高等代数对中学代数的指导作用
- 格式:doc
- 大小:897.50 KB
- 文档页数:34
浅谈高等代数在中学的应用数学与计算机科学学院专业:数学与应用数学学号:2011031532 朱伟达指导老师:卢明先【摘要】线性代数是数学的一个分支,是一门数学基础课程.近几年随着高等数学已渐渐走入初等数学,线性代数在初等数学中也有广泛应用.本文共分为五个部分:例说行列式在中学数学中的应用,线性方程组在中学数学中的应用,二次型理论在中学数学中的应用,矩阵与变换引入中学数学的意义及应用,用向量法解决初等几何问题.本文主要是从上述几个方面分析了线性代数在中学数学中的若干应用以及有关例题的讲解过程.【关键词】行列式;齐次线性方程组;二次型; 矩阵;向量Discussion on Application of Higher Algebra in middle schoolZHU wei-da 2011031532 Advisor:LU ming-xianPure and Applied Mathematics College of Mathematics and Computer Science【Abstract】:Linear algebra is a branch of mathematics. It is a mathematical foundation co urse。
In recent years, some content of higher mathematics are begun to learn by middle school st udents. And Linear algebra has also wide application in elementary mathematics。
This paper is d ivided into five parts. In these parts, we will give a lot of examples to show some applications of determinant, Linear equations, quadratic theory, matrix and transform, vector in elementary m athematics。
《高等代数》课程教学大纲适用专业数学与应用数学(师范)、数学与应用数学总学时 168学分 10一、编写说明(一)本课程的性质、地位和作用高等代数是数学与应用数学专业(师范)、数学与应用数学专业的一门重要的专业基础课,其主要内容有多项式理论与线性代数两部分。
本课程的教学目的是使学生初步驾驭基本的、系统的代数学问和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、计算方法等供应必需具备的代数学问,也为进一步学习数学与应用数学专业的各门课程所须要的抽象思维实力供应肯定的训练。
高等代数课程是中学代数的接着和提高。
通过本课程的教学,要使学生加深对中学代数的理解。
本课程在教学中要求学生准确理解高等代数中的基本概念,不仅要正确驾驭这些概念的内涵,还要了解这些概念的实际背景。
对于一些基本的重要概念,还要求了解它们产生与发展的过程及概念推广的原则;与中学代数有干脆联系或者平行的概念,要求学生能与中学数学中相应概念加以比较,以确立较高的观点。
对于高等代数中的基本理论,要求学生驾驭基本理论的结果,对于典型定理还要求驾驭论证方法或思想,同时要求学生能了解严谨的理论体系,体会建立这种体系的抽象的代数方法。
通过本课程的教学,要求学生能显著地提高应用基本概念、基本理论作抽象论证的实力;较好地驾驭基本的论证方法与基本的计算方法,特殊要驾驭基本的线性代数计算法。
(二)本大纲制订的依据依据本专业人才的培育目标所须要的基本理论和基本技能的要求,依据本课程的教学性质、条件和教学实践而制定。
(三)大纲内容选编原则与要求1.本大纲所列各单元讲授依次与北京高校数学系几何与代数教研室代数小组编《高等代数》(高等教化出版社其次版)所列基本相同,讲授时可依据详细状况作适当调整。
2.为了避开教学上的难点过于集中,有些定理的驾驭可以侧重于定理的结果和证明定理的方法,以达到驾驭基本的代数方法的目的。
3.每一章的重点内容要重点讲解,在讲清概念的基础上,通过适当的练习(习题课、作业、问题探讨)以达到驾驭高等代数中常用的计算方法、基本运算中的技能和技巧以及提高综合计算和解决问题的实力的目的。
数学专业毕业论文选题一、计算机1.数据库图书查询管理设计2.最优轧板成品率的VFP6编程3.基于VFP6的通讯录设计4.基于Mathematicn的课件设计5.用Mathematica帮助理解中数问题6.基于VFP6的成绩统计7.实用的网上共享数据库录入程序8.通用答卷统计系统的总体设计方案9.通用答卷统计系统的录入编程10.通4用答卷统计系统的统计编程11.通用答卷统计系统的报表设计12.通用答卷统计系统的帮助系统设计二、常微分方程1.一阶常微分方程的奇解的求法(或判定)1.微分方程中的补助函数3.关于奇解的运用4.曲线的包络与微分方程的奇解5.用微分方程定义初等函数6.常微分方程唯一性定理及其应用7.求一阶显微分方程积分因子的方法8.二阶线性微分方程另几种可积类型9.满足某些条件黎卡提方程的解法10.一阶常微分方程方向场与积分曲线11.变换法在求解常微分方程中用应用12.通解中任意常数C的确定及意义13.三阶常系数线笥齐次方程的求解14.三维线性系统15.二阶常系数线性非齐次方程新解法探讨16.非线性方程的特殊解法17.可积组合法与低阶方程(方程组)三、数学分析1.多元函数连续、偏导数存在及可微之间的关系2.费尔马最后定理初探3.求极值的若干方法4.关于极值与最大值问题5.求函数极值应注意的几个问题6.n元一次不定方程整数解的矩阵解法7.导数的运用8.泰勒公式的几种证明法及其应用9.利用一元函数微分性质证明超越不等式10.利用柯西——施瓦兹不等式求极值11.函数列的各种收敛性及其相互关系12.复合函数的连续性初探13.关于集合的映射、等价关系与分类14.谈某些递推数列通项公式的求法15.用特征方程求线性分式递推数列的通项16.谈用生成函数法求递归序列通项17.高级等差数列18.组合恒等式证明的几种方法19.斯特林数列的通项公式20.一个递归数列的极限21.关于隶属函数的一些思考22.多元复合函数微分之难点及其注意的问题23.由数列递推公式求通项的若干方法24.定积分在物理学中的应用25.一个极限不等式的证明有及其应用26.可展曲面的几何特征27.再谈微分中值公式的应用28.求极限的若干方法点滴29.试用达布和理论探讨函数可积与连续的关系30.不定积分中的辅助积分法点滴四、复变函数1.谈残数的求法2.利用复数模的性质证解某些问题3.利用复函数理论解决中学复数中的有关问题3.谈复数理论在中学教学中的运用4.5.谈解析函数五、实变函数1.可测函数的等价定义2.康托分集的几个性质3.可测函数的收敛性4.用聚点原理推证其它实数基本定理5.可测函数的性质及其结构6.6.凸函数性质点滴7.凸(凹)函数在证明不等式中的应用8.谈反函数的可测性9.Lebesgue积分与黎曼广义积分关系点滴10.试用Lebesgue积分理论叙达黎曼积分的条件11.再谈CANTOR集六、高等几何1.二阶曲线渐近线的几种求法2.笛沙格定理在初等数学中的运用3.巴斯加定理在初等数学中的运用4.布里安香定理在初等数学中的运用5.二次曲线的几何求法6.二维射影对应的几何定义、性质定义、代数定义的等价性7.用巴斯加定理证明锡瓦一美耐劳斯定理8.仿射变换初等几何中的运用9.配极理论在初等几何中的运用10.二次曲线的主轴、点、淮线的几种求法11.关于巴斯加线和布利安香点的作图12.巳斯加和布利安香定理的代数证明及其应用13.关于作第四调和点的问题14.锡瓦一美耐劳斯定理的代数证明及应用15.关于一维几何形式的对合作图及应用七、概率论1.态分布浅谈3.用概率思想计算定视分的近似值3.欧拉函数的概率思想证明4.利用概率思想证明定积分中值定理5.关于均匀分布的几个问题6件概率的几种类型解题浅析7.概率思想证明恒等式8.古典概率计算中的模球模型9.独立性问题浅谈八、近世代数①集合及其子集的概念在不等式中的作用②论高阶等差数列②谈近世代数中与素数有关的重点结论④商集、商群与商环⑤关于有限映射的若干计算方法⑥关于环(Z2×2,+,、)⑦关于环(ZP2×2,+,、)(这里Zp是模p的剩余环,p为素数)⑧关于环(Z23×3,+,、)⑨关于环(zPQ2×2,+,、)(这里p、q是两个素数)⑩关于环(Znxn, +、)九、高等代数1.关于循环矩阵2.行列式的若干应用3.行列式的解法技巧4.