必修五数列基础训练题1.doc
- 格式:doc
- 大小:58.00 KB
- 文档页数:3
数列综合训练题班级 姓名1、已知{}n a ,{}n b 都是等比数列,那么( )A .{}{}n n n n b a b a ∙+,都一定是等比数列。
B .{}n n b a +一定是等比数列,但{}n n b a ∙不一定是等比数列C .{}n n b a +不一定是等比数列,但{}n n b a ∙一定是等比数列D .{}n n b a +,{}n n b a ∙都不一定是等比数列2、数列0,0,0,…,0,…( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列3、某种细菌在培养过程中,每20min 分裂一次(一个分裂成两个),经过3h , 1个这种细菌可以繁殖成( )A .511个B .512个C .1 023个D .1 024个 4、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项的和为( )A .130B .170C .210D .2605、在2001年到2004年期间,甲每年5月1日到银行存入a 元的一年定期储蓄,若年利率q 保持不变,且每年到期的本息均自动转为新一年定期,到2005年5月1日,甲将所有存款的本息全部取回,则取回的金额是( )A .5)1(q a +B .4)1(q a +C .[]q q q a )1()1(5+-+D .[]q q q a )1()1(4+-+ 6、等比数列{}n a 中,48,1253==a a ,那么=7a7、已知数列{}n a 满足条件:*+∈+==N n a a a a n n n (22,111),它的第四项是 。
8、数列{}n a 中,3,511+==+n n a a a ,那么这个数列的通项公式是9、等差数列{}n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 。
10、等差数列{}n a 中,=≠∈==+q p q p a q p N q p p a q a 则且),,,(,,11、已知数列{}n a 的前n 项和为1,(1)()4n n n S S a n N *=-∈ (1)求;,21a a(2)求证数列{}n a 是等比数列12、等差数列{}n a 中,前n 项和为n S(1)若n S S a 则,,1311131==为何值时,S n 最大(2)若01>a 且0,01312<>S S ,则n 为何值时,n S 最大。
六、数列(必修五)1.等比数列}{n a 的首项与公比分别是复数2(i i +是虚数单位)的实部与虚部,则数列}{n a 的前10项的 和为( A )A .20B .1210- C.20- D.i 2- 2.公差不为零的等差数列}{n a 中,2a ,3a ,6a 成等比数列,则其公比q 为(C ) A .1 B .2 C .3D .43.等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列.若1a =1,则4s = ( C ) A .7 B. 8 C.15 D.164.如图,在杨辉三角形中,斜线l 的上方从1按箭头方向可以构成一个“锯齿形”的数列{}n a :1,3,3,4,6,5,10,, 记其前n 项和为n S ,则19S 的值为( D ) A .129B .172C .228D .2835.等差数列{}n a 中,11a =,5998a a +=,n S 为其前n 项和,则9S 等于( A ) A .297B .294C .291D .3006.已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n n S 为{a }的前n 项和,则3253S S S S --的值为( A ) A .2B .3C .15D .不存在7.等差数列}{n a 的前n 项和134111073,4,8,S a a a a a S n 则若=-=-+等于( C )A .152B .154C .156D .1588.已知等差数列}{n a 的前13项之和为413π,则)tan(876a a a ++等于( C )A .33 B .3 C .1- D .19.已知各项不为0的等差数列{}n a ,满足23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则()=86b b ( D )A .2B .4C .8D .1610.设222100131211++++= S ,则S 的范围是( B )A .⎪⎭⎫ ⎝⎛23,1 B .⎪⎭⎫ ⎝⎛2,23 C .()3,2 D .⎪⎭⎫ ⎝⎛25,2 11.设等比数列{}n a 的前n 项和为n S ,若63S S =3 ,则69S S = .3712.若等差数列{}n a 的前n 项和为n S ,且310(7)n a n -=>,714S =,72n S =,则 n = 12 .13.数列{}n a 中,n S n 是前项,若111,34,n n n a S S S -===则 。
高一数学必修五第二章数列测试题一 . (每小 5 分,共 60分)1、已知数列{a n}的通公式a n n 23n 4( n N * ) ,a4等于( ).A、 1B、 2C、 0D、 32、在等比数列 { a n } 中 , 已知11a59 , a3( )a9C 、1A、 1 B 、 3 D 、± 33、等比数列a n中 , a29, a5 243,a n的前 4 和()A、 81B、 120 C 、 168D、 1924、数列 1, 3, 6,10,⋯的一个通公式是()22n(n 1)n(n 1)A、a n =n -(n-1)B、 a n=n -1C、 a n= D 、a n =225、已知等差数列a n中 , a2a88 ,数列前9 和S9等于 ()A、 18B、 27C、 36D、 456、S n是等差数列a n的前n和,若S735 , a4()A、8B、 7C、 6D、 57、已知数列3 ,3, 15, ⋯ ,3(2n1), 那么 9 是数列的()A、第 12 B 、第 13C、第 14D、第 158、等差数列{ a n}的前m和 30,前2m 和100,它的前3m 和是()A、 130B、170C、 210D、 2609、a n是等差数列,a1a3a59, a69 ,个数列的前 6 和等于()A、 12B、 24C、 36D、 4810、已知某等差数列共有10 ,其奇数之和15,偶数之和30,其公差()A、 5B、4C、3D、211、已知数列 2 、 6、10 、14 、 3 2 ⋯那么 7 2 是个数列的第几()A、 23B、24C、 19D、2512、在等比数列{ a n}(n N* )中,若a11, a4110 项和为(,则该数列的前)81B 、21C 、211A、222210D 、224211二、填空题(每小题 5 分,共 20 分)13、已知数列的通项a n5n 2 ,则其前 n 项和 S n.14、已知a n是等差数列,a4a6 6 ,其前5项和 S510 ,则其公差d.15、等比数列a n的前n项和为S n,已知S1,2S2,3S3成等差数列,则a n的公比为.16、各项都是正数的等比数列a n,公比q 1 , a5, a7, a8成等差数列,则公比q=三、解答题(70 分)17、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。
《数列》单元练习试题一、选择题1.已知数列{ a n}的通项公式a n n23n 4 ( n N*),则a4等于()(A)1(B)2(C)3(D)02.一个等差数列的第 5 项等于 10,前 3 项的和等于 3,那么()( A)它的首项是 2 ,公差是 3 ( B)它的首项是 2 ,公差是 3 ( C)它的首项是 3 ,公差是 2 ( D)它的首项是 3 ,公差是 2S4()3.设等比数列{ a n}的公比q 2,前n项和为S n,则a2(A)2 (B)4 (C)15(D)17 2 24.设数列a n是等差数列,且a2 6 , a8 6 , S n是数列 a n 的前 n 项和,则()(A)S4 S5 (B)S4 S5(C)S6 S5 (D)S6 S5a n 3N*),则a20 ()5.已知数列{ a n}满足a10,a n 1 ( n3a n 1(A)0 (B)3 (C) 3 ( D) 326.等差数列a n的前 m 项和为30,前2m项和为100,则它的前3m 项和为()( A) 130 ( B)170 ( C) 210 ( D) 2607.已知a1,a2,,a8为各项都大于零的等比数列,公比q 1 ,则()( A)a1 a8 a4 a5 ( B)a1 a8 a4 a5( C)a1 a8 a4 a5 ( D)a1 a8和 a4 a5的大小关系不能由已知条件确定8.若一个等差数列前 3 项的和为 34,最后 3 项的和为146,且所有项的和为390,则这个数列有()( A)13 项(B)12 项(C) 11 项(D)10 项9.设{ a n}是由正数组成的等比数列,公比q 2 ,且 a1 a2 a3a30 230,那么a3 a6 a9 a30等于()( A) 210 ( B) 220 ( C) 216 ( D)21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图 1 中的 1,3,6, 10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的 1,4,9, 16,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()( A) 289 ( B) 1024 (C) 1225 ( D)1378 二、填空题11.已知等差数列{ a n}的公差d 0 ,且a1,a3,a9成等比数列,则a1 a3 a9的值是.a2 a4 a1012.等比数列{ a n}的公比q 0 .已知 a2 1, a n 2 a n 1 6a n,则 { a n } 的前4项和 S4 .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是℃,5km 高度的气温是-℃,那么3km 高度的气温是℃.14.设a1 2 , a n 1 2 , b n a n 2, n N*,则数列{ b n}的通项公式b n .a n 1 a n 115.