2021年高考数学真题试卷(浙江卷含答案)
- 格式:docx
- 大小:171.06 KB
- 文档页数:16
2021年普通⾼等学校招⽣全国统⼀考试(浙江卷)(数学)参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+如果事件A ,B 相互独立,那么()()()P AB P A P B =如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-=L台体的体积公式121()3V S S h=其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh=其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =p 球的体积公式343V R =p 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{}1A x x =³,{}12B x x =-<<,则A B =I ()A.{}1x x >- B.{}1x x ³ C.{}11x x -<< D.{}12x x £<2. 已知a R Î,()13ai i i +=+,(i 为虚数单位),则a =()A.1- B.1C.3- D.33. 已知非零向量,,a b c r r r ,则“a c b c ×=×r r r r ”是“a b =r r”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4. 某几何体的三视图如图所示,则该几何体的体积是()A.32 B.3C.2D.5.若实数x ,y 满足约束条件1002310x x y x y +³ìï-£íï+-£î,则12z x y =-的最小值是()A.2- B.32-C.12-D.1106. 如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ^平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ^平面11BDD B 7.已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是()A.1()()4y f x g x =+-B.1()()4y f x g x =--C.()()y f x g x = D.()()g x y f x =8.已知,,a b g 是互不相同的锐角,则在sin cos ,sin cos ,sin cos a b b g g a 三个值中,大于12的个数的最大值是()A.0B.1C.2D.39.已知,R,0a b ab Î>,函数()2R ()f x ax b x =+Î.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线10.已知数列{}n a满足)111,N n a a n *+==Î.记数列{}n a 的前n 项和为n S ,则()A.100321S << B.10034S << C.100942S << D.100952S <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1绝密★启用前2021年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+如果事件A ,B 相互独立,那么()()()P AB P A P B =如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h=+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh=其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
普通高等学校招生全国统一考试(浙江卷)数学参考公式:选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则UA B =( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-【答案】A 【解析】 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误.2.渐近线方程为0x y ±=的双曲线的离心率是( )A. B. 1C.D. 2【答案】C 【解析】 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b,则c ==,双曲线的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 32【答案】B 【解析】 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. 5.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.【答案】D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】 研究方差随a 变化增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A. ,βγαγ<<B.,βαβγ<<C.,βαγα<< D. ,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin ,sin sin 6633α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >-> D. 1,0a b >-<【答案】C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a <-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选:C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..10.设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,N n *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B:不动点满足221142x x x⎛⎫-+=-=⎪⎝⎭时,如图,若1110,,22na a a⎛⎫=∈<⎪⎝⎭,排除如图,若a不动点12则12na=选项C:不动点满足22192024x x x⎛⎫--=--=⎪⎝⎭,不动点为ax12-,令2a=,则210na=<,排除选项D:不动点满足221174024x x x⎛⎫--=--=⎪⎝⎭,不动点17122x=±,令17122a=±,则171102na=<,排除.选项A:证明:当12b=时,2222132431113117,,12224216a a a a a a=+≥=+≥=+≥≥,处理一:可依次迭代到10a;处理二:当4n≥时,221112n n na a a+=+≥≥,则117117171161616log2log log2nn n na a a-++>⇒>则12117(4)16nna n-+⎛⎫≥≥⎪⎝⎭,则626410217164646311114710161616216a⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++>⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a的可能取值,利用“排除法”求解.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数11z i=+(i 为虚数单位),则||z =________.