欧氏空间与柯两不等式5.《高等代数》在中学数学中的指导作用6.关于多项式的整除问题7.虚根成对定理的又一证法及其应用8.范德蒙行列式的若干应用9.几阶行列式的一个等价定义10.反循环矩阵及其性质11.矩阵相似及其应用12.矩阵的迹及其应用13.关于整数环上的矩阵14.关于对称矩阵的若干问题15.关于反对称短阵的性质16.关于n阶矩阵的次对有线的若干问题17.关于线性映射的若干问题18.线性空间与整数环上的矩阵十、教学法1.关于学生能力与评价量化的探索2.浅谈类比在教学中的若干应用3.浅谈选择题的解法4.谈谈中学数学课自学能力的培养5.怎样培养学生列方程解题的能力6.谈通过平面几何教学提高学生思维能力7.谈数列教学与培养学生能力的体会8.创造思维能力的培养与数学教学9.数学教学中的心理障碍及其克服10.关于启发式教学11.浅谈判断题的解法12.对中学数学教学中非智力因素的认识13.数学教学中创新能力培养的探讨14.计算机辅助数学教学初探15.在数学课堂教学中运用情感教育16.在数学教学中恰当进行数学实验17.数学语言、思维及其教学18.在平面几何教学中渗透为类比、猜想、归纳推理的思想方法19.试论数学学习中的迁移20.数学例题教学应遵循的原则十一、初等数学1.数学证题中的等价变换与充要条件2.关于充要条件的理解和运用3.参数方程的运用4.极坐标方程的运用5.怎样证明条件恒等式6.不等式证明方法7.极值与不等式8.证明不等式的一种重要方法9.谈中学二次函数解析式的求法10.二元二次方程组的解11.谈数列求和的若干12.谈立体几何问题转化为平面几何问题的方法13.求异面直线距离的若干方法14.利用对称性求平面几何中的极值15.浅谈平面几何证明中的辅助线16.浅谈对称性在中学数学解题中的运用17.浅谈韦达定理的运用18.论分式方程的增根19.数列通项公式的几种推导方法20.函数的周期及其应用21.数学归纳法的解题技巧22.等价关系的几种判定方法23.数学归纳法及其推广和变形24.浅谈用几何方法证明不等式25.浅谈初等数学中的不等式与极值26.几个不等式的推广27.函数的概念及发展28.组合恒等式的初等证明法29.谈用生成函数计算组合与排列30.试论一次函数的应用。
毕业论文开题报告数学与应用数学高等代数对中学代数的指导作用一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势)数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的----- 开普勒数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。
----陈省身初等代数从最简单的一元一次方程开始,初等代数课本一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。
沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。
现在大学里开设的高等代数,一般包括两部分:线性代数初步线性代数课本、多项式代数。
代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。
人们很早就已经知道了一元一次和一元二次方程的求解方法。
关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。
到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。
在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。
在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。
所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。
三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。
这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。
浅析高等代数与中学数学的关联作者:方次军来源:《新校园·上旬刊》2013年第04期摘要:本文分析了高等代数与中学数学在知识方面的联系,找出其在知识上的众多关联。
高等代数在思想内容上是中学数学的因袭和扩展,在观念上是中学数学的深化和发展,更具抽象化和归一化。
关键词:高等代数;中学数学;数学思想方法;数学观念信计专业从大学一年级就开设了高等代数课程。
它是大学数学专业的重要的基础课程,也是学生感到比较抽象难学的课程,需要学生初步地掌握基本、系统的代数知识和抽象、严格的代数方法。
在近几年的教学中,笔者发现高等代数教学一直存在着如下的问题:一方面,由于高等代数的抽象性且与中学知识难以直接衔接,不少大一学生一接触到高等代数课程,就会产生畏难情绪;另一方面,由于高等数学理论与中学教学脱节,许多学生会感到有点不知所措。
不少学生普遍感到这门课程“难学”,上课能听懂,但习题“难做”,似乎无规律可循。
为了解决上述问题,笔者从知识内容和思想方法上将高等代数课程与中学数学进行比较。
通过比较后发现:高等代数课程在知识上是中学数学的继续和提高,在思想内容上是中学数学的因袭和扩展,在观念上是中学数学的深化和发展。
在教学中,教师要尽量注意到新旧知识的衔接和中学知识的延伸,通过具体的、深入浅出的讲解,提高学生的学习兴趣。
这样,高等数学类课程的学习难度就会大大降低。
一、高等数学类课程与中学数学在知识方面的联系中学代数中讲过多项式的加、减、乘、除运算法则和因式分解的一些常用方法,如求根法和十字相乘法等。
高等代数在第一章多项式中就拓宽多项式的含义,严格定义多项式的次数,在加法、乘法运算的基础上给出了多项式环的概念。
接着讲了多项式的整除理论及最大公因式理论,用不可约多项式的严格定义解释了“不可再分”的含义,接着给出了不可约多项式与唯一因式分解的存在和唯一性定理,分别给出了复数系、实数系和有理数系的因式分解中学代数讲过一元一次、二元一次、三元一次方程组的解法,特别是二元一次方程。
高等代数在中学解题中的应用数学与计算机科学学院数学与应用数学专业 101301028 陈盛指导教师黄坤阳讲师【摘要】高等代数作为初等数学与高等数学的纽带,可见高等数学与中学数学有着密切的联系。
将高等代数与中学数学解题联系在一起有着其必然的意义。
本文阐明高等代数在中学数学解题中的应用意义,并归纳和总结了高等代数在中学数学解题中常用的知识点,主要从行列式在中学数学解题中的应用、矩阵在中学数学解题中的应用、线性方程组在中学数学解题中的应用三个方面进行解析。
【关键词】行列式;矩阵;线性方程组Application of Higher Algebra in middle school in problem solvingScienceSchool of mathematics and Computer Sciences, mathematics and applied mathematics 101301028 Chen ShengInstructor Huang Kunyang lecturer【Abstract】: the higher algebra as the link of elementary mathematics and higher mathematics, visible and middle school mathematicsmathematics are closely linked. The higher and middle school mathematics solving algebraic problems together with its inevitablesignificance. This paper explains that the application significance of Higher Algebra in middle school mathematics, and summarizes the common higher algebra in middle school mathematicsknowledge, mainly carries on the analysis from the application,determinant in middle school mathematics matrix of three aspects of application, in middle school mathematics linear equations in middle school mathematics the.【Keywords】: determinant; matrix; linear equations引言:高等代数是高等学校的一门基础课程,它也是数学专业的一门敲门砖。