设等差数列{ a n}的前n项和为S n,则S4 , S8 S4, S12 S8, S16 S12成等差数列.类比以上结论有:设等比数列{ b n} 的前 n 项积为 T n,则 T4,,, T16 成等比数列.T12三、解答题16.已知{ a n}是一个等差数列,且a2 1 , a5 5 .(Ⅰ)求 { a n } 的通项 a n;(Ⅱ)求 { a n } 的前 n 项和 S n的最大值.17.等比数列{ a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)求 { a n } 的公比q;(Ⅱ)若 a1a3 3 ,求 S n.18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1 分钟走 2m,以后每分钟比前 1 分钟多走 1m,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m ,乙继续每分钟走 5m,那么开始运动几分钟后第二次相遇19.设数列{ a n}满足a13a232a3 3n 1 a n n, n N*.3(Ⅰ)求数列 { a n } 的通项;(Ⅱ)设 b nn,求数列 { b n } 的前 n 项和 S n.a n20.设数列{ a n } 的前n 项和为S n,已知a1 1 , S n 1 4a n 2 .(Ⅰ)设b n a n 1 2a n,证明数列{ b n } 是等比数列;(Ⅱ)求数列{ a n} 的通项公式.21.已知数列a n中,a1 2,a2 3,其前 n 项和S n满足Sn 1Sn 12Sn 1 n 2,n N* ).((Ⅰ)求数列a n 的通项公式;(Ⅱ)设 b n 4 n ( 1) n 1 2a n(为非零整数, n N *),试确定的值,使得对任意n N * ,都有 b n 1 b n成立.数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 {a n}中,若 a2+ a8= 16, a4= 6,则公差 d 的值是 ( )A.1 B. 2 C.- 1 D.- 22.在等比数列 {a n}中,已知a3= 2, a15= 8,则 a9等于 ( )A.± 4 B.4 C.- 4 D. 163.数列 {a n }中,对所有的正整数 n 都有 a1·a2·a3 a n= n2,则 a3+a 5= ( )4.已知- 9,a ,a ,- 1 四个实数成等差数列,-9,b ,b ,b ,- 1 五个实数成等比数列,则 b (a1 2 1 2 3 2 2- a1)= ()A.8 B.- 8 C.± 85.等差数列 {a n}的前 n 项和为 S n,若 a2+ a7+ a12= 30,则 S13 的值是 ( )A.130 B.65 C. 70 D. 756.设等差数列 {a }的前 n 项和为 S .若 a =- 11, a + a =- 6,则当 S 取最小值时, n 等于 ( ) n n 1 46 nA.6 B.7 C. 8 D. 97.已知 {a n }为等差数列,其公差为-2,且 a7是 a3与 a9的等比中项, S n为 {a n}的前 n 项和, n∈ N+,则 S10的值为 ( )A.- 110 B.- 90 C. 90 D.1108.等比数列 {a }是递减数列,前 n 项的积为 T ,若 T = 4T ,则 a a 15 =()nn139 8A .± 2B .± 4C .2D . 489.首项为- 24 的等差数列, 从第 10 项开始为正数, 则公差 d 的取值范围是 ( ) A .d>3B .d<38 C.3≤d<3 <d ≤310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是().q 1、 a 1 0, q 1、 a 1 0,0q 1 或 a 10, q 1、 q1A BCD11. 已知等差数列 a n 共有 2n 1 项,所有奇数项之和为 130,所有偶数项之和为 120 ,则 n 等于( )A. 9B. 10C. 11D. 1212.设函数 f(x)满足 f(n + 1)= 2 f (n) n (n ∈ N + ),且 f(1)= 2,则 f(20)为 ()2A . 95B . 97C . 105D . 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上 )13.已知等差数列 {a n }满足: a 1= 2,a 3= 6.若将 a 1,a 4,a 5 都加上同一个数,所得的三个数依次成等 比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n ∈ N ),则 a =n11+ 10a n1a n315.在数列 {a n }中,a 1=1,a 2=2 ,且满足 a n a n13( n 1)( n 2) ,则数列 {a n }的通项公式为 a na n , (n ∈N*116.已知数列满足: 1= 1, a n + 1n +1=(n - λ)+ 1 , b 1na=a n + 2 ),若 ba n=- λ,且数列 {b }是单调递增数列,则实数 λ的取值范围为三、解答题 (本大题共 70 分.解答应写出必要的文字说明、证明过程或演算步骤 )17.( 10 分)在数列 {a n }中, a 1=8, a 4=2,且满足 a n +2- 2a n + 1+ a n =0(n ∈ N +). (1) 求数列 {a }的通项公式; (2)求数列 {a }的前 20 项和为 Snn 20.18. (12 分)已知数列{ a n}前n 项和 S n n 2 27n ,(1)求{| a n|}的前11项和T11;(2) 求{| a n|}的前 22 项和T22 ;2 (n∈N ).19. (12 分)已知数列 { a n } 各项均为正数 ,前 n 项和为 S ,且满足 2S = a n + n-4n n +(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n n( 1)求a n的通项公式;( 2)等差数列b n的各项为正,其前n 项和为 T n,且 T315 ,又a1b1 , a2b2 , a3b3成等比数列,求 T n.nn1nn n + 1nn- 1(b n≠ 0).21. (12 分)已知数列 {a },{b }满足 a = 2, 2a = 1+ a a , b = a 1(1) 求证数列 { }是等差数列;b n(2) 令 c n1 ,求数列 { c n }的通项公式.a n122.( 12 分)在等差数列 { a n } 中,已知公差d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式;(2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .2《数列》单元测试题 参考答案一、选择题1.D2.A3.C 4.B 5.B 6.C 7.A8.A 9. B 10.C二、填空题11. 1312. 1513.-14. 2n 115.T 8 ,T12162T 4T 8三、解答题16(. Ⅰ)设 { a n } 的公差为 d ,则a 1 d 1 ,a 13 ,∴ a n3 (n1)(2)2n 5 .a 14d解得2 .5 .d(Ⅱ)S n3n n( n 1) ( 2) n 24n( n2) 2 4 .∴当 n 2 时, S n 取得最大值 4.217.(Ⅰ)依题意,有 S 1S 22S 3 ,∴ a 1 (a 1 a 1q) 2( a 1 a 1q a 1q 2 ) ,由于 a 10 ,故 2q 2q 0 ,又 q 0 ,从而 q1 . 214 [1 ( 1) n ] 81(Ⅱ)由已知,得 a 1a 1 ( ) 23 ,故 a 14 ,从而 S n2n ] .21[1 ()1(32)218.(Ⅰ)设 n 分钟后第 1 次相遇,依题意,有 2nn(n1)5n 70 ,2整理,得 n 213n 140 0 ,解得 n 7 , n20 (舍去).第 1 次相遇是在开始运动后7 分钟.(Ⅱ)设 n 分钟后第 2 次相遇,依题意,有2nn( n 1) 5n3 70 ,2整理,得 n 213 n 420 0 ,解得 n 15 , n28 (舍去).第 2 次相遇是在开始运动后15 分钟.19.( Ⅰ)∵ a 1 3a 2 32 a 33n 1 a n n ,①3∴当 n 2时, a 13a 2 32 a 33n 2 a n 1 n 1 .②3由① -② ,得3 n 1 1 ,a n1,得 a 11 a nn .在① 中,令 n 1.∴ a n333( Ⅱ )∵ b nn,∴ b n n 3n ,∴ S n32323 33n 3n ,a n∴ 3S n32 2 333 34n 3n 1 . ④由④ -③ ,得 2Sn 3n 1(3 32333n ) ,n13n ,nN * .③即 2S n n 3n 13(1 3n ) ,∴ S n(2n 1)3n 13 .1 34 420.( Ⅰ)由 a 1 1 , S n 14a n 2 ,有 a 1 a 24a 12 ,∴ a 2 3a 1 2 5 ,∴ b 1a 2 2a 1 3 .∵ S n 1 4a n2 ,①∴ S n4a n 12 ( n 2),②由 ① -② ,得 a n 1 4a n4a n 1 ,∴ a n 1 2a n 2(a n 2a n 1 ) ,∵ b na n 1 2a n ,∴b n2b n 1 ,∴数列 { b n } 是首项为 3 ,公比为 2 的等比数列.( Ⅱ )由( Ⅰ ),得 b na n2a n32 n 1a n 1 a n3 ,1,∴2n42n1a n } 是首项为 1 ,公差为 3的等差数列,∴数列 {242n∴a n1 (n1)3 31,∴ a n (3n1) 2 n 2 .2n2 4n4 421.(Ⅰ)由已知,得S n1S nS n S n 1 1( n 2 , n N * ),即 a n 1 a n 1 ( n2 , n N * ),且 a 2 a 1 1 ,∴数列 a n 是以 a 1 2 为首项, 1为公差的等差数列,∴a n n 1.(Ⅱ) ∵a nn1, ∴ b4n ( 1)n 12n 1 ,要使 bn 1b n 恒成立,n∴ b nb n 4n 1 4n1 n2n 2n 12n 10 恒成立,11∴ 3 4n3n 10 恒成立,∴1 n 12n 1 恒成立.12n 1(ⅰ)当 n 为奇数时,即2 n 1恒成立,当且仅当nn1有最小值为 , ∴1 .1时, 2 1(ⅱ)当 n 为偶数时,即2n 1 恒成立,当且仅当 n 2 时, 2n 1有最大值 2 , ∴2 .