【答案】2【解析】 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】1|||1|2z i ===+. 【点睛】本题考查了复数模的运算,属于简单题.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 (1). 2m =- (2). r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】 (1). (2). 5 【解析】 【分析】本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9(2)x +的通项为919(2)(0,1,29)rr r r T C x r -+==可得常数项为0919(2)162T C ==,因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14.在ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.【答案】 (1). 1225 (2). 7210【解析】 【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入CD x =,在BDC ∆、ABD ∆中应用正弦定理,建立方程,进而得解.. 【详解】在ABD ∆中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,22AC AB BC 5=+=,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以122BD =. 72cos cos()coscos sinsin 4410ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【点睛】解答解三角形问题,要注意充分利用图形特征.15.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,OF为半径的圆上,则直线PF的斜率是_______.【答案】15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程22195x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,2P ⎛⎫-⎪ ⎪⎝⎭,所以1521512PF k ==.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a = 【解析】 【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()()222(2)()2(2)(2))223642f t f t a t t t t a t t +-=•++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤,由折线函数,如图只需113a -≤,即43a ≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】 (1). 0 (2). 25【解析】 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。
2021年普通高等学校招生全国统一考试数学试题(浙江卷)一、单选题(本大题共10小题,共40.0分)1.设集合A={x|x⩾1} , B= {x|−1<x<2},则A∩B=()A. B. C. D.2.已知a∈R,(1+ai) i =3+i(i为虚数单位),则a=()A. B. C. D.3.已知非零向量a⃗,b⃗ ,c⃗,则“a⃗⋅c⃗=b⃗ ⋅c⃗”是“a⃗=b⃗ ”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.某几何体的三视图如图所示(单位:厘米),则该几何体的体积是(单位:cm3)()A.B.C.D.5.若实数x , y满足约束条件{x+1≥0x−y≤02x+3y−1≤0,则z=x−12y最小值是()A. B. C. D.6.已知正方体,,分别是,,,的中点,则()A. 直线与直线垂直,直线平面B. 直线与直线平行,直线平面C. 直线与直线相交,直线平面D. 直线与异面,直线平面7.已知函数,则为右图的函数可能是()A.B. y =f(x)−g(x)−14 C.D.8. 已知,,是三个锐角,则,,中,大于的数至多有( )A. 个B. 个C. 个D. 个9. 已知 a , b ∈ R , a b >0,若函数f(x)=ax 2+b (x ∈R),且f(s −t),f(s),f(s +t)成等比数列,则平面上点(s , t)的轨迹是( )A. 直线和圆B. 直线和椭圆C. 直线和双曲线D. 直线和抛物线10. 已知数列满足,,记数列的前和项,则( )A.B.C.D.二、单空题(本大题共7小题,共36.0分)11. 我国古代数学家赵爽用弦图给出了勾股定理的证明,弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示),若直角三角形直角边的长分别为3,4,记大正方形的面积为S 1,小正方形的面积为S 2,则S1S 2= .12. 已知,函数;若,则_________. 13. 已知多项式,则__________;__________.14. 在中,,,是的中点,,则__________;__________.15.袋中有4个红球,个黄球,个绿球,现从中任取两个球,记取出的红球数为;若取出的两个球都是红球的概率为,一红一黄的概率为,则_________,_________.16.已知椭圆,焦点,;过的直线和圆相切,并与椭圆的第一象限交于点,且轴,则该直线的斜率是_________,椭圆的离心率是__________.17.已知平面向量,,满足,,,,记平面向量在,方向上的投影分别为x,y,在方向上的投影为,则的最小值的等于__________.三、解答题(本大题共5小题,共74.0分)18.设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.19.如图,在四棱锥中,底面是平行四边形,,,,,,分别为,的中点,,.1证明:;2求直线与平面所成角的正弦值.20.已知数列a n的前n项和为S n,a1=−9,且4S n+1=3S n−9(n∈N∗).4(1)求数列a n的通项公式;(2)设数列{b n}满足3b n+(n−4)a n=0(n∈N∗),记{b n}的前项和为T n,若T n≤λb n对任意n∈N∗恒成立,求实数λ的取值范围.21.如图,已知F是抛物线y2=2px (p>0)的焦点,M是抛物线的准线与x轴的交点,且|MF|=2.(1)求抛物线方程;(2)设过点F的直线交抛物线于A , B两点,若斜率为2的直线l与直线MA , MB , AB , x轴依次交于点P , Q , R , N,且满足|RN|2=|PN|·|QN|,求直线l在x轴上截距的取值范围.22.设a , b为实数,且a>1,函数f(x)=a x−b x+e2(x∈R).(1)求函数f(x)的单调区间;(2)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(3)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2(x1<x2),且满足x2>blnb2e2x1+e2b.答案和解析1.【答案】D【知识点】相等关系与不等关系、交集及其运算【解析】【解析】由题意可知,A∩B= { x | 1⩽x<2 },故选D.2.【答案】C【知识点】复数的概念、复数的四则运算、复数相等的充要条件【解析】【解析】∵(1+ai) i = −a+i = 3+i,∴a=−3.故选:C.3.