浅谈高等代数在中学的应用数学与计算机科学学院专业:数学与应用数学学号:2011031532 朱伟达指导老师:卢明先【摘要】线性代数是数学的一个分支,是一门数学基础课程.近几年随着高等数学已渐渐走入初等数学,线性代数在初等数学中也有广泛应用.本文共分为五个部分:例说行列式在中学数学中的应用,线性方程组在中学数学中的应用,二次型理论在中学数学中的应用,矩阵与变换引入中学数学的意义及应用,用向量法解决初等几何问题.本文主要是从上述几个方面分析了线性代数在中学数学中的若干应用以及有关例题的讲解过程.【关键词】行列式;齐次线性方程组;二次型; 矩阵;向量Discussion on Application of Higher Algebra in middle schoolZHU wei-da 2011031532 Advisor:LU ming-xianPure and Applied Mathematics College of Mathematics and Computer Science 【Abstract】:Linear algebra is a branch of mathematics. It is a mathematical foundation co urse. In recent years, some content of higher mathematics are begun to learn by middle school stud ents. And Linear algebra has also wide application in elementary mathematics. This paper is divid ed into five parts. In these parts, we will give a lot of examples to show some applications of deter minant, Linear equations, quadratic theory, matrix and transform, vector in elementary mathematic s.【Keywords】: determinant homogeneous linear system quadratic form matrix vector.引言:线性代数是学习自然科学、工程和社会科学的一门高度抽象且逻辑性很强的基础理论课程,它本身理论性强,并且计算繁杂.作为高等学校基础课,除了作为各门学科的重要工具以外,还是提高人才的全面素质中起着重要的作用,他在培育理性思维和审美功能方面的作用也得到充分的重视.可以说任何与数学有关的课程都涉及线性代数知识.学习数学就必须解题,解题要以自己的实践过程来实现.本文在阐述一些重要的概念和定理之后,常常附以具体例子,这样可以使读者从实例中了解问题的具体内容,掌握解决问题的思路和算法步骤,以减少理解障碍,从而提高逻辑读者的推理和判断的能力.第1章 行列式在中学数学中的应用随着高中数学新课程的实施,行列式在中学数学中的渗透、应用越来越受关注, 行列式是在寻求线性方程组公式解的过程中产生的。
高等代数对中学代数的指导作用摘要:高等代数与中学代数有着不可分割的关系,相辅相成,高等代数对中学代数既是加深与拓展,也是继续和提高,是一种阶梯式的跨越。
本文通过代数的发展史、现今数学教育教学上的新要求和新改革,探讨了高等代数与中学代数之间的关系,以及高等代数本身的特点,研究了高等代数对中学代数的指导作用;同时,通过高等代数在中学代数中的应用,进一步进行阐述其指导意义、作用。
关键词:高等代数;中学代数;指导作用;应用Higher Algebra guidance to high school algebra Abstract:Advanced algebra and high school algebra are closely and complementarey connected, Algebra middle school algebra is to deepen and expand, but also continue to improve by leaps and bounds as a ladder. In this paper, the history of algebra, math teaching today's new demands and new reform of the higher algebra and the relationship between high school algebra and advanced algebra own characteristics, research on high school algebra, advanced algebra guidance; the same time through advanced algebra in high school algebra, further elaborate its significance, role.Key words:advanced algebra; middle school algebra; guide; application目录引言 (1)1 高等代数对中学代数的指导作用的意义 (2)1.1 代数的发展史 (2)1.2 高等代数与中学数学教育的教育目标 (4)1.3 数学教育教学的新革 (6)2 高等代数与中学代数的关系 (7)2.1 高等代数与中学代数之间的联系 (7)2.1.1 高等代数与中学代数的统一性 (7)2.1.2 高等代数与中学代数的连贯性 (8)2.1.3 从中学代数到高等代数研究对象与方法的发展 (9)2.1.4 从中学代数到高等代数数学观的发展 (10)2.2 高等代数与中学代数之间的区别 (10)3 高等代数对中学代数的指导 (12)3.1 高等代数数学思维的特点 (12)3.1.1 广阔性 (12)3.1.2 目的性 (14)3.2 高等代数在中学代数中的应用 (15)3.2.1 向量线性关系的几何意义 (15)3.2.2 Cauchy 不等式的应用 (15)3.2.3 抛物线相似的问题 (16)3.2.4 利用行列式知识证明四点共圆问题 (17)3.2.5 利用矩阵求最大公因式 (18)3.2.6 因式分解的理论依据 (19)3.2.7 线性方程组理论的应用 (19)3.2.8 二次型理论与多元二次多项式的因式分解问题 (20)3.2.9 欧式空间的中学模型 (21)3.2.10 矩阵与几何变换 (21)3.2.11 中学数学的“关系”题 (21)4 结束语 (23)致谢 (23)参考文献 (24)引言在我国高等师范院校中,多数专业所开设的专业课程,都是中学相应课程内容的加深和拓广,惟数学专业例外。
高等代数课程教学大纲一、课程说明1、课程性质:高等代数是高等院校数学系数学与应用数学专业的一门重要基础课。
对学生数学思想的形成有着重要意义,是进一步学习近世代数、常微分方程等后继课的基础,也为深入理解中学数学打下必要的基础。
高等代数是现代数学的基础知识,是学习其它数学学科和现代科学知识的必备基础和重要工具,尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科的发展均需要代数学的知识与支持。
高等代数也是师范院校数学与应用数学专业的一门重要基础课程,既是中学代数的继续和提高,对于中学数学教学工作具有重要的理论指导作用,又是输送更高层次优秀人才的专业知识保证。
2、课程教学目的要求(1)使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。
(2) 使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。
(3) 使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。
(4) 逐步培养学生的对真理知识的发现和创新的能力,训练其对特殊实例的观察、分析、归纳、综合、抽象概括和探索性推理的能力。
(5) 使学生对中学数学有关内容从理论上有更深刻的认识,以便能够居高临下地掌握和处理高级中学数学教材,进一步提高中学数学教学质量。