∴21,又 为非零整数,则1 .综上所述,存在1 ,使得对任意 n N * ,都有b n 1 b n .数列试题答案1--- 12: BBABAAD C DCDB3n 1 为奇数 )a n2 (n113---16 :- 11,,3n 2, λ<24为偶数2 (n)17.解: (1)∵数列 {a }满足 a- 2a +a = 0,∴ 数列 {a }为等差数列,设公差为 d.∴ a =a + 3d ,nn + 2n + 1nn412-8=- 2.∴ a n1n 20d = 3= a + (n - 1)d = 8- 2(n - 1)=10- 2n.(2) S = n(9 n) 得 S = - 22018.解: S nn 2 27 na n 2n 28 ∴当 n 14 时, a nn 14 时 a n 0(1) T 11 | a 1 | | a 2 | | a 11 |(a 1a 11 ) S 11 176(2) T 22(| a 1 | | a 2 | | a 13 |) ( a 14 || a 22 |)( a 1a 2a 13)a14 a15a22S13S22S 13S222S 1325419.(1) 证明 :当 n=1 时 ,有 2a =+1-4,即 -2a-3=0,解得 a =3( a =-1 舍去 ).[来源 :学11 1 1当 n ≥2时 ,有 2S n-1= +n-5,又 2S n = +n-4,两式相减得 2a n = - +1,即 -2a n +1=,也即 (a n -1)2 =,因此 a n -1=a n-1 或 a n -1=-a n-1 .若 a n -1=-a n-1,则 a n +a n-1=1.而 a 1 =3,所以 a 2 =-2,这与数列 {a n }的各项均为正数相矛盾 ,所以 a n -1=a n-1,即 a n -a n-1=1,因此数列 {a n }为等差数列 .(2) 解:由(1)知 a 1=3,d=1,所以数列 {a n }的通项公式 a n =3+(n-1)× 1=n+2,即a n=n+2.n 25n 得 S n221.(1) 证明: ∵ b = a -1,∴ a = b + 1.又 ∵2a = 1+a a, ∴ 2(b + 1)= 1+ (b + 1)(b+ 1).化简nnnnnn n + 1 nnn + 1得: b+ + b n - b n + 1 =1.即 1 - 1= 1(n ∈N + ).n - b n1= b n b n1.∵ b n ≠0, ∴ n n +1n n +1n + 1b nb bb bb又 1=1 =1=1, ∴{ 1 }是以 1 为首项, 1 为公差的等差数列.b 11b na - 1 2-1(2) ∴ 1 = 1+ (n - 1) 1 1 + 1= n + 1 .∴ c n1 n ×1=n.∴ b n =.∴ a n = n a n 1 2n 1b n n n。
第二章 习题课 求通项公式一、选择题(每小题5分,共20分)1.已知数列{a n }的前n 项和为S n ,且S n =a n-2(a 为常数,且a ≠0,a ≠1),则数列{a n }( )A .是等比数列B .从第二项起的等比数列C .是等差数列D .从第二项起的等差数列解析: 当n ≥2时,a n +1=S n +1-S n =a n +1-a n∴a n =S n -S n -1=a n -an -1,则a n +1a n=a . 又∵a 2=S 2-S 1=a 2-2-(a -2) =a 2-a =a (a -1)a 1=S 1=a -2.当a =2时,a 1=0, 当a ≠2时,a 2a 1=a a -1a -2≠a .答案: B2.如果数列{a n }满足a 1,a 2a 1,a 3a 2,…,a na n -1,…是首项为1,公比为2的等比数列,则a 6=( )A .21 008B .29 968C .25 050D .32 768解析: a 6=a 1×a 2a 1×a 3a 2×…×a 6a 5=1×2×22×…×25=215=32 768. 答案: D3.若数列{a n }满足a 1+2a 2+3a 3+…+na n =n 2(n ∈N *),则a 6=( ) A .95 B .116C .137D .2 解析: a 1+2a 2+3a 3+…+6a 6=36,① a 1+2a 2+3a 3+…+5a 5=25,②①-②得6a 6=11,所以a 6=116. 答案: B4.在数列{a n }中,已知a n +1=a n +n2,且a 1=2,则a 99的值是( )A .2 477B .2 427C .2 427.5D .2 477.5解析: ∵a n +1-a n =n2,∴a n -a 1=(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =12[1+2+…+(n -1)]=14(n -1)n , ∴a 99=2+14×98×99=2 427.5.答案: C二、填空题(每小题5分,共10分) 5.已知数列{a n }中,a 1=2,且a n a n -1=n -1n +1(n ≥2),则a n =______. 解析: a n =a 1·a 2a 1·a 3a 2·…·a na n -1=2×13×24×35×…×n -1n +1=4n n +1.答案:4n n +16.数列{a n }中,a 1=1,a n +1=3a n +2,则a n =________. 解析: a n +1=3a n +2, ∴a n +1+1=3(a n +1). 又a 1+1=2.∴数列{a n +1}是首项为2,公比为3的等比数列. ∴a n +1=2×3n -1.∴a n =2×3n -1-1.答案: 2×3n -1-1三、解答题(每小题10分,共20分) 7.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解析: (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1.将以上n -1个等式中等号两端分别相乘, 整理得a n =n n +12.综上可知,{a n }的通项公式a n =n n +12.8.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3(n ∈N *).求数列{a n }的通项公式.解析: ∵a 1+3a 2+32a 3+…+3n -1a n =n 3, ①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13.②①-②,得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13.∴a n =13n (n ∈N *).尖子生题库☆☆☆9.(10分)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解析: (1)当n =1时,T 1=2S 1-12.因为T 1=S 1=a 1,所以a 1=2a 1-1,解得a 1=1.(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, 所以S n =2S n -1+2n -1, ① 所以S n +1=2S n +2n +1,②②-①得a n +1=2a n +2. 所以a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2). 当n =1时,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2, 所以当n =1时也满足上式.所以{a n +2}是以3为首项,2为公比的等比数列, 所以a n +2=3·2n -1,所以a n =3·2n -1-2.。
等差数列练习第一篇:等差数列练习等差数列练习一、选择题1.在等差数列{an}中,a1=21,a7=18,则公差d=()A.12B.13C.-12D.-132.在等差数列{an}中,a2=5,a6=17,则a14=()A.45B.41C.39D.373.已知数列{an}对任意的正整数n,点Pn(n,an)都在直线y=2x+1上,则数列{an}为()A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2B.3C.6D.96.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为() A.4B.5C.6D.7二、填空题7.已知等差数列{an},an=4n-3,则首项a1为__________,公差d为__________.8.在等差数列{an}中,a3=7,a5=a2+6,则a6=__________.9.已知数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=________.三、解答题10.在等差数列{an}中,已知a5=10,a12=31,求它的通项公式.12.已知(1,1),(3,5)是等差数列{an}图象上的两点.(1)求这个数列的通项公式;(3)判断这个数列的单调性.第二篇:等差数列重点题型练习等差数列重点题型练习(1)一、选择题1.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于()A.50B.100C.150D.2002.在数列{a2n}中,a1=1,an+1=an-1(n≥1),则a1+a2+a3+a4+a5等于()A.-1B.1C.0D.23.若数列{an}的前n项和Sn=n2-2n+3,则此数列的前3项依次为()A.-1,1,3B.2,1,3C.6,1,3D.2,3,64.等差数列{an}中,a4+a7+a10=57,a4+a5+…+a14=275,ak=61,则k等于()A.18B.19C.20D.21 5.设Sn是等差数列{an}的前n项和,若S7=35,则a4=()A.8B.7C.6D.56.已知{a*n}是递增数列,且对任意n∈N都有a2n=n+λn恒成立,则实数λ的取值范围是()A.(-7,+∞)B.(0,+∞)C.(-2,+∞)D.(-3,+∞)7.设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项为()A.0B.37C.100D.