【答案】B【知识点】推理、必要条件、充分条件与充要条件的判断、向量的数量积【解析】【解析】∵a⃗⋅c⃗=b⃗ ⋅c⃗,∴(a⃗−b⃗ )⋅c⃗=0,即(a⃗−b⃗ )⊥c⃗,但a⃗≠b⃗ 不一定成立,故充分性不满足,若a⃗=b⃗ ,则a⃗⋅c⃗=b⃗ ⋅c⃗必成立,故必要性满足,所以是必要不充分条件.故选:B.4.【答案】A【知识点】几何体的侧面积、表面积、体积问题、数学模型与数学探究活动、简单多面体(棱柱、棱锥、棱台)及其结构特征、空间几何体的三视图【解析】【解析】由三视图可得,直观图如图所示,四棱柱A B C D−A1B1C1D1,由俯视图可知,底面A B C D为等腰梯形,将四棱柱补形成棱长为2的长方体,则BE=√22,所以V=12×(√2+2√2)×√22⋅1=32.故选:A.5.【答案】B【知识点】数学思想和方法、范围与最值问题、二元一次不等式(组)与平面区域【解析】【解析】由题意可知,可行域如图所示,令直线l:y=2x−2z,当直线l过点A(−1 ,1)时,z有最小值−32.故选:B.6.【答案】A【知识点】空间中直线与直线的位置关系、空间中直线与平面的位置关系、简单多面体(棱柱、棱锥、棱台)及其结构特征、空间中的位置关系 【解析】【解析】连接AD 1,则AD 1与A 1D 交于M ,AD 1⊥AD 1, 在正方体中,∵A B ⊥平面ADD 1A 1,∴A B ⊥A 1D , ∴AD 1⊥平面ABD 1, ∴A 1D ⊥D 1 B , ∵M 为AD 1中点, N 为D 1 B 中点, ∴M N//A B ,∴M N//平面A B C D . 故选:A .7.【答案】D【知识点】函数的图象、函数的奇偶性、复合函数的单调性、数学模型与数学探究活动 【解析】【解析】易知函数图像表示的是奇函数,y =f(x)+g(x)−14=x 2+sinx 与y =f(x)−g(x)−14=x 2−sinx 均为非奇非偶函数,排除A 和B ,对于C ,y =f(x)g(x)=(x 2+14) sinx 在[0, π2]上单调,与题意不符. 故选:D .8.【答案】C【知识点】推理、运用反证法证明、三角恒等变换【解析】【解析】假设sinαcosβ,sinβcosγ,sinγcosα均大于12,即sinαcosβ>12,sinβcosγ>12,sinγcosα>12,则(sinαcosβ)⋅(sinβcosγ)⋅(sinγcosα)>18,而另一方面,(sinαcosβ)(sinβcosγ)(sinγcosα)=(sinαcosα)(sinβcosβ)(sinγcosγ),化简得,12sin2α⋅12sin2β⋅12sin2γ=18sin2α⋅sin2β⋅sin2γ≤18,故sinαcosβ,sinβcosγ,sinγcosα不可能均大于12,取β=π4,α=π3,γ=π6,得到sinαcosβ=√64>12,且sinβcosγ=√64>12,∴大于12的数至多有2个.故选:C.9.【答案】C【知识点】数学思想和方法、圆锥曲线中的对称性问题、直线方程的综合应用、双曲线的概念及标准方程【解析】【解析】∵f(s−t),f(s),f(s+t)成等比数列,∴f2(s)=f(s−t)⋅f(s+t)⇒[a(s−t)2+b][a(s+t)2+b]=(as2+b)2,⇒a2(s2−t2)2+a b(2s2+2t2)+b2=a2s4+2abs2+b2,⇒a2(s4−2s2t2+t4)+2abs2+2abt2+b2=a2s4+2abs2+b2,∴a2t4−2a2s2t2+2abt2=0⇒at4−2as2t2+2bt2=0⇒t2(at2−2as2+2b)= 0,当t=0时,(s , t)的轨迹是直线,当at2−2as2+2b=0时,2s2−t2=2ba>0,即s2ba−t2a=1,此时(s , t)的轨迹是双曲线.故选:C.10.【答案】A【知识点】运用放缩法证明不等式、数列的递推关系、数列的求和【解析】【解析】∵a n+1=n1+√a ⇒a n+1+a n+1√a n =a n ,∴a n+1=n n+1√a ,∵√a n >12(√a n +√a n+1), ∴a n+1<n n+112(√a +√a )=2(√a n −√a n+1),∴S 100<1+2(√a 1−√a 2+√a 2−√a 3+⋯+√a 99−√a 100)=1+2(1−√a 100)<3, 易知:n ⩾2时,a n ≤12,先证明:n ⩾2时,√a n <712(√a n +√a n+1)⇔5√a n <7√a n+1⇔25 a n <49 a n+1,即:25a n <49⋅n1+√a ⇔√a n <2425(n ⩾2)成立,当n ⩾2,a n+1>n n+1712(√a +√a )=127(√a n −√a n+1), 由a n+1=n 1+√a ⇒1an+1=1+√a n a n=1a n+√1a n ⇒1a n+1−1a n =√1a n≥1,则1a 2−1a 1>1 , 1a 3−1a 2>1 , ⋯ , 1a100−1a 99>1 ⇒1a 10>100,即a 100<1100, ∴S 100>1+12+127(√a 2−√a 3+√a 3−√a 4+⋯+√a 99−√a 100)=1+12+6√27−127√a 100≥32+6√27−635>52,综上:52<S 100<3. 故选:A .11.【答案】25.【知识点】数学思想和方法、数学模型与数学探究活动【解析】【解析】由题意可知,大正方形的边长为5,小正方形的边长为1,则S 1S 2=251= 25.故答案为:25.12.【答案】2.【知识点】函数的解析式、复合函数、分段函数【解析】【解析】f(√6)=(√6)2−4=2,f(2)=|2−3|+a =3,解得a =2. 故答案为:2.13.【答案】5;10.【知识点】数学思想和方法、二项展开式的特定项与特定项的系数【解析】【解析】a 1 x 3=C 30x 3(−1)0+C 41x 3=5x 3,则a 1=5; a 2 x 2=C 31x 2(−1)1+C 42x 2=3x 2,则a 2=3; a 3 x =C 32x 1(−1)2+C 43x =7x ,则a 3=7; a 4=C 33x 0(−1)3+C 44=0;a 2+a 3+a 4=3+7+0=10. 故答案为:5;10.14.【答案】2√13;2√3913.【知识点】解三角形、数学模型与数学探究活动、余弦定理 【解析】【解析】因为= 60∘ ,AB =2 ,AM =2√3 ,所以BM =4 ,所以BC =8 ,AC = √AB 2+BC 2−2AB ⋅BC ⋅cosB = 2√13 , cos∠MAC =AC 2+AM 2−CM 22⋅AC⋅AM = 2√3913。
绝密★启用前2021年普通高等学校招生全国统一考试〔浙江卷〕数学本试题卷分选择题和非选择题两局部。
全卷共4页,选择题局部1至2页;非选择题局部3至4页。
总分值150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“考前须知〞的要求,在答题纸相应的位置上标准作答,在本试题卷上的作答一律无效。