(6) 根据教学的实际内容的需要,对大纲所列各章内容,分别提出了具体的目的要求,教学时必须着重抓住重点内容进行教学。
本课程分以一元多项式为主体的多项式理论和线性代数两部分。
线性代数部分涉及行列式、矩阵、线性方程组、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间等。
本课程教学重点应放在多项式理论与线性代数理论。
多项式理论以一元多项式的因式分解唯一性定理为主体介绍了有关多项式的一些必要的知识,为后继课提供准备;线性代数部分则较为系统地介绍了线性方程组,线性空间与线性变换理论。
高等代数对中学数学的指导意义
高等代数对中学数学的指导意义主要体现在以下几个方面:
1. 培养抽象思维能力:高等代数是数学中的一个重要分支,它通过抽象的符号和概念,研究代数结构及其性质。
学习高等代数可以培养学生的抽象思维能力,帮助他们建立起抽象概念和符号的联系,从而更好地理解和应用数学知识。
2. 深化对数学概念的理解:高等代数中的概念和理论往往是中学数学的深化和延伸,通过学习高等代数可以更深入地理解中学数学中的一些概念,如向量、矩阵等,并且为后续学习提供更加坚实的基础。
3. 培养逻辑思维和证明能力:高等代数中的定理和证明是数学思维的重要组成部分,学习高等代数可以培养学生的逻辑思维和证明能力。
通过解决高等代数中的问题和证明定理,学生可以锻炼自己的推理和证明能力,提高解决问题的能力。
4. 拓宽数学应用领域:高等代数是应用数学的重要工具,在物理、工程、计算机科学等领域有广泛的应用。
学习高等代数可以帮助学生了解和掌握一些数学工具和方法,为将来的学习和职业发展打下基础。
总之,高等代数对中学数学的指导意义主要体现在培养学生的抽象思维能力、深化数学概念的理解、培养逻辑思维和证明能力以及拓宽数学应用领域等方面。
通过学习高等代数,学生可以更好地理解和应用数学知识,为将来的学习和职业发展奠定坚实的基础。
高等代数在中学数学解题中的若干应用的论文人们常有一种片面的观点,认为高校里所学的专业知识在中学数学中几乎无用,其理由是从初等数学到高等数学,在研究问题和处理问题的方式上存在着较大的区别.其实这是一种误解,正因为有这样的区别,才使我们从中学数学的解题思维定式中走出来,用一种更深远的眼光来看中学数学问题.高等代数不仅是初等数学的延拓,也是现代数学的基础,只有很好的掌握高等代数的基础知识才能适应数学发展和教材改革.高等代数知识在开阔视野,指导中学解题等方面的作用尤为突出.下面就来探讨一些高等代数知识在中学数学解题中的应用.初等数学中的某些问题看起来比较复杂,甚至难以下手,但用线性相关的方法却显得比较简单,通过从多方面多角度的思考能提高分析问题解决问题的能力.2.1求代数式的取值范围初等数学中某些线性相关问题,若采用一般的初等解题方法不相关地去看待,则会使计算繁难,且容易出错;利用高等数学中线性相关的思想方法来处理,则会使问题简单明了,易于解决.运用线性相关知识研究函数性质的问题,研究对象常以复合函数的形式出现,解决这一类型的问题往往采用新旧结合,或以新方法解决旧问题.2.2解决某些二元不定方程例3利有甲、乙、丙三种货物,若购甲3件,购乙7件,丙1件,共需315元,若购甲4件,乙10件,丙4件,共需420元,现购甲、乙、丙各1件,共需多少元?答:甲乙丙各购1件,共需105元.中学数学中有很多题涉及到了对一些因式的分解,虽然中学数学中有很多方法可以解决.但对于某些问题如果构造与之对应的行列式,然后用行列式的性质去解决,会起到事半功倍的效果.3.1应用于因式分解从上面两个例子可以看出,解此类数学问题的关键是构造行列式,以行列式为桥梁,把原型变形为不同的行列式,再利用行列式的性质加以解题.利用矩阵的性质和定理,可以很好的解决某些数列问题.在此例题中引入矩阵作为工具使用了矩阵的性质,轻而易举地求出了通项公式.从上例可知,使用柯西—施瓦兹不等式重要的是构造一个合适的欧氏空间,特别是构造内积运算,并找到两个合适的向量.高等代数在中学数学解题中的应用远不止上述几个方面,但通过上述问题的解决不难看出高等代数完全可以作为一种工具来解决中学数学中的问题,从而为解决中学数学问题提供了别开生面的思路.但我们也要了解高等代数应用于中学数学并不是简单的一题多解,而是一种知识的融会贯通.只有我们掌握好高等代数的课程,才能将它更好的用于将来所从事的中学数学教学工作中.内容仅供参考。
高等代数教学的几点心得高等代数是大学数学专业最主要的基础课(数学分析、几何学、高等代数)之一,是进一步学习数学必备的内容。
高等代数也是训练抽象思维能力的最好的入门课程。
在教学中我的指导思想是:通过这门课的学习,不仅要使学生掌握高等代数的基本知识,基本方法,基本思路,同时还要传授学生代数学的基本思想,如分解结构的思想,特别是同构对应的思想。
其次通过活泼互动的课堂教学,刺激学生的学习兴趣;通过探索讨论课,调动学生的学习主动性,养成思考和探索的精神;通过难题攻关,享受理解和应用数学思想和方法的乐趣,提高创新能力。
此外由于我们培养的是师范生,要借助高等代数观点,深化学生对中学教学教材的认识。
为他们在将来的教学之路做好准备。
最后引导学生逐步树立和发展积极高尚的人生观,价值观。
但是高等代数其教学内容具有高度的抽象性,逻辑性,概况性。
学生往往感到学起来比较困难,为了达到上述的目的针对这些情况我做了如下的安排:一、高等代数与初等数学相联系(一)、用初等数学的知识作基础,加强对高等代数的理解。
学习大学数学课程,有很多与中学数学有联系的地方。
在高等代数课程的教学过程中,当讲解一个新的抽象概念或知识点时,应该充分利用学生已有的数学知识利用对比、联想的方法引导和启发学生进行概念发现和创造。
从而培养学生的抽象思维能力和理解概念分清实质的能力。
比如和初等数学联系比较紧密的多项式、行列式、线性方程组,二次型。
在教学中充分发挥初等数学的源头作用,让高度抽象的高等代数概念找到初始的原形,在对比中辨别高等代数与初等数学在处理问题思维方式上的异同。
以此,提高对高等代数内容的理解。
例如:在多项式概念的教学中,先复习初等数学中多项式的概念,然后引入高等代数的多项式概念,利用类比的方法,让学生知道高等代数中多项式所含X只是一个形式上的文字符号,不一定必须是数,而初等数学中多项式所含X只能表示一个数。
高等代数中的多项式在一般情况下,是一个形式的表达式,而初等数学中只表示一个函数,它们是特例与一般的关系。
高等代数对中学代数的指导作用摘要:高等代数与中学代数有着不可分割的关系,相辅相成,高等代数对中学代数既是加深与拓展,也是继续和提高,是一种阶梯式的跨越。
本文通过代数的发展史、现今数学教育教学上的新要求和新改革,探讨了高等代数与中学代数之间的关系,以及高等代数本身的特点,研究了高等代数对中学代数的指导作用;同时,通过高等代数在中学代数中的应用,进一步进行阐述其指导意义、作用。
关键词:高等代数;中学代数;指导作用;应用Higher Algebra guidance to high school algebra Abstract:Advanced algebra and high school algebra are closely and complementarey connected, Algebra middle school algebra is to deepen and expand, but also continue to improve by leaps and bounds as a ladder. In this paper, the history of algebra, math teaching today's new demands and new reform of the higher algebra and the relationship between high school algebra and advanced algebra own characteristics, research on high school algebra, advanced algebra guidance; the same time through advanced algebra in high school algebra, further elaborate its significance, role.Key words:advanced algebra; middle school algebra; guide; application目录引言 (1)1 高等代数对中学代数的指导作用的意义 (2)1.1 代数的发展史 (2)1.2 高等代数与中学数学教育的教育目标 (4)1.3 