-378.数列{a2112n}中,a1=1,a2=3,且n≥2时,有a+=,则()n-1an+1anA.a23)nB.a2n-122n=(n=(3)C.an=n+2D.an=n+19.在等差数列{an}中,若a3+a4+a5+a6+a7=250,则a2+a8的值等于()A.50B.100C.150D.20010.设{a是公差为d=-1n}2的等差数列,如果a1+a4+a7…+a58=50,那么a3+a6+a9+…+a60=()A.30B.40C.60D.7011.一个数列的前n项之和为Sn=3n2+2n,那么它的第n(n≥2)项为()A.3n2B.3n2+3nC.6n+1D.6n-112.设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1B.2C.4D.6二、填空题13.等差数列{an}中,a3+a7+2a15=40,则S19=___________14.有两个等差数列{a若a1+a2+⋅⋅⋅+n}、{bn},an=3n-1a2n+3,则13b1+b2+⋅⋅⋅+bnb=1315.在等差数列{a公差为1n}中,2,且a1+a3+a5+…+a99=60,则a2+a4+a6+…+a100=_________16.在等差数列{an}中,若a1+3a8+a15=120,则2a9-a10=________17.设Sn为等差数列{an}的前n项和,S4=14,S10-S7=30,则S9= 18.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项的和等于19.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=三、计算题20.求数列11⨯2,12⨯3,13⨯41n(n+1)....前n项的和.作者QQ:1168903721.求数列an=3n(n+2)的前n项和.22.已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求其通项an.23.已知等差数列{an}前n项和Sn=-n(n-2),求{an}通项公式24.已知数列{an}中,a1=0,a2=2,且an+1+an-1=2(an+1)(n≥2)(1)求证:{an+1-an}是等差数列;(2)求{an}通项公式25.已知等差数列{an}前3项和为6,前8项和为-4(1)求数列{an}的前n项和Sn;(2)求数列{Snn}的前n项和Tn26.已知数列{an}的首项为a1=3,通项an与前n项和sn之间满足2an=sn·sn-1(n≥2).(1)求证:⎧⎨1⎫(2)求数列{a⎩S⎬是等差数列,并求公差;n}的通项公式。
[A 基础达标]1.某工厂总产值月平均增长率为p ,则年平均增长率为( ) A .p B .12p C .(1+p )12D .(1+p )12-1解析:选D.设原有总产值为a ,年平均增长率为r ,则a (1+p )12=a (1+r ),解得r =(1+p )12-1,故选D.2.某种产品计划每年降低成本q %,若三年后的成本是a 元,则现在的成本是( ) A .a 3q % B .a ·(q %)3 C .a (1-q %)3D .a(1-q %)3解析:选D.设现在的成本为x 元,则x (1-q %)3=a ,所以x =a(1-q %)3,故选D.3.某工厂2012年年底制订生产计划,要使工厂的总产值到2020年年底在原有基础上翻两番,则总产值年平均增长率为( ) A .214-1 B .215-1 C .314-1D .315-1解析:选A.设2012年年底总产值为a ,年平均增长率为x ,则a (1+x )8=4a ,得x =214-1,故选A.4.某企业2015年12月份产值是这年1月份产值的p 倍,则该企业2015年度的产值月平均增长率为( ) A.12p B .12p -1 C.11p -1D .11p解析:选C.设2015年1月份产值为a ,则12月份的产值为pa ,假设月平均增长率为r ,则a (1+r )11=pa ,所以r =11p -1.故选C.5.某人为了观看2014世界杯,从2007年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2014年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( ) A .a (1+p )7 B .a (1+p )8 C.ap[(1+p )7-(1+p )] D.ap[(1+p )8-(1+p )]解析:选D.2007年存入的a 元到2014年所得的本息和为a (1+p )7,2008年存入的a 元到2014年所得的本息和为a (1+p )6,依次类推,则2013年存入的a 元到2014年的本息和为a (1+p ),每年所得的本息和构成一个以a (1+p )为首项,1+p 为公比的等比数列,则到2014年取回的总额为a (1+p )+a (1+p )2+…+a (1+p )7=a (1+p )[1-(1+p )7]1-(1+p )=ap [(1+p )8-(1+p )].6.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本金和利息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元. 解析:由题意知,小王存款到期利息为12ar +11ar +10ar +…+2ar +ar =12(12+1)2ar =78ar . 答案:78ar7.某人买了一辆价值10万元的新车,专家预测这种车每年按10%的速度折旧,n 年后这辆车的价值为a n 元,则a n =________,若他打算用满4年时卖掉这辆车,他大约能得到________元.解析:n 年后这辆车的价值构成等比数列{a n },其中,a 1=100 000×(1-10%),q =1-10%,所以a n =100 000×(1-10%)n ,所以a 4=100 000×(1-10%)4=65 610(元). 答案:100 000×(1-10%)n 65 6108.有这样一首诗:“有个学生资性好,一部《孟子》三日了,每日添增一倍多,问君每日读多少?”(注:《孟子》全书约34 685字,“一倍多”指一倍),由此诗知该君第二日读了________字.解析:设第一日读的字数为a ,由“每日添增一倍多”得此数列是以a 为首项,公比为2的等比数列,可求得三日共读的字数为a (1-23)1-2=7a =34 685,解得a =4 955,则2a =9 910,即该君第二日读的字数为9 910. 答案:9 9109.某银行设立了教育助学贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果贷款10 000元,两年还清,月利率为0.457 5%,那么每月应还多少钱呢? 解:贷款10 000元两年到期时本金与利息之和为:10 000×(1+0.457 5%)24 =10 000×1.004 57524(元). 设每月还x 元,则到期时总共还 x +1.004 575x +…+1.004 57523x =x ·1-1.004 575241-1.004 575.于是x ·1-1.004 575241-1.004 575=10 000×1.004 57524. 所以x ≈440.91(元). 即每月应还440.91元.10.甲、乙两超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年? 解:(1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时, a n =a 2(n 2-n +2)-a2[(n -1)2-(n -1)+2]=(n -1)a ,所以a n =⎩⎪⎨⎪⎧a ,n =1,(n -1)a ,n ≥2.b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a (n ∈N +).(2)易知b n <3a ,所以乙超市将被甲超市收购, 由b n <12a n ,得⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a .所以n +4⎝⎛⎭⎫23n -1>7,所以n ≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.[B 能力提升]11.某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约多少年可以使总销售量达到30 000台?(结果保留到个位)(参考数据:lg 1.1≈0.041,lg 1.6≈0.204)( ) A .3年 B .4年 C .5年D .6年解析:选C.设大约n 年可使总销售量达到30 000台,由题意知:每年销售量构成一个等比数列,首项为a 1=5 000台,公比q =1.1,S n =30 000,所以由30 000=5 000(1-1.1n )1-1.1⇒1.1n=1.6⇒n =lg 1.6lg 1.1≈5,故选C.12.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________.解析:由已知(c -a )是(b -c )和(b -a )的等比中项,即(c -a )2=(b -c )(b -a ),把c =a +x (b -a )代入上式,得x 2(b -a )2=[b -a -x (b -a )](b -a ),即x 2(b -a )2=(1-x )(b -a )2,因为b >a ,b -a ≠0,所以x 2=1-x ,即x 2+x -1=0,解得x =-1±52,因为0<x <1,所以最佳乐观系数x 的值等于 -1+52.答案: -1+5213.祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元,设f (n )表示前n 年的纯收入.求从第几年开始获取纯利润?(f (n )=前n 年的总收入-前n 年的总支出-投资额) 解:由题意,知每年的经费是以12为首项,4为公差的等差数列.设纯利润与年数的关系为f (n ),则f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.