参考公式:假设事件A,B互斥,那么P(A B)P(A)P(B)柱体的体积公式V Sh假设事件A,B相互独立,那么P(AB)P(A)P(B)其中S表示柱体的底面积,h表示柱体的高假设事件A在一次试验中发生的概率是p,那么n次锥体的体积公式V 1Sh独立重复试验中事件A恰好发生k次的概率3其中S表示锥体的底面积,h表示锥体的高kk nkP n(k)C n p(1p)(k0,1,2,L,n)球的外表积公式台体的体积公式V 1S1S2S2)h S4R2 (S13球的体积公式其中S1,S2分别表示台体的上、下底面积,h表示4 V 3台体的高3R其中R表示球的半径选择题局部〔共40分〕一、选择题:本大题共10小题,每题4分,共40分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.全集U1,0,1,2,3,集合A0,1,2,B1,0,1,那么(eA)IB=UA.1B.0,1 C.1,2,3D.1,0,1,32.渐近线方程为x±y=0的双曲线的离心率是2A.B.1 2C.2D.2x3y403.假设实数x,y满足约束条件3x y40,那么z=3x+2y的最大值是x y0A.1B.1C.10D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,那么积不容异〞称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.假设某柱体的三视图如下图〔单位:cm〕,那么该柱体的体积〔单位:cm3〕是A.158B.162C.182D.3245.假设a>0,b>0,那么“a+b≤4〞是“ab≤4〞的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y=1x,y=log a(x+1)(a>0,且a≠1)的图象可能是a27.设0<a <1,那么随机变量 X 的分布列是那么当a 在〔0,1〕内增大时,A .D 〔X 〕增大C .D 〔X 〕先增大后减小B .D 〔X 〕减小D .D 〔X 〕先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点〔不含端点〕.记直线AC 所成的角为 α,直线PB 与平面ABC 所成的角为 β,二面角P –AC –B 的平面角为 γ,那么A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<βPB 与直线x,x 0.假设函数yf(x)axb 恰有3个零点,那么9.a,bR ,函数f(x)1x 3 1(a1)x2ax,x032A .a<–1,b<0B .a<–1,b>0C .a>–1,b<0D .a>–1,b>010 .设 a b {a n } 满足 a 1=a , a n+1=a n 2+b,nN ,那么,∈R ,数列1时,a 10B1 时,a 10A .当b=2>10 .当b=4 >10 C .当b=–2时,a 10>10D .当 b=–4a 10>10时,非选择题局部〔共110分〕二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2021年浙江高考数学试卷参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+ 如果事件A ,B 相互独立,那么()()()P AB P A P B = 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合P ={|14}x x <<,Q={|23}x x <<,则P Q = A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤<D .{|14}x x <<2.已知a ∈R ,若a –1+(a –2)i(i 为虚数单位)是实数,则a =A .1B .–1C .2D .–23.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是A .(,4]-∞B .[4,)+∞C .[5,)+∞D .(,)-∞+∞4.函数y =x cos x +sin x 在区间[–π,π]上的图象可能是5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .66.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.已知等差数列{a n }的前n 项和为S n ,公差0d ≠,且11a d≤.记12b S =,1222–n n n b S S ++=,n *∈N ,下列等式不可能...成立的是 A .4262a a a =+B .4262b b b =+C .2428a a a = D .2428b b b =8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图象上的点,则|OP |=A .2B C D 9.已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x–b )(x–2a–b )≥0,则 A .a <0B .a >0C .b <0D .b >010.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则yx∈S .下列命题正确的是 A .若S 有4个元素,则S ∪T 有7个元素 B .若S 有4个元素,则S ∪T 有6个元素 C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
绝密★启用前2021年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:如果事件A,B互斥,那么()()()P A B P A P B+=+如果事件A,B相互独立,那么()()()P AB P A P B=如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事柱体的体积公式V Sh=其中S表示柱体的底面积,h表示柱体的高锥体的体积公式13V Sh=其中S表示锥体的底面积,h表件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式11221()3V S S S S h=+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1A x x =≥,{}12B x x =-<<,则A B =( )A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<2.已知a ∈R ,()1i i 3i a +=+(i 为虚数单位),则a =( ) A .1- B .1 C .3- D .33.已知非零向量,,a b c ,则“⋅=⋅a c b c ”是“=a b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是( )A .32 B .3 C .322 D .325.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y=-的最小值是( )A .2-B .32-C .12-D .1106.如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线MN ∥平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线MN ∥平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B7.已知函数21(),()sin 4f x x g x x=+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =8.已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( )A .0B .1C .2D .39.已知,,0a b ab ∈>R ,函数()2()f x ax b x =+∈R .若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线10.已知数列{}n a 满足)*111,1n n na a n a +==∈+N .记数列{}n a 的前n 项和为n S ,则( )A .100132S <<B .10034S <<C .100942S << D .100952S <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2021年普通高等学校招生全国统一考试(浙江卷)数 学一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1A x x =≥,{}12B x x =-<<,则A B =( )A .{}1x x >- B .{}1x x ≥ C .