数学教育教学的新革 (6)2 高等代数与中学代数的关系 (7)2.1 高等代数与中学代数之间的联系 (7)2.1.1 高等代数与中学代数的统一性 (7)2.1.2 高等代数与中学代数的连贯性 (8)2.1.3 从中学代数到高等代数研究对象与方法的发展 (9)2.1.4 从中学代数到高等代数数学观的发展 (10)2.2 高等代数与中学代数之间的区别 (10)3 高等代数对中学代数的指导 (12)3.1 高等代数数学思维的特点 (12)3.1.1 广阔性 (12)3.1.2 目的性 (14)3.2 高等代数在中学代数中的应用 (15)3.2.1 向量线性关系的几何意义 (15)3.2.2 Cauchy 不等式的应用 (15)3.2.3 抛物线相似的问题 (16)3.2.4 利用行列式知识证明四点共圆问题 (17)3.2.5 利用矩阵求最大公因式 (18)3.2.6 因式分解的理论依据 (19)3.2.7 线性方程组理论的应用 (19)3.2.8 二次型理论与多元二次多项式的因式分解问题 (20)3.2.9 欧式空间的中学模型 (21)3.2.10 矩阵与几何变换 (21)3.2.11 中学数学的“关系”题 (21)4 结束语 (23)致谢 (23)参考文献 (24)引言在我国高等师范院校中,多数专业所开设的专业课程,都是中学相应课程内容的加深和拓广,惟数学专业例外。
毕业论文文献综述数学与应用数学高等代数对中学代数的指导作用一、前言部分人们常有一种片面的观点, 认为高校里所学的专业知识在中学数学教学中几乎无用. 甚至有些中学数学教师和师范院校数学系的学生认为学习高等数学对于中学数学教学作用不大。
其实高等数学知识在开阔中学教师的视野、指导中学数学解题等方面有很大的作用.我们还认为要把初等数学教好, 不仅要学习高等数学, 而且还一定要学“好”。
学“好”高等数学是指不仅要学习它的定理和方法, 更重要的是要学习它的“观点” ,也即必须掌握高等数学处理问题的特点, 并且将这些观点应用在处理初等数学的问题与教学中去。
众所周知, 我们可以用求导数的方法来求函数的极值, 用微分学中值定理来证明一些不等式、用行列式来求线性方程组的解、用空间解析几何来解立体几何的一些问题。
可能有些同志会说即使熟练地掌握了这些内容, 也不能对中学生讲, 因而在初等数学教学工作中还是用不上。
但是, 我们应该注意到, 学好高等数学不仅要学会这些方法, 而且要了解这些方法的精神实质以及为什么要这样处理问题。
这一切都将成为从事初等数学教学工作的指导思想。
我们可以用高等数学中的一些观点引伸出解初等数学问题的某些技巧, 这些方法是完全初等的, 可以为中学生所接受的, 而应用这些方法都可以将相当数量的、表面上看来完全无关的初等数学问题用儿乎相同的方法解出。
高等数学类课程在知识上是中学数学的继续和提高,在思想方法上是中学数学的因素和扩张,在观念上是中学数学的深化和发展。
高等代数与中学数学在思想方法方面的联系主要体现在抽象化思想、分类思想、结构思想、类比推理思想、公理化方法等方法。
注意与中学数学的联系对比,不但可以降低高等代数课的学习难度,而且增强了高等代数课对培养中学数学的指导作用。
通过研究高等代数与中学数学的联系、区别,探讨高等代数对中学数学的指导,可以更好的学习高等代数和中学数学。
二、主题部分高等代数与中学代数是一脉相承的,是相辅相成的,高等代数是中学代数的深化与进一步研究,中学代数是中学生学习的比较简单基础的高等代数,已有许多教学第一线的教学工作者和数学家及相关研究人员,从不同的角度对高等代数与中学代数的关系。
目录摘要 (I)Abstract (I)1 引言 (1)2 知识方面的联系 (1)2.1多项式理论的应用 (1)2.2行列式的应用 (2)2.3柯西不等式的应用 (3)2.4二次型的应用 (4)3 思想方面的联系 (4)3.1符号化思想 (4)3.2分类思想 (5)3.3化归与转化思想 (5)3.4结构思想 (6)3.5公理化方法 (6)3.6坐标方法 (6)3.7构造性方法 (7)4 观念方面的联系 (7)结束语 (8)参考文献 (8)致谢 (10)摘要:运用高等代数的理论、方法、思想与观点剖析和阐述中学数学相关内容的若干问题,通过若干典型试题的解析,从知识方面、思想方面以及观念方面研究了高等代数与中学数学的联系,探索高等数学观点对中学数学一些教学内容的理论依据,深化与发展高等代数在中学数学的相关内容,促进高等代数在中学数学领域的应用,探求二者的内在的联系,以便高等代数能与中学数学完美的结合.关键词:高等代数;中学数学;数学思想方法;应用Abstract: The problems related to elementary mathematics are analyzed and explained by using the theory,method,thoughts and views of higher algebra.Through analyzing some typical test questions,the relation between higher algebras and elementary mathematics are investigated from the aspects of knowledge、thought and idea. Exploring the higher mathematics view to middle school mathematics some teaching content theory and model,deepening and development in higher algebra in middle school mathematics related content,and promote higher algebra in the middle school mathematics field of application,and to explore the inner link,so that higher algebra can be combined with the middle school closely.Keywords: higher Algebra;middle school mathematics;mathematical thinking;application1 引言高等代数作为数学专业的主干专业基础课之一,是初等代数的延伸与提高.运用高等代数的望远镜和显微镜剖析各类高等数学课程与中学数学之间的关联是一项长期有效的措施]1[.以实现中学式思维方式向大学式思维方式的过度与转变为目标,引导学生在二者之间建立一座桥梁.教师方面,有利于帮助中学教师融会贯通中学教学的相关内容,让中学教师利用高等数学的相关理论、方法与观点解决中学数学的相关问题,以上位者的姿态理解中学教学内容的本源,知其所以然,促进知识的深化;学生方面,也能激发学生的学习兴趣,扩大高等数学知识在中学教学中的应用面,加深高等代数知识与中学数学的关联.在理解中学数学与高等代数之间的联系后,中学教师能更好地展开相关教学工作,学生能更好地完成相关教学任务.本文将从数学知识、数学思想、数学观点三个层面研究高等代数与中学数学的联系]2[.2 知识方面的联系2.1 多项式理论的应用作为高等数学主要内容之一的多项式理论,它与中学代数有着密不可分的关联.利用多项式理论解决了中学数学中的诸多遗留难题,如多项式的根与因式分解理论,由此可见,高等代数知识对解决中学的中学代数问题有着“居高临下”的作用.例1 多项式17345)(234+-+-=x x x x x f ,当142==x x 时,求此多项式的值.解 将条件等式变形为142=-x x ,由)(1x f ,所以)(42x f x x -.由多项式除法,得173)4)(()(22+---=x x x x x x f ,再将142=-x x 代入上式,可得18174)(2=+-=x x x f .例2 已知c b a 、、 为整数,且满足a c cb b a ++与c b b c c a ++均为整数,求证c b a ==. 证明 设))()(()(ac x c b x b a x x f ---=. 于是1)()()(23-+++++-=x ab bc c a x a c c b b a x x f .由已知条件知)(x f 是首项系数为1的整系数多项式,且b a ,c b ,a c 均为它的三个有理整数根,又因为它们的乘积为1,所以1===ac c b b a ,故c b a ==. 