获取纯利润就是要求f (n )>0,故有-2n 2+40n -72>0,解得2<n <18. 又n ∈N +,知从第三年开始获利.14.(选做题)某林场为了保护生态环境,制定了植树造林的两个五年计划,第一年植树16a 亩,以后每年植树面积都比上一年增加50%,但从第六年开始,每年植树面积都比上一年减少a 亩.(1)求该林场第六年植树的面积;(2)设前n (1≤n ≤10且n ∈N +)年林场植树的总面积为S n 亩,求S n 的表达式.解:(1)该林场前五年的植树面积分别为16a ,24a ,36a ,54a ,81a .所以该林场第六年植树面积为80a 亩.(2)设第n 年林场植树的面积为a n 亩, 则a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫32n -1×16a ,1≤n ≤5,n ∈N +,(86-n )a ,6≤n ≤10,n ∈N +.所以当1≤n ≤5时,S n =16a +24a +…+⎝⎛⎭⎫32n -1×16a=16a ⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=32a ⎣⎡⎦⎤⎝⎛⎭⎫32n-1.当6≤n ≤10时,S n =16a +24a +36a +54a +81a +80a +…+(86-n )a =211a +80a +…+(86-n )a =211a +[80a +(86-n )a ](n -5)2=211a +(166a -na )(n -5)2.所以所求S n 的表达式为S n =⎩⎨⎧⎣⎡⎦⎤⎝⎛⎭⎫32n-1×32a ,1≤n ≤5,n ∈N +,211a +(166a -na )(n -5)2,6≤n ≤10,n ∈N +.。
一、等差数列选择题1.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2B .4C .8D .162.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13B .14C .15D .163.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .825两 B .845两 C .865两 D .885两 4.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n5.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列6.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .497.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11128.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .249.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .8010.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24B .36C .48D .6411.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( )A .10BC .64D .412.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7B .10C .13D .1613.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .1314.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .815.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4216.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S > D .70S <,且80S <17.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020D .202118.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+D .1111p q m nS S S S +>+ 19.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7220.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 二、多选题21.题目文件丢失! 22.题目文件丢失!23.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .224.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T25.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值26.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--27.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值28.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列29.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 30.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.A 【分析】 将11122n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22nn n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2nn a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n nn a +=. 又因为n a n λ≥恒成立,即()22n n n λ+≥恒成立,所以()max 22nn n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 2.A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 3.C 【分析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,8106100a S =⎧⎨=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,则由题意得8106100a S =⎧⎨=⎩,即1176109101002a d a d +=⎧⎪⎨⨯+=⎪⎩,解得186585a d ⎧=⎪⎪⎨⎪=-⎪⎩. 所以长兄分得865两银子. 故选:C. 【点睛】关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和前n 项和公式. 4.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=, 故选:B. 5.D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D. 6.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 7.C 【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 8.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 9.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.B 【分析】利用等差数列的性质进行化简,由此求得9S 的值. 【详解】由等差数列的性质,可得345675520a a a a a a ++++==,则54a =19592993622a a aS +=⨯=⨯= 故选:B 11.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 12.C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C 13.B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 14.A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A 15.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.16.A 【分析】根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】依题意,有170a a +>,180a a +< 则()177702a a S +⋅=>()()188188402a a S a a +⋅==+<故选:A . 17.B 【分析】根据递推关系式求出数列的通项公式即可求解. 【详解】 由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈, 即112n n a a +-=, 所以数列{}n a 是以1为首项,12为公差的等差数列, 所以()()11111122n n a a n d n +=+-=+-⨯=, 所以2021a =2021110112+=. 故选:B 18.D 【分析】利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】对于A 选项,由于()()1221222p pp p p p a a Sp a a pa ++==+≠,故选项A 错误;对于B 选项,由于m p q n -=-,则()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦()()()()()22m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦()()()2220q n n m d q n d =-----<,故选项B 错误;对于C 选项,由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,故()()22221122p q m n p q p q m n m nS S p q a d m n a d S S +--+--+=++>++=+.