{}11x x -<< D .{}12x x ≤<2.已知a ∈R ,()1i i 3i a +=+(i 为虚数单位),则a =( )A .1-B .1C .3-D .33.已知非零向量,,a b c ,则“⋅=⋅a c b c ”是“=a b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是( )A .32 B .3 C .322 D .325.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y=-的最小值是( )A .2-B .32-C .12-D .1106.如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D,1D B的中点,则( )A .直线1A D与直线1D B垂直,直线MN ∥平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线MN ∥平面ABCDD .直线1A D与直线1D B异面,直线MN ⊥平面11BDD B7.已知函数21(),()sin 4f x x g x x=+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =8.已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( )A .0B .1C .2D .39.已知,,0a b ab ∈>R ,函数()2()f x ax b x =+∈R .若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线10.已知数列{}n a 满足)*111,1n n na a n a +==∈+N .记数列{}n a 的前n 项和为n S ,则( )A .100132S <<B .10034S <<C .100942S <<D .100952S <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
20212021年浙江省高考数学试卷及答案一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|1}A x x =≥,{|12}B x x =-<<,则A B ⋂=()A.{|1}x x >- B.{|1}x x ≥ C.{|11}x x -<< D.{|12}x x ≤<2.已知a R ∈,(1)3ai i i +=+(i 为虚数单位),则a =()A.1- B.1C.3- D.33.已知非零向量a ,b ,c ,则“a c b c ⋅=⋅ ”是“a b =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是()A.32B.3C.322D.5.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y =-的最小值是()A.2- B.32-C.12-D.1106.如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN⊥平面11BDD B C.直线1A D 与直线1D B 相交,直线//MN 平面ABCD D.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 7.已知函数21()4f x x =+,()sin g x x =,则图象为如图的函数可能是()A.1()()4y f x g x =+-B.1()()4y f x g x =--C.()()y f x g x =D.()()g x y f x =8.已知α,β,γ是互不相同的锐角,则在sin cos αβ,sin cos βγ,sin cos γα三个值中,大于12的个数的最大值是()A.0B.1C.2D.39.已知,a b R ∈,0ab >,函数2()()f x ax b x R =+∈,若()f s t -,()f s ,()f s t +成等比数列,则平面上点(,)s t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线10.已知数列{}n a 满足11a =,1)n a n N *+=∈,记数列{}n a 的前n 项和为n S ,则()A.100132S << B.10034S << C.100942S <<D.100952S <<二、填空题(多空题每题6分,单空题每题4分,共36分)11.我国古代数学家赵爽用弦图给出了勾股定理的证明,弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示),若直角三角形直角边的长分别为3,4,记大正方形的面积为1S ,小正方形的面积为2S ,则12S S =.12.已知a R ∈,函数24,2()|3|,2x x f x x a x ⎧->=⎨-+≤⎩,若(3f f =,则a =.13.已知多项式34431234(1)(1)x x x a x a x a x a 2-++=++++,则1a =;234a a a ++=.14.在ABC ∆中,60B ∠=︒,2AB =,M 是BC的中点,AM =AC =;cos MAC ∠=.15.袋中有4个红球,m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=,()E ξ=.16.已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0c >).若过1F 的直线和圆2221()2x c y c -+=相切,与椭圆的第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是;椭圆的离心率是_________.17.已知平面向量a ,b ,(0)c c ≠ 满足1a = ,2b = ,0a b ⋅= ,()0a b c -⋅=,记平面向量d 在a ,b 方向上的投影分别为x ,y ,d a - 在c 方向上的投影为z ,则222x y z ++的最小值是.三、解答题(本题共5小题,满分74分)18.(14分)记函数()sin cos ()f x x x x R =+∈.(1)求函数2[()]2y f x π=+的最小正周期;(2)求函数()(4y f x f x π=-在[0,]2π上的最大值.19.(15分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(1)证明:AB PM ⊥.(2)求直线AN 与平面PD M 所成角的正弦值.20.(15分)已知数列{}n a 的前n 项和为n S ,194a =-,且*1439()n n S S n N +=-∈.(1)求数列{}n a 的通项公式.(2)设数列{}nb 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意*n N ∈恒成立,求实数λ的取值范围.21.(15分)如图,已知F 是抛物线22(0)y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且||2MF =.(1)求抛物线的方程.(2)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足2||||||RN PN QN =⋅,求直线l 在x 轴上截距的取值范围.22.(15分)已知函数2()(1,)x f x a bx e a x R =-+>∈.(12分)(1)讨论()y f x =的单调性;(2)若对于任意实数22b e >,()f x 均有两个不同零点,求实数a 的取值范围;(3)若a e =,证明:对于任意实数4b e >,()f x 有两个零点1x ,2x (12x x <),且2212ln 2b b ex x e b>+.