2.2 行列式的应用 “矩阵与变换”作为普通高中新课改的选修模块之一]3[,在历年高考中有着广泛的命题基础,包含了中学数学中一些典型问题,如求函数的解析式,多项式的因式分解等问题,若能在解题中适当利用行列式知识,这些问题往往可以迎刃而解.例3 已知函数d cx bx ax x f +++=23)(,满足0)1(=-f ,6)1(-=f ,9)2(-=f ,4)3(-=f ,求)(x f .解 由已知条件,得⎪⎪⎩⎪⎪⎨⎧-=+⋅+⋅+⋅-=+⋅+⋅+⋅-=+⋅+⋅+⋅=+-+-+-4333922261110)1()1()1(23232323d c b a d c b a d c b a d c b a 把上式看成关于a ,b ,c ,d 的方程组,它的系数行列式为范德蒙行列式1333122211111)1()1()1(23232323---, 由行列式与线性方程组的理论,可得1=a ,2-=b ,4-=c ,1-=d ,即142)(23---=x x x x f .例4 试分解多项式xyz z y x 3333-++.解 构造一个行列式D ,使它等于此多项式,即xyz z y x xz yy x zz y xD 3333-++==. 而x y zx y z x y z D zx y y z x ++++++=xz y y x zz y x 111)(++= 222=()()x y z x y z xy yz zx ++++---.所以,xyz z y x 3333-++可分解为:))((222zx yz xy z y x z y x ---++++.此外,当系数行列式不等于零时,可以利用行列式给出线性方程组的解;已知顶点坐标或三边方程,就可以利用行列式表示三角形面积]4[;利用行列式也可求直线﹑平面的方程等等.2.3 柯西不等式的应用定理]5[1(柯西-施瓦茨不等式)在欧氏空间里,对于任意向量ξ,η有不等式〉〈〉〈≤〉〈ηηξξηξ, ,,2,当且仅当ξ与η线性相关时,等号成立.在欧氏空间n R 里,取)…(21n a a a ,, ,=ξ,)...(21n b b b ,, ,=η时,就有 柯西不等式 对任意实数组n a a a ,, ,…21和n b b b ,, ,...21,有 ≤+++22211)…(n n b a b a b a )...)(…(222212n 2221n b b b a a a ++++++.当且仅当)21(, ==i kb a i i 时,上式的等号成立. 特别的,)…21(1n i b i ,, , ==时,有 )…()…(2n 2221221a a a n a a a n +++≤+++.所以,柯西不等式作为高等代数的重要内容之一,是初等数学与高等代数的重要结合点之一,也是柯西-施瓦茨不等式在欧氏空间n R 中的具体体现,运用柯西不等式解决中学中的相关问题,有时会显得直接明了.例5 已知P 为ABC ∆内一点,a BC =,b CA =,c AB =,点P 到ABC ∆的三边BC ,CA ,AB 的距离分别为1d ,2d ,3d .求证:ABCS c b a d c d b d a ∆++≥++2)(2321. 证明 由题意知3212cd bd ad S ABC ++=∆,要证明结论成立,只需证2321321)())((c b a cd bd ad d c d b d a ++≥++++, 由柯西不等式得,上式显然成立,所以ABCS c b a d c d b d a ∆++≥++2)(2321. 2.4 二次型的应用作为高等代数的重要内容之一的二次型,在数学与物理领域都有着广泛运用,在一些相关数学问题中,巧用二次型知识解决中学数学中的一些难题,往往可以起到事半功倍的效果.定理]6[ 设n 元二次型'()f x x Ax =,则f 在条件112=∑=ni i X 下的大(小)值恰为矩阵A的最大(小)特征值.例6 设2232)(y xy x x f ++=,且满足122=+y x ,求)(x f 的最大值与最小值.解 二次型),(y x f 的矩阵⎥⎦⎤⎢⎣⎡=3111A ,则 2431112+-=----=-λλλλλA I , 解得221+=λ,222-=λ,于是由以上定理可得,)(x f 在122=+y x 下的最大值为22+,最小值22-.3 思想方面的联系3.1 符号化思想原始的符号作为记录的工具,为人类发展做出了巨大的贡献,而数学的发展是离不开符号的发展的.最初的人类从具体数量中抽象出数字,并以此制订了运算法则,在此基础上不断发展,使用字母符号表示数,延伸出多项式,使用各种符号创建出抽象的代数系统,如:向量空间、欧氏空间…相应的,随着抽象程度的提高,也大大丰富了数学的研究对象.例7 设集合}){(R y x y x ∈=Ω,,,规定:(1)),(000=;(2)当且仅当21x x =,21y y =时,)()(2211y x y x ,,=.在Ω上定义运算“⊗”:21212211)()(y y x x y x y x +=⊗,,,设Ω∈c b a ,,,有以下四种命题:a b b a ⊗=⊗① ;)()(②c b a c b a ⊗⊗=⊗⊗;③若0=⊗b a ,则b a ,中至少有一个为0;④若c a b a a ⊗=⊗≠,0,则c b =;其中真命题的个数为(A )A .1个B .2个C .3个D .4个(08广东梅州市检)3.2 分类思想数学是一门严谨的、系统的学科,因此在数学中往往需要研究对象的不同属性进行分类.分类思想作为基础的思想方法,数学中几乎处处可见.如中学数学中,对数和式的分类,高等代数中,如矩阵分类,向量空间、欧氏空间按维数的分类,二次型分为正定、负定、不定三类等等,分类讨论方法作为分类思想的一个分支,在解题中有着广泛运用.例8 已知函数1)2()1(2--+-=x m x m y (m 是实数).如果函数的图像和X 轴只有一个交点,求m 的值.解 当1=m 时函数就是一个一次函数1--=x y ,它与X 轴只有一个交点)01(,-. 当01≠-m 时,函数就是一个二次函数1)2()1(2--+-=x m x m y0)1(4)2(2=-+-=∆m m ,得0=m .抛物线122---=x x y 的顶点)01(,-在X 轴上.评注:本题利用简单的分类思想讨论了两种不同情况,思路清路,考虑全面,解题便捷.运用分类思想往往能将复杂的情况,梳理清楚,分类思想在解题中有着广泛应用.3.3 化归思想化归与转化思想作为数学的几个重要思想之一,其精髓就是化未知为已知,化难为易,化繁为简.例如,在中学数学中,无理式化为有理式,四边形问题化为三角形问题,几何问题与代数问题的互相转化等;高等数学中,超越式方程化为代数式方程,高阶行列式化为低阶行列式,二次型问题化为实对称矩阵问题,向量关系化为向量坐标之间的关系等.例9 设对所有实数x ,不等式2222224(1)2(1)log 2log log 014a a a x x a a a ++++>+ 恒成立,求a 的取值范围.分析:这是一个含有参数的不等式的恒成立的问题,但是,这个题目的表面比较复杂,我们可以通过换元法,,化为简单的参数的一元二次不等式. 解:设22log 1a t a =+, 则 224(1)8(1)log log 32a a t a a++==-,222(1)log 24a t a +=-. 于是,已知的不等式化为()23220t x tx t -+->.该不等式对所有实数t 恒成立的充要条件是()230,4830.t t t t ->⎧⎨∆=+-<⎩解得0t <.即22log 01a a <+, 进一步解得 01a <<.3.4 结构思想现代数学通过顺序结构、条件结构、循环结构将数学各分支联结成一个整体.从本质上讲,中学代数与高等代数使用的都是相同的数学结构.因此,不仅从结构层面极其相似,而且在知识层面上也有很多相似的地方.例如,由倒数到逆矩阵再到逆元,从数的运算律到矩阵的运算律,再到代数系统的运算律,从负数到负矩阵,再到负元素,由多项式的整除关系再到几何的偏序关系,这些内容都是反映了结构思想.3.5 公理化方法中学平面几何的大量命题与理论都是以在欧几里德的《几何原本》中的“23条定义”、“五大公理”、“五大公设”的的理论基础上.并在此基础上发散与推证出大量新结论,从本质上讲,这种方法是实质公理化方法.高等代数中,线性变换、向量空间、欧氏空间大量命题建立在一些假设上,并以这些假设为公理,再推导出相应的理论系统,这种方是形式公理化方法.实质公理方法到形式公理方法这一演化过程,不仅体现了其自身的发展,也体现了初等代数到高等代数的发展.3.6 坐标方法坐标方法作为中学数学常用的方法之一,主要通过建立直角坐标系,标出相应的坐标,利用一些结论计算出相应的答案.在高等代数中,坐标方法在向量空间中应用极广.特别地,欧氏空间中,在规范正交基条件下向量的夹角、距离、内积、坐标计算公式都是中学数学平面几何中相应公式的拓展.