()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦()()()221121124mn m n mn p q mna a d d+---<++()()()221121124m n mn m n mn m n mna a d d S S +---<++=,由此1111p q m n p q p q m n m nS S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 19.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯=故选:B 20.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错.故选:D.【点睛】方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.二、多选题21.无22.无23.ABC【分析】 根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n -<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】 根据不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立, 由12+n 递减,且1223n <+≤, 所以2a -≤,即2a ≥-,当n 为偶数时有:12a n <-恒成立, 由12n -第增,且31222n≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC .【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题. 24.AD【分析】分类讨论67,a a 大于1的情况,得出符合题意的一项.【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意.③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD.【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a qn N -=∈. 25.AC【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案.【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=,所以当且仅当10n =或11时,n S 取得最大值.故选:AC【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题.等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;26.AC【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,1(1)n n a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin 2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件;故选:AC27.BD【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误;而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确;故选:BD.【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.28.ABD【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121n n n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD【点睛】 本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.29.ACD【分析】由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ;【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <, 所以1n a 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0n nS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 30.BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对; 由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.。
数列的概念 数列的函数特性基础过关练题组一 对数列概念的理解1.下列说法正确的是 ( ) A.1,2,3,4,…,n 是无穷数列B.数列3,5,7与数列7,5,3是相同数列C.同一个数在数列中不能重复出现D.数列{2n +1}的第6项是13 2.下面四个结论:①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3,…,n })上的函数; ②数列若用图像表示,从图像上看都是一群孤立的点; ③数列的项数是无限的; ④数列的通项公式是唯一的.其中正确的是 ( ) A.①② B.①②③ C.②④ D.①②③④ 题组二 数列的通项公式3.数列23,45,67,89,…的第10项是 ( )A.1617B.1819C.2021D.22234.(2019山东菏泽高二期末)设a n =1n +1n +1+1n +2+1n +3+…+1n 2(n ∈N +),则a 2= ( )A.12B.12+13C.12+13+14D.12+13+14+155.(2020河南南阳高二下期中)已知数列√2,2,2√2,4,…,则16√2是这个数列的(深度解析) A.第8项 B.第9项 C.第10项 D.第11项6.数列0.3,0.33,0.333,0.3333,…的通项公式为 ( )A.a n =19(10n-1) B.a n =29(10n-1)C.a n =13(1-110n )D.a n =310(10n-1)7.如图是关于星星的图案,每个图案中的星星数可构成一个数列,则该数列的一个通项公式是 ( )A.a n =n 2-n +1 B.a n =n (n -1)2C.a n =n (n +1)2D.a n =n (n +2)28.下列各数中,是数列{n (n +1)}中的一项的是 ( ) A .380 B .29 C .32 D .239.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N +),那么a n +1-a n 等于 ( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +210.数列4,6,8,10,…的一个通项公式为 . 题组三 数列的性质11.已知数列{a n }的通项公式是a n =n3n +1,那么这个数列是( )A.递增数列B.递减数列C.摆动数列D.常数列12.设函数f (x )={(3-n )n -3,n ≤7,n n -6,n >7,数列{a n }满足a n =f (n ),n ∈N +,且数列{a n }是递增数列,则实数a 的取值范围是 ( )A.(94,3)B.[94,3) C.(1,3) D.(2,3)13.若数列{a n }为递减数列,则{a n }的通项公式可能为 (填序号). ①a n =-2n +1;②a n =-n 2+3n +1;③a n =12n;④a n =(-1)n.能力提升练一、选择题 1.()给出以下通项公式:①a n =√22[1-(-1)n];②a n =√1-(-1)n;③a n ={√2,n 为奇数,0,n 为偶数.其中可以作为数列√2,0,√2,0,√2,0,…的通项公式的是( )A.①②B.②③C.①③D.①②③2.(2021陕西西安一中高二上第一次月考,)已知数列{a n }中,a 1=1,(n +1)a n =na n +1,则a 12=( )A.11B.12C.13D.14 3.()把3,6,10,15,21,…这些数叫作三角形数,这是因为用这些数目的点可以排成一个正三角形(如图),则第7个三角形数是( )A.28B.29C.32D.36 4.()已知数列{a n }中,a 1=3,a n +1=-1nn +1(n ∈N +),能使a n =3的n 可以为 ( )A.17B.16C.15D.14 5.(2019山东烟台招远一中高二月考,)已知a n =n -√79n -√80(n ∈N +),则在数列{a n }的前50项中最小项和最大项分别是 ( ) A.a 1,a 50 B.a 1,a 8 C.a 8,a 9 D.a 9,a 50 6.()在数列{a n }中,a 1=2,a n +1=a n +lg (1+1n),则a n =( )A.2+lg nB.2+(n -1)lg nC.2+n lg nD.1+n lg n 二、填空题 7.()斐波那契数列(Fibonaccisequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0,1,1,2,3,5,8,13,21,…,则该数列的第12项为 .8.(2020安徽宣城高一下期末,)已知a n =n 2-tn +2020(n ∈N +,t ∈R),若数列{a n }中的最小项为第3项,则t 的取值范围为 .易错 9.()某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (6)= .