以获得单个的产酶微生物。
3.实验结束后可根据实验现象和结果,提出超出本实验所提供器材和试剂的实验方案,并推测预期的结果,从而加深对本实验的理解。
六、思考题
1、用平板划线法进行纯种分离的原理是什么?
2、要防止平板划破应采取哪些措施?
3、为什么要将培养皿倒置培养?
附:
参考实验方法:
1.采集土样
2.样品稀释:在无菌纸上称取样品1g,放入100mL无菌水的三角瓶中,手摇10分钟。
80℃水浴15分钟,冷却。
用1mL无菌吸管吸取0.5mL注入4.5mL无菌水试管中,梯度稀释至10-6。
3.分离:用稀释样品的同支吸管分别依次从10-6、10-5、10-4样品稀释液中,吸取lmL,注入无菌培养皿中,然后倒入灭菌并融化冷至50℃左右的固体培养基,小心摇动冷凝后,倒置于35℃温箱中培养48小时。
4.检查:培养48小时后,取出平板,将皿中注入l滴Lugol氏碘液,因淀粉遇碘变蓝色,如菌落周围有无色圈,说明该菌能分解淀粉。
5.纯化:从平板上选取淀粉水解圈直径与菌落直径之比较大的菌落,用接种环沾取少量培养物至斜面上,并进行2-3次划线分离,挑取单菌落至斜面上,培养后观察菌苔生长情况并镜检验证为纯培养。