例10 如图所示,直三棱柱111C B A ABC -中,21===CA CB C C |,CB AC ⊥ ,E D ﹑分别是棱11﹑C B AB 的中点,F 是AC 的中点,求EF DE ﹑的长度.解 以点C 为坐标原点,1﹑﹑CC CB CA 所在直线为X 轴、Y 轴、Z 轴,建立如图所示的空间直角坐标系.21===CA CB C C ,)000(,,C ∴,)002(,,A ,)020(,,B ,)200(1,,C ,)220(1,,B . 由中点坐标公式可得)011(,,D ,)210(,,E ,)001(,,F5)20()11()01(222=-+-+-=∴DE ,6)02()01()10(222=-+-+-=EF图13.7 构造性方法中学数学中的出现的所有方程都是采用构造性方法解决的,高等代数中构造性的方法不仅可以运用到解题上,而且还能用来证明定理.例如,正交基存在性定理的证明,带余除法定理的证明,最大公因式存在性的证明等等.所以,构造方法使二者既有联系,又有区别.例11 若()()()042=----z y y x x z ,求证:x 、y 、z 成等差数列. 证明 当y x =时,可得z x =,所以x 、y 、z 成等差数列;当y x ≠时,设方程()()()02=-+-+-z y t x z t y x ,由0=∆得21t t =,并易知1=t 是方程的根,所以=21t t 1=--yx z y ,即z x y +=2,所以x 、y 、z 成等差数列. 评注:拿到题目感到无从下手,思路受阻,但我们细看,问题条件酷似判别式∆=ac b 42-的形式,因此联想到构造一个一元二次方程进行求解.综上所述,从知识的深度与广度看,中学数学远不如高等代数,但是,从思想方法层面看,二者相承一脉,本源相同.简而言之,高等代数源于中学数学,却高于中学数学.中学数学受自身知识深度浅,层面窄的局限,因而对数学思想的指导性不强.通过高等代数的学习不断完善这种学习上的缺陷,进而达到揭示数学知识内在联系,深刻认识数学思想方法内涵的目的.4 观念方面的联系中学数学与高等代数在数学研究对象、数学研究的特点等数学观念极其相似,可以这样说,高等代数的这些观念都延伸与中学数学.接下来将从研究对象、研究特点分析二者之间在观念方法的区别和联系.研究对象方面,中学数学的研究对象主要是以一些简单的现实世界中的空间关系和数量关系为主.例如,点、线、面与常见几何图形的研究,数、代数式、方程、函数的研究.高等代数在研究对象的选择不再拘泥于直观简单的研究对象,因此研究对象得到了极大的丰富和扩展,很多传统意义上的关系不再对高等代数的研究对象适用.例如,数的一些运算法则不再适用矩阵的运算,中学的空间知识不再适用向量空间、欧氏空间等.充分理解这些观念的转换对指导二者的教学工作有很大帮助.数学研究的特点方面,抽象性、逻辑性和应用的广泛性作为数学研究的特点,这些特点深化在数学研究的各个领域中.下面将从三个特点分别探讨中学数学与高等代数的区别与联系.首先,中学数学通过抽象化,把数、式抽象为字母,大大简化计算量,这是我们尝到抽象化带给我们的第一个“甜头”.显然,中学数学的这种程度抽象化是无法帮助我们理解抽象化真正的含义和作用的.由于高等代数处于一个更高的研究水平,所以它更能帮助我们更加直观的理解抽象化的本质.例如,通过向量的加法与数乘的共性,将平面向量抽象为空间向量,通过将内积的共性与实数域上的向量空间结合,就抽象出了欧氏空间.可以看出,抽象化推动着数学的发展,不断提高抽象化,更易使我们接触到问题的本质.其次,在中学数学中,中学生理解能力较差,因此很少给出严格的定义.所以容易造成知其然,不知其所以然的格局.特别在推导几何问题方面,还需依靠直观图形.显然在数学上,这是不够严谨的.高等代数中就不会出现这种情况,所有的证明都是需要严格定义的,通过定义严密推理,得到相关结论,最终形成理论系统.最后,中学数学主要应用于教育,能解决少数的一些简单问题,比如,面积、体积、行程计算,无法适用于更加复杂的问题.相对的,高等代数除去教育功能,在应用的广度和难度上更胜于中学数学.随着更深入的学习,就会发现高等代数应用范围会逐渐增大.结束语在我国高等师范学院所开设的专业课程,应是中学内容的沿袭发展、螺旋上升,而高等代数却略有不同,因为高等代数与中学数学的研究对象、方法出现了巨大差异,中学教师大都毕业于师范院校本﹑专科,具有高等代数知识是无疑的,但能用高等代数的思想﹑观点去指导中学数学教学的却不多见]7[.数学师范专业的学生有种误区,认为“教学中用不上高等代数知识”,因而在学习高等代数知识的过程中懈怠,学习积极性不高,甚至于“厌学”.本文通过从数学方法、数学思想、数学观念三方面,并辅以例题综合阐述中学数学与高等代数的种种联系.在课程教学改革中,不仅要挖掘知识体系的联系,更要挖掘数学方法,数学观念方面的联系]8[.促进中学数学与高等代数的完美结合,进而扩大高等代数在中学数学的应用.参考文献[1] 马忠林,郑毓信.数学方法论[M].:广西教育出版社,1996.[2] 杨世明,周春荔,等.MM教育方式:理论与实践[M].:香港新闻出版社,2002.54-87.[3] 中华人民共和国教育部.普通高中教学课程教育标准:实验[M].:人民教育出版社,2003.[4] 庄瓦金.高等代数教程[M].:高等教育出版社,2004.92-95[5] 张禾瑞,郝炳新.高等代数[M].:高等教育出版社,1999.[6] 扬家骥.高等代数在初等数学中的应用[M].:山东教育出版社,1992.[7] 杨远廷.用高等数学的观点看中学数学教学[J].德阳教育学院学报,2000,14(1):44-45.[8] 王玉行.高等代数对学生形成和发展数学品质的意义及教学策略[J].数学教育学报,2007,16(3):92-94.致谢历时将近两个月的时间终于将这篇论文写完,在论文的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了.尤其要强烈感谢我的论文指导老师—钟纯真老师、刘熠老师,他对我进行了无私的指导和帮助,不厌其烦的帮助进行论文的修改和改进.另外,在校图书馆查找资料的时候,图书馆的老师也给我提供了很多方面的支持与帮助.在此向帮助和指导过我的各位老师表示最衷心的感谢!感谢这篇论文所涉及到的各位学者.本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作.感谢我的同学和朋友,在我写论文的过程中给予我了很多你问素材,还在论文的撰写和排版的过程中提供热情的帮助.由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和学友批评和指正!。
高等代数对中学代数的指导作用摘要:高等代数与中学代数有着不可分割的关系,相辅相成,高等代数对中学代数既是加深与拓展,也是继续和提高,是一种阶梯式的跨越。
本文通过代数的发展史、现今数学教育教学上的新要求和新改革,探讨了高等代数与中学代数之间的关系,以及高等代数本身的特点,研究了高等代数对中学代数的指导作用;同时,通过高等代数在中学代数中的应用,进一步进行阐述其指导意义、作用。
关键词:高等代数;中学代数;指导作用;应用Higher Algebra guidance to high school algebra Abstract:Advanced algebra and high school algebra are closely and complementarey connected, Algebra middle school algebra is to deepen and expand, but also continue to improve by leaps and bounds as a ladder. In this paper, the history of algebra, math teaching today's new demands and new reform of the higher algebra and the relationship between high school algebra and advanced algebra own characteristics, research on high school algebra, advanced algebra guidance; the same time through advanced algebra in high school algebra, further elaborate its significance, role.Key