数学试题参考答案1-10DCBAB ADCCA11、25;12、2;13、5;1014、2391315、1;8916、255;5517、2518、解:(1)()sin cos )4f x x x x π=+=+,222333[()])]2sin (1cos(2)1sin 22442y f x x x x x ππππ=+=+=+=-+=-,所以222T πππω===.(2)()()44y f x f x x xππ=-=+2222sin(2sin sin cos )cos422x x x x x x x xπ=+=⋅+=1cos 222222sin 22cos 2sin(2)2222242x x x x x π-=+=-+=-+,令24x t π-=,[0,]2x π∈,所以3[,44t ππ∈-,所以2sin [,1]2t ∈-,故2[0,12y ∈+,所以函数()(4y f x f x π=-在[0,]2π上的最大值为212+.19、解:(1)证明:在DCM ∆中,1DC =,2CM =,60DCM ∠=︒,∴DCM ∆为直角三角形,90MDC ∠=︒,即DM DC ⊥,由题意DC PD ⊥且PD DM D ⋂=,PD ,DM ⊂面PD M ,∴DC ⊥面PD M ,又//AB DC ,∴AB ⊥面PD M ,∵PM ⊂面PD M ,∴AB PM ⊥.(2)由PM MD ⊥,PM AB ⊥得PM ⊥面ABCD ,∴PM MA ⊥,MA ==PM ==,取AD 中点E ,连接ME ,则ME ,D M ,PM 两两垂直,以M 为坐标原点,分别以M D 、M E 、M P 所在的直线为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则(A,P,D ,(0,0,0)M,1,0)C -,又N 为PC中点,所以1(22N -,5(,22AN =- ,由(1)得CD ⊥面PD M ,所以面PD M 的法向量(0,1,0)n =,从而直线AN 与平面PD M所成角的正弦值为5||2sin 6||||AN n AN n θ⋅===.20.解:(1)由1439n n S S +=-①,得1439(2)n n S S n -=-≥②,①-②得143n n a a +=,即134n n a a +=,所以{}n a 是以94-为首项,34为公比的等比数列,故1933()3()444n n n a -=-=-.(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-,从而2343333332()1()0((4)()44444n n T n =-⨯-⨯-⨯+⨯++-⋅ ③,故23413333333(2()1((5)((4)(444444n n n T n n +=-⨯-⨯-⨯++-⋅+-⋅ ④,③-④得234113333333((()()(4)(4444444n n n T n +=-⨯+++++--⋅ 1111193[1()9399333164(4)(4((4)()()344444441]4n n n n n n n n -++++-=-+--=-+---⋅=-⋅-,所以134(4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式成立,4n <时,312344n n n λ≤-=----,得1λ≤,4n >时,312344n n n λ≥-=--+-,得3λ≥-,所以31λ-≤≤.21、解:(1)||2MF p ==,故抛物线的方程为24y x =.(2)(1,0)F ,(1,0)M -,设11(,)A x y ,22(,)B x y ,显然直线AB 斜率不为0,故可设:1AB x my =+,因为R ,N 不重合,故l 不过点(1,0)F ,故可设:2(2)l y x n n =+≠-,联立直线AB 与抛物线方程可得2244401y x y my x my ⎧=⇒--=⎨=+⎩,故由韦达定理可知121244y y my y +=⎧⎨=-⎩,故2222121212()2168y y y y y y m +=+-=+,直线AM 的方程为1111()1y y x x y x =-++,联立直线AM 和l 可得1111111(1)(2)(,)2222n x y n y P y x y x +------,同理可得2222222(1)(2)(,2222n x y n y Q y x y x +------,故2212212221122112(2)4(2)|||||(22)(22)(24)(2)|4P Q n y y n y y y y y x y x y y y y --==--------()()2222222121212121216(2)(2)||4286)4(143n n y y y y y y y y y y m --==-+++++++,联立直线AB 和l 解得212R n y m +=-,因为2||||||RN PN QN =⋅,故22222(2)()|243|1R P Q n n y y y m m +-===-+,故22222(2)432431(2)(21)21(21)4n m n m m m -+==++≥+---,解得(,2)(2,14[14)n ∈-∞-⋃--⋃++∞,故(,7[7(1,)2n-∈-∞--⋃-⋃+∞,直线l 在x轴上截距的取值范围为(,7[7)(1,)-∞--⋃-⋃+∞.22.解:(1)由()ln x f x a a b '=-,若0b ≤,有()0f x '>,则()f x 在R 上单调递增;若0b >,则()f x 在(,log ln ab a -∞单调递减,在(log ,)ln a ba+∞单调递增;(2)当22b e >,()f x 均有两个不同零点,由(1)可知2min ()(log )log 0ln ln ln aa b b b f x f b e a a a==-+<,记ln b m a =,即有2ln 0m m m e -+<,即21ln 0e m m -+<,记2()1ln e g x x x=-+,易知()g x 单调递减,又有2()0g e =,则由()0g m <,可知2m e >,所以有2ln ba e<恒成立,则有ln 2a ≤,可得21a e <≤;(3)当a e =时,4b e >,由(1)有2min ()(ln )ln 0f x f b b b b e ==-+<,又有22()0eb e f e b=>,22()0b f b e b e =-+>,其中2ln e b b b <<,所以可知()f x 有两个不同的零点,又22222(0eb e f e e b=-<,则有22121e e x b b <<<,所以2112ln ln 2b b e x b x e b+<+,而122111(ln )(ln )0x f b x b e b x e e bx +=--+<-<,所以21ln x x b >+,则有22112ln ln 2b b e x b x x e b>+>+,不等式得证.。
2021年浙江高考数学真题及答案本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用時120分钟。
考生注意:1.答题前,请务必将自己得姓名、 准考证号用黑色字迹得签字笔或钢笔分别填写在试题卷和答题纸规定得位置上。
2.答题時,请按照答题纸上“注意事项”得要求,在答题纸相应得位置上规范做答,在本试题卷上得做答一律无效。
参考公式:如果事件A,B 互斥,那么()()()P A B P A P B +=+ 如果事件A,B 相互独立,那么()()()P AB P A P B = 如果事件A 在一次试验中发生得概率昰p,那么n 次独立重复试验中事件A 恰好发生k 次得概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体得体积公式121()3V S S h=+其中12,S S 分别表示台体得上、 下底面积,h 表示台体得高柱体得体积公式V Sh =其中S 表示柱体得底面积,h 表示柱体得高锥体得体积公式13V Sh= 其中S 表示锥体得底面积,h 表示锥体得高球得表面积公式 24S R =π球得体积公式 343V R =π其中R 表示球得半径选择题部分(共40分)一、 选择题:本大题共10小题,每小题4分,共40分。