words:advanced algebra; middle school algebra; guide; application目录引言 (1)1 高等代数对中学代数的指导作用的意义 (2)1.1 代数的发展史 (2)1.2 高等代数与中学数学教育的教育目标 (4)1.3 数学教育教学的新革 (6)2 高等代数与中学代数的关系 (7)2.1 高等代数与中学代数之间的联系 (7)2.1.1 高等代数与中学代数的统一性 (7)2.1.2 高等代数与中学代数的连贯性 (8)2.1.3 从中学代数到高等代数研究对象与方法的发展 (9)2.1.4 从中学代数到高等代数数学观的发展 (10)2.2 高等代数与中学代数之间的区别 (10)3 高等代数对中学代数的指导 (12)3.1 高等代数数学思维的特点 (12)3.1.1 广阔性 (12)3.1.2 目的性 (14)3.2 高等代数在中学代数中的应用 (15)3.2.1 向量线性关系的几何意义 (15)3.2.2 Cauchy 不等式的应用 (15)3.2.3 抛物线相似的问题 (16)3.2.4 利用行列式知识证明四点共圆问题 (17)3.2.5 利用矩阵求最大公因式 (18)3.2.6 因式分解的理论依据 (19)3.2.7 线性方程组理论的应用 (19)3.2.8 二次型理论与多元二次多项式的因式分解问题 (20)3.2.9 欧式空间的中学模型 (21)3.2.10 矩阵与几何变换 (21)3.2.11 中学数学的“关系”题 (21)4 结束语 (23)致谢 (23)参考文献 (24)引言在我国高等师范院校中,多数专业所开设的专业课程,都是中学相应课程内容的加深和拓广,惟数学专业例外。
在数学专业课程里,除微积分外,多数课程与中学数学在研究对象和研究方法两方面都有着本质的不同。
以高等代数为例,高等代数抽象化、形式化的思想和符号化的表述使其对于中学数学,不是一种螺旋式的深入,而是一种阶梯式的跨越.这就使得高等代数在表面上与中学数学严重脱节,学生面对高等代数时,已有的知识结构、思维结构几乎无法得以正向迁移,学生必须从两个相对断裂的侧面去体会、去领悟、去学习,学习压力之大可想而知。
更重要的是,由于高等代数与中学数学在学生眼里成了两个相互断裂的层面,多数学生认为,高等代数与其日后的中学数学教学联系不上,即使现在“居高”,将来也不能“临下”,因而学习的积极性、主动性都明显不高.如此,“学”慢而“忘”快现象普遍存在于高等代数课程的学习之中也就不足为奇了。
[]1同时,中学数学的不少知识在高等代数得到了进一步的加深和拓展,或者成为了高等代数的例子,或者为高等代数提供了模型。
中学数学知识在高等代数中的继续和提高,有效地解释了许多中学数学未能解读清楚地问题,这对于运用现代数学的观点、原理和方法指导中学数学教学实际具现实意义的。
1 高等代数对中学代数的指导作用的意义1.1 代数的发展史数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范畴;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
“代数”一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabala h,直译应为《还原与对消的科学》。
1859年,我国数学家李善兰首次把“algebra”译成“代数”。
后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,亦即:代数,就是运用文字符号来代替数字的一种数学方法。
古希腊数学家丢番图用文字缩写来表示未知量,在公元250年前后丢番图写了一本数学巨著《算术》。
其中他引入了未知数的概念,创设了未知数的符号,并有建立方程序的思想。
故有“代数学之父”的称号。
代数是巴比伦人、希腊人、阿拉伯人、中国人、印度人和西欧人一棒接一棒而完成的伟大数学成就。
发展至今,它包含算术、初等代数、高等代数、数论、抽象代数五个部分。
[]21、算术算术给予我们一个用之不竭的、充满有趣真理的宝库。
--高斯(Gauss,1777-1855)算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。
它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。
算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。
另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。
现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。
算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。
尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。
同时,它又构成了数学其它分支的最坚实的基础。
2、初等代数作为中学数学课程主要内容的初等代数,其中心内容是方程理论。
代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。
初等代数的主要内容在16世纪便已基本上发展完备了。
代数学符号发展的历史,可分为三个阶段。
第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。
第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。
第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。
数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。
公元前4世纪,古希腊人发现无理数;公元前2世纪(西汉时期),我国开始应用负数;1545年,意大利的卡尔达诺在《大术》中开始使用虚数;1614年,英国的耐普尔发明对数;17世纪末,一般的实数指数概念才逐步形成。
3、高等代数在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。
前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。
作为大学课程的高等代数,只研究它们的基础。
线性代数是高等代数的一大分支。
我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。
在线性代数中最重要的内容就是行列式和矩阵。
向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。
向量用于梯度,散度,旋度就更有说服力。
同样,行列式和矩阵如导数一样(虽然在数学上不过是一个符号,表示包括的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。
因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。
4、数论以正整数作为研究对象的数论,可以看作是算术的一部分,但它不是以运算的观点,而是以数的结构的观点,即一个数可用性质较简单的其它数来表达的观点来研究数的。
因此可以说,数论是研究由整数按一定形式构成的数系的科学。
数论的古典内容基本上不借助于其它数学分支的方法,称为初等数论。
17世纪中叶以后,曾受数论影响而发展起来的代数、几何、分析、概率等数学分支,又反过来促进了数论的发展,出现了代数数论(研究整系数多项式的根—“代数数”)、几何数论(研究直线坐标系中坐标均为整数的全部“整点”—“空间格网”)。
19世纪后半期出现了解析数论,用分析方法研究素数的分布。
二十世纪出现了完备的数论理论。
5、抽象代数抽象代数又称近世代数,它产生于十九世纪。
抽象代数是研究各种抽象的公理化代数系统的数学学科。
由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换等,这些物集分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。
抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。
抽象代数已经成了当代大部分数学的通用语言。
到现在为止,数学家们已经研究过200多种代数结构,其中最主要的若当代数和李代数是不服从结合律的代数的例子。