在每小题给出得四个选项中,只有一项昰符合题目要求得。
1.设集合{}1A x x =≥,{}12B x x =-<<,则A B =( )A .{}1x x >- B .{}1x x ≥ C .{}11x x -<< D .{}12x x ≤<2.已知a ∈R ,()1i i 3i a +=+(i 为虚数单位),则a =( )A .1-B .1C .3-D .33.已知非零向量,,a b c ,则“⋅=⋅a c b c ”昰“=a b ”得( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.某几何体得三视图如图所示(单位:cm),则该几何体得体积(单位:cm3)昰( )A .32 B .3 C .32 D .325.若实数x,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y=-得最小值昰( )A .2-B .32-C .12-D .1106.如图,已知正方体1111ABCD A B C D -,M,N 分别昰1A D ,1D B得中点,则( )A .直线1A D 与直线1DB 垂直,直线MN ∥平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线MN ∥平面ABCDD .直线1A D与直线1D B异面,直线MN ⊥平面11BDD B7.已知函数21(),()sin 4f x x g x x=+=,则图象为如图得函数可能昰( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =8.已知,,αβγ昰互不相同得锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12得个数得最大值昰( )A .0B .1C .2D .39.已知,,0a b ab ∈>R ,函数()2()f x ax b x =+∈R .若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 得轨迹昰( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线10.已知数列{}n a 满足)*111,1n n na a n a +==∈+N .记数列{}n a 得前n 项和为nS ,则( )A .100132S <<B .10034S <<C .100942S <<D .100952S <<非选择题部分(共110分)二、 填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2021年浙江高考数学真题及答案本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+ 如果事件A ,B 相互独立,那么()()()P AB P A P B = 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h=+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh= 其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式 24S R =π球的体积公式 343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1A x x =≥,{}12B x x =-<<,则A B =( )A .{}1x x >- B .{}1x x ≥ C .{}11x x -<< D .{}12x x ≤<2.已知a ∈R ,()1i i 3i a +=+(i 为虚数单位),则a =( )A .1-B .1C .3-D .33.已知非零向量,,a b c ,则“⋅=⋅a c b c ”是“=a b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是( )A .32 B .3 C .32 D .325.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y=-的最小值是( )A .2-B .32-C .12-D .1106.如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D,1D B的中点,则( )A .直线1A D 与直线1DB 垂直,直线MN ∥平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线MN ∥平面ABCDD .直线1A D与直线1D B异面,直线MN ⊥平面11BDD B7.已知函数21(),()sin 4f x x g x x=+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =8.已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( )A .0B .1C .2D .39.已知,,0a b ab ∈>R ,函数()2()f x ax b x =+∈R .若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线10.已知数列{}n a 满足)*111,1n n na a n a +==∈+N .记数列{}n a 的前n 项和为n S ,则( )A .100132S <<B .10034S <<C .100942S <<D .100952S <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2021年高考数学真题试卷(浙江卷)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共10题;共40分)1.设集合A={x|x≥1},B={x|−1<x<2},则A∩B=()A. {x|x>−1}B. {x|x≥1}C. {x|−1<x<1}D. {x|1≤x<2}【答案】 D【考点】交集及其运算【解析】【解答】由交集的定义结合题意可得:A∩B={x|1≤x<2}.故答案为:D.【分析】利用数轴,求不等式表示的集合的交集。
2.已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A. -1B. 1C. -3D. 3【答案】C【考点】复数代数形式的乘除运算,复数代数形式的混合运算【解析】【解答】(1+ai)i=i−a=−a+i,利用复数相等的充分必要条件可得:−a=3,∴a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。
3.已知非零向量a⃗,b⃗⃗,c⃗,则“ a⃗⋅c⃗=b⃗⃗⋅c⃗”是“ a⃗=b⃗⃗”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件【答案】B【考点】充分条件,必要条件,充要条件,平面向量数量积的运算【解析】【解答】若a⃗⋅c⃗=b⃗⃗⋅c⃗,则(a⃗−b⃗⃗)⋅c⃗=0,推不出a⃗=b⃗⃗;若a⃗=b⃗⃗,则a⃗⋅c⃗=b⃗⃗⋅c⃗必成立,故“ a⃗⋅c⃗=b⃗⃗⋅c⃗”是“ a⃗=b⃗⃗”的必要不充分条件故答案为:B.【分析】先将条件等式变形,可能得到条件不充分,后者显然成立。
4.某几何体的三视图如图所示,则该几何体的体积是()A. 32 B.3 C. 3√22D. 3√2 【答案】 A【考点】由三视图求面积、体积【解析】【解答】几何体为如图所示的四棱柱 ABCD −A 1B 1C 1D 1 ,其高为1,底面为等腰梯形 ABCD ,该等腰梯形的上底为 √2 ,下底为 2√2 ,腰长为1,故梯形的高为 √1−12=√22,故 V ABCD−A 1B 1C 1D 1=12×(√2+2√2)×√22×1=32,故答案为:A.【分析】先由三视图,还原立体图形,然后根据数量关系计算体积。
5.若实数x , y 满足约束条件 {x +1≥0x −y ≤02x +3y −1≤0 ,则 z =x −12y 的最小值是( )A. -2B. −32 C. −12 D. 110 【答案】 B【考点】简单线性规划【解析】【解答】画出满足约束条件 {x +1≥0x −y ≤02x +3y −1≤0 的可行域,如下图所示:目标函数 z =x −12y 化为 y =2x −2z ,由 {x =−12x +3y −1=0 ,解得 {x =−1y =1 ,设 A(−1,1) , 当直线 y =2x −2z 过 A 点时, z =x −12y 取得最小值为 −32 . 故答案为:B.【分析】先画出可行域,然后由目标函数,作出直线 y =2x −2z ,当直线过 A 点时,得到最优解,从而计算出结果。
6.如图已知正方体 ABCD −A 1B 1C 1D 1 ,M , N 分别是 A 1D , D 1B 的中点,则( )A. 直线 A 1D 与直线 D 1B 垂直,直线 MN// 平面 ABCDB. 直线 A 1D 与直线 D 1B 平行,直线 MN ⊥ 平面 BDD 1B 1C. 直线 A 1D 与直线 D 1B 相交,直线 MN// 平面 ABCDD. 直线 A 1D 与直线 D 1B 异面,直线 MN ⊥ 平面 BDD 1B 1 【答案】 A【考点】直线与平面平行的判定,直线与平面垂直的判定 【解析】【解答】连 AD 1 ,在正方体 ABCD −A 1B 1C 1D 1 中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项B错误,选项A正确.故答案为:A.【分析】对于A:连AD1,根据三角形的中位线定理,得到MN//AB,,所以A正确;对于B:若(1)知直线MN//AB,若MN⊥平面BDD1B1,则MN⊥BD,从而A AB⊥BD,这显然不正确,所以B不正确;对于C:显然,直线A1D与直线D1B是异面直线,故C错误;对于D:由B知,MN不垂直平面BDD1B1。
7.已知函数f(x)=x2+14,g(x)=sinx,则图象为如图的函数可能是()A. y=f(x)+g(x)−14B. y=f(x)−g(x)−14C. y=f(x)g(x)D. y=g(x)f(x)【答案】 D【考点】函数的图象与图象变化【解析】【解答】对于A , y =f(x)+g(x)−14=x 2+sinx ,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B , y =f(x)−g(x)−14=x 2−sinx ,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C , y =f(x)g(x)=(x 2+14)sinx ,则 y ′=2xsinx +(x 2+14)cosx ,当 x =π4 时, y ′=π2×√22+(π216+14)×√22>0 ,与图象不符,排除C.故答案为:D.【分析】由A,B 解析式都是非奇非偶函数,可以判断A,B 错;对于C ,先对 y =f(x)g(x)=(x 2+14)sinx 求导,然后计算当x =π4 时,f/(π4 )>0,与图不符合,所以C 错,故选D.8.已知 α,β,γ 是互不相同的锐角,则在 sinαcosβ,sinβcosγ,sinγcosα 三个值中,大于 12 的个数的最大值是( )A. 0B. 1C. 2D. 3 【答案】 C【考点】正弦函数的定义域和值域,余弦函数的定义域和值域 【解析】【解答】法1:由基本不等式有 sinαcosβ≤sin 2α+cos 2β2,同理 sinβcosγ≤sin 2β+cos 2γ2, sinγcosα≤sin 2γ+cos 2α2,故 sinαcosβ+sinβcosγ+sinγcosα≤32 , 故 sinαcosβ,sinβcosγ,sinγcosα 不可能均大于 12 . 取 α=π6 , β=π3 , γ=π4 ,则 sinαcosβ=14<12,sinβcosγ=√64>12,sinγcosα=√64>12,故三式中大于 12 的个数的最大值为2, 故答案为:C.法2:不妨设 α<β<γ ,则 cosα>cosβ>cosγ,sinα<sinβ<sinγ , 由排列不等式可得:sinαcosβ+sinβcosγ+sinγcosα≤sinαcosγ+sinβcosβ+sinγcosα , 而 sinαcosγ+sinβcosβ+sinγcosα=sin(γ+α)+12sin2β≤32 , 故 sinαcosβ,sinβcosγ,sinγcosα 不可能均大于 12 .取α=π6,β=π3,γ=π4,则sinαcosβ=14<12,sinβcosγ=√64>12,sinγcosα=√64>12,故三式中大于12的个数的最大值为2,故答案为:C.【分析】先由基本不等式ab≤(a+b2)得出三个积sinαcosβ,sinβcosγ,sinγcosα的取值范围,就可以得到结果。
9.已知a,b∈R,ab>0,函数f(x)=ax2+b(x∈R).若f(s−t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是()A. 直线和圆B. 直线和椭圆C. 直线和双曲线D. 直线和抛物线【答案】C【考点】等比数列,平面向量的综合题【解析】【解答】由题意得f(s−t)f(s+t)=[f(s)]2,即[a(s−t)2+b][a(s+t)2+b]=(as2+b)2,对其进行整理变形:(as2+at2−2ast+b)(as2+at2+2ast+b)=(as2+b)2,(as2+at2+b)2−(2ast)2−(as2+b)2=0,(2as2+at2+2b)at2−4a2s2t2=0,−2a2s2t2+a2t4+2abt2=0,所以−2as2+at2+2b=0或t=0,其中s2ba−t22ba=1为双曲线,t=0为直线.故答案为:C.【分析】由三个数成等差数列,列出等式,推导结果。
10.已知数列{a n}满足a1=1,a n+1=n1+a ∈N∗).记数列{an}的前n项和为S n,则()A. 12<S100<3 B. 3<S100<4 C. 4<S100<92D. 92<S100<5【答案】A【考点】等差数列的通项公式,等差数列的前n项和,等比数列,等比数列的通项公式【解析】【解答】因为a1=1,a n+1=n1+a ∈N∗),所以an>0,S100>12.由a n+1=n1+√a ⇒1a n+1=1a n+√a=(√a+12)2−14∴1a n+1<(a+12)2⇒√a<a12,即√a a<12根据累加法可得,a ≤1+n−12=n+12,当且仅当n=1时取等号,∴a n≥4(n+1)2∴a n+1=n 1+a ≤a n1+2n+1=n+1n+3a n∴a n+1a n ≤n+1n+3⇒a n≤6(n+1)(n+2),当且仅当n=1时取等号,所以S100≤6(12−13+13−14+14−15+⋯+1101−1102)=6(12−1102)<3,即12<S100<3.故答案为:A.【分析】由递推公式,冼先得到S100>12,进一步推导出a a<12,然后用累加法等推导出S100<3。
二、填空题(共7题;共36分)11.我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1S1=________.【答案】25【考点】三角形中的几何计算【解析】【解答】由题意可得,大正方形的边长为:a=√32+43=5,则其面积为:S1=52=25,小正方形的面积:S2=25−4×(12×3×4)=1,从而S2S1=251=25.故答案为:25.【分析】由勾股定理及三角形面积公式求解。