……10.()在数列{a n }中,a 1=a ,a 2=b ,a n +1+a n -1=a n (n ≥2且n ∈N +),则a 2020= .三、解答题 11.()写出下列数列的一个通项公式.(1)-11+1,14+1,-19+1,116+1,…; (2)2,3,5,9,17,33,…; (3)12,25,310,417,…;(4)-13,18,-115,124,….12.()在数列{a n }中,a n =(n +1)(1011)n.(1)讨论数列{a n }的单调性; (2)求数列{a n }的最大项.答案全解全析 第一章 数列 §1 数列 1.1 数列的概念1.2 数列的函数特性基础过关练1.D 数列1,2,3,4,…,n ,共n 项,是有穷数列,A 错误;数列中的项是有次序的,B 错误; 数列中的数可以重复出现,C 错误;当n =6时,2×6+1=13,D 正确.2.A 易知①②正确;数列的项数可以是有限的,也可以是无限的,③错;数列的通项公式可能不唯一,比如数列1,0,-1,0,1,0,-1,0,…的通项公式可以是a n =sinn π2,也可以是a n =cos(n +3)π2,④错.故选A .3.C 由题意知数列的通项公式是a n =2n2n +1(n ∈N +),所以a 10=2×102×10+1=2021.故选C . 4.C ∵a n =1n +1n +1+1n +2+1n +3+…+1n 2(n ∈N +),∴a 2=12+13+14.故选C .5.B 可将数列改写为√2,(√2)2,(√2)3,(√2)4,…,由此可归纳出该数列的通项公式为a n =(√2)n ,又16√2=(√2)9,所以其为该数列的第9项. 方法总结要判断某一个数是不是数列中的项,其实就是看相应方程有没有正整数解.6.C 数列0.9,0.99,0.999,0.9999,…的通项公式为1-110n ,而数列0.3,0.33,0.333,0.3333,…的每一项都是上面数列对应项的13,故选C .7.C 从题图中可观察星星的构成规律,当n =1时,有1个;当n =2时,有3个;当n =3时,有6个;当n =4时,有10个;……, ∴a n =n (n +1)2.故选C .8.A 令380=n (n +1),即n 2+n -380=0, 解得n =19或n =-20(舍去), 所以380是{n (n +1)}中的第19项. 同理,可检验B 、C 、D 不是该数列中的项.9.D 由题意知a n +1=1n +2+1n +3+…+12n +12n +1+12n +2,所以a n +1-a n =12n +1-12n +2. 10.答案 a n =2n +2解析 各项是从4开始的偶数,所以a n =2n +2. 11.A 因为a n =n 3n +1=13(3n +1)-133n +1=13-13(3n +1)是关于n 的增函数,所以数列{a n }是递增数列.12.D 由a n =f (n ),n ∈N +是递增数列可得{3-n >0,n >1,n (8)>n (7),即{3-n >0,n >1,n 2>18-7n ,解得2<a <3.13.答案 ①③解析 分别作出函数y =-2n +1和y =12n的图像(图略),由图像可知①③中的数列{a n }为递减数列.②中第1项和第2项相等,故不是递减数列.④是摆动数列.能力提升练一、选择题1.D 经代入检验,①②③均可作为已知数列的通项公式.2.B ∵(n +1)a n =na n +1,∴n n n =nn +1n +1, ∴数列{n n n }是常数列,nn n =n 11=1,∴a n =n ,∴a 12=12.故选B.3.D 设3,6,10,15,21,…为数列{a n },则a n =(n +1)(n +2)2,当n =7时,a 7=8×92=36.4.B 由a 1=3,a n +1=-1n n+1,得a 2=-14,a 3=-43,a 4=3,所以数列{a n }是周期为3的周期数列,则由选项知a 16=3,故选B . 5.C 因为y =√79n -√80=1+√80-√79n -√80在(-∞,√80)上单调递减,在(√80,+∞)上单调递减,所以当x ∈(-∞,√80)时y ∈(-∞,1),此时a n ∈[a 8,a 1]⊆(-∞,1),当x ∈(√80,+∞)时y ∈(1,+∞),此时a n ∈[a 50,a 9]⊆(1,+∞),因此数列{a n }的前50项中最小项和最大项分别为a 8,a 9. 6.A 解法一:由已知得a n +1-a n =lgn +1n, 所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lgn n -1+lg n -1n -2+lg n -2n -3+…+lg 21+2 =lg (nn -1×n -1n -2×n -2n -3×…×32×21)+2 =2+lg n.解法二:由a n +1=a n +lg (1+1n )得a n +1=a n +lg(n +1)-lg n ,所以a n +1-lg(n +1)=a n -lg n =a 1-lg1=2,即数列{a n -lg n }是常数列,且a n -lg n =2,所以a n =2+lg n. 二、填空题 7.答案 89信息提取 ①该数列的前9项分别为0,1,1,2,3,5,8,13,21;②求该数列的第12项.数学建模 本题为涉及数学文化的情境题,从“兔子数列”的前几项入手,挖掘出其内在规律:从第3项起,每1项均等于前面两项之和,便可求得其第12项.解析 记“兔子数列”为{a n },则a 10=a 8+a 9=13+21=34,a 11=a 9+a 10=21+34=55,a 12=a 10+a 11=34+55=89,即第12项为89.8.答案 (5,7)解析 函数y =x 2-tx +2020的图像是开口向上的抛物线,其对称轴为直线x =n2,因为数列{a n }中最小项为第3项, 所以52<n 2<72,解得5<t <7. 易错警示将数列的通项a n 看作是关于n 的函数时,要特别注意以下两点:一是其相应的函数图像是由一群离散的点组成的,二是其定义域为正整数集或正整数集的子集. 9.答案 61解析 f (1)=1=2×1×0+1,f (2)=1+3+1=2×2×1+1, f (3)=1+3+5+3+1=2×3×2+1, f (4)=1+3+5+7+5+3+1=2×4×3+1,故f (n )=2n (n -1)+1.当n =6时,f (6)=2×6×5+1=61. 10.答案 -a解析 由已知得a n +1=a n -a n -1,所以a 3=a 2-a 1=b -a ,a 4=a 3-a 2=-a ,a 5=a 4-a 3=-b ,a 6=a 5-a 4=a -b ,a 7=a 6-a 5=a ,……, 所以数列{a n }是以6为周期的周期数列,而2020=336×6+4,所以a 2020=a 4=-a. 三、解答题11.解析 (1)∵第n 项的符号为(-1)n ,分子都是1,分母是n 2+1, ∴a n =(-1)n·1n 2+1.(2)∵a 1=2=1+1,a 2=3=2+1,a 3=5=22+1,a 4=9=23+1,a 5=17=24+1,a 6=33=25+1,……,∴a n =2n -1+1. (3)∵a 1=12=112+1,a 2=25=222+1,a 3=310=332+1,a 4=417=442+1,……,∴a n =n n 2+1.(4)∵a 1=-13=-11×3,a 2=18=12×4,a 3=-115=-13×5,a 4=124=14×6,……,∴a n =(-1)n·1n (n +2).12.解析 (1)由题意知a n >0,令n nn n -1>1(n ≥2), 即(n +1)(1011)n n (1011)n -1>1(n ≥2),解得2≤n <10,即a 9>a 8>…>a 1. 令n nnn +1>1,即(n +1)(1011)n (n +2)(1011)n +1>1,整理,得n +1n +2>1011,解得n >9,即a 10>a 11>….又n 9n 10=1,所以数列{a n }从第1项到第9项递增,从第10项起递减.(2)由(1)知a 9=a 10=1010119最大.。
习题课(一)求数列的通项公式课时过关·能力提升基础巩固1在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为().A.2B.6C.7D.8解析:1+2+3+4+…+n=n(n+1)2,当n=6时,共21项,故第25项为7.答案:C2在数列{a n}中,a1=2,a n+1=3a n+2,则a2 016的值为().A.32 015B.32 015-1C.32 016D.32 016-1答案:D3数列17,29,311,413,…的一个通项公式是().A.a n=n2n+3B.an=n2n-3C.a n=n2n+5D.an=n2n-5答案:C4已知数列{a n}满足a n+2=a n+1+a n,若a1=1,a5=8,则a3等于().A.1B.2C.3D.72解析:由a n+2=a n+1+a n ,a 1=1,a 5=8,得a 3=a 2+1,a 4=a 3+a 2,消去a 2得a 4=2a 3-1.又a 5=a 4+a 3=8,即8=3a 3-1,所以a 3=3.故选C . 答案:C5已知数列前n 项和S n =2n 2-3n+1,n ∈N *,则它的通项公式为 . 解析:当n=1时,a 1=S 1=0;当n ≥2时,a n =S n -S n-1=2n 2-3n+1-[2(n-1)2-3(n-1)+1]=4n-5, 故a n ={0,n =1,4n -5,n ≥2.答案:a n ={0,n =1,4n -5,n ≥26在数列{a n }中,a 1=1,a 2=5,a n+2=a n+1-a n (n ∈N *),则a 2 016= . 解析:∵a 1=1,a 2=5,a n+2=a n+1-a n ,∴a 1=1,a 2=5,a 3=4,a 4=-1,a 5=-5,a 6=-4,a 7=1,a 8=5. ∴数列{a n }是周期数列,周期为6. ∴a 2016=a 6×336=a 6=-4.答案:-47在数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n = . 解析:∵a n+1=a n +n+1,∴a n+1-a n =n+1.∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n-1=n ,各式相加得a n -a 1=2+3+4+…+n =(n+2)(n -1)2. 又a 1=2,∴a n =(n+2)(n -1)2+2=n 2+n+22.答案:n 2+n+228已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n+1,则a n = . 解析:∵log 2(S n +1)=n+1,∴S n =2n+1-1.当n=1时,a 1=S 1=3;当n ≥2时,a n =S n -S n-1=2n+1-2n =2n .∵当n=1时,上式不满足, ∴a n ={3,n =1,2n ,n ≥2.答案:{3,n =1,2n ,n ≥29根据下列条件,求数列的通项公式a n . (1)在数列{a n }中,a 1=1,a n+1=a n +2n ;(2)在数列{a n }中,a n+1=n+2n·a n ,a 1=4. 解(1)∵a n+1=a n +2n ,∴a n+1-a n =2n .∴a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n-1=2n-1,以上各式两边分别相加得a n -a 1=2+22+23+…+2n-1=2(1-2n -1)1-2=2n −2.又a 1=1,∴a n =2n -2+1=2n -1.(2)∵a n+1=n+2n ·a n ,∴a n+1a n=n+2n .∴a2a1=31,a3a2=42,a4a3=53,a5a4=64,…,a na n-1=n+1n-1.以上各式两边分别相乘得a n a1=n(n+1)1×2=n(n+1)2.又a1=4,∴a n=2n(n+1).10已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,anbn+1+bn+1=nbn.(1)求{a n}的通项公式;(2)求{b n}的前n项和.解(1)由已知,a1b2+b2=b1,b1=1,b2=13,得a1=2.所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(2)由(1)和a n b n+1+b n+1=nb n得b n+1=b n3,因此{b n}是首项为1,公比为13的等比数列.记{b n}的前n项和为S n,则S n=1-(13)n1-13=32−12×3n-1.能力提升1在数列{a n}中,a n+1=a n1+3a n,a1=2,则a4等于().A.165B.219C.85D.87答案:B2已知数列{a n}的前n项和S n=n2-2n,则a2+a18等于().A.36B.35C.34D.33解析:a2+a18=S2-S1+S18-S17=(22-2×2)-(12-2×1)+(182-2×18)-(172-2×17)=34.答案:C3已知n∈N*,给出4个表达式:①a n={0,n为奇数,1,n为偶数,②an=1+(-1)n2,③an=1+cosnπ2,④an=|sin nπ2|.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是().A.①②③B.①②④C.②③④D.①③④解析:经检验知①②③都是所给数列的通项公式,故选A.答案:A4已知在数列{a n}中,a1=1,(2n+1)a n=(2n-3)a n-1(n≥2),则数列{a n}的通项公式为. 解析:由(2n+1)a n=(2n-3)a n-1,可得a na n-1=2n-32n+1(n≥2),所以a2a1=15,a3a2=37,a4a3=59,a5a4=711,…,a na n-1=2n-32n+1(n≥2).上述各式左右两边分别相乘得a na1=1×3(2n-1)(2n+1)(n≥2),故a n=3(2n-1)(2n+1)(n≥2).又a1=1满足上式,所以数列{a n}的通项公式为a n=3(2n-1)(2n+1)(n∈N*).答案:a n=3(2n-1)(2n+1)★5若数列{a n}满足a1=23,a2=2,3(an+1−2an+an−1)=2,则数列{an}的通项公式为.解析:由3(a n+1-2a n+a n-1)=2可得a n+1-2a n+a n-1=23,即(a n+1-a n)-(a n-a n-1)=23,所以数列{a n+1-a n}是以a2-a1=43为首项,23为公差的等差数列,所以a n+1-a n=43+23(n−1)=23(n+1).故a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+23(2+3+⋯+n)=13n(n+1).答案:a n=13n(n+1)6已知在数列{a n}中,a n+1=2a n+3·2n+1,且a1=2,则数列{a n}的通项公式为. 解析:∵a n+1=2a n+3·2n+1,∴a n+12n+1=a n2n+3,即a n+12n+1−a n2n=3.∴数列{a n2n}是公差为3的等差数列.又a12=1,∴a n2n=1+3(n−1),∴a n=(3n-2)·2n.答案:a n=(3n-2)·2n7已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+⋯+1a n<32.(1)解由a n+1=3a n+1,得a n+1+12=3(a n+12).又a1+12=32,所以{a n+12}是首项为32,公比为3的等比数列.a n+12=3n2,因此{a n}的通项公式为a n=3n-12.(2)证明由(1)知1a n =23n-1.因为当n≥1时,3n-1≥2×3n-1,所以13n-1≤12×3n-1.于是1a1+1a2+⋯+1a n≤1+13+⋯+13n-1=32(1-13n)<32.所以1a1+1a2+⋯+1a n<32.★8设数列{a n}的前n项和为S n,且S n=4a n-3(n=1,2,…).(1)证明:数列{a n}是等比数列;(2)若数列{b n}满足b n+1=a n+b n(n=1,2,…),b1=2,求数列{b n}的通项公式.(1)证明因为S n=4a n-3(n=1,2,…),所以S n-1=4a n-1-3(n=2,3,…),当n≥2时,a n=S n-S n-1=4a n-4a n-1,整理,得a na n-1=43.由S n=4a n-3,令n=1,得a1=4a1-3,解得a1=1.所以数列{a n }是首项为1,公比为43的等比数列.(2)解由(1)得a n =(43)n -1,由b n+1=a n +b n (n=1,2,…),得b n+1-b n =(43)n -1.则b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=2+1-(43)n -11-43=3×(43)n -1−1.。
一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202211.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan 9θ=,则点A 的坐标为________.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列; (2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .26.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.D解析:D 【分析】根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-=又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下:(1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,① ()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23nnn c =+代入上式,整理得1(2)(3)2306n n k k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N , 将23nnn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅, 事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n n a an n+=+,得到{}n b 为等比数列,(2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)条件性选择见解析,2n n a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122n n S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =, 所以1222n n n a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列. 故1222n n n a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n nn n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =. (2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=;当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++ 11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.。
第五篇数列(必修5)第1节数列的概念与简单表示法课时训练练题感提知能【选题明细表】A组一、选择题1.设数列{a n}的前n项和S n=n2,则a8的值为( A )(A)15 (B)16 (C)49 (D)64解析:由a8=S8-S7=64-49=15,故选A.2.(2013华师大附中高三模拟)数列{a n}中,a1=1,a n=+1,则a4等于( A )(A)(B)(C)1 (D)解析:由a1=1,a n=+1得,a2=+1=2,a3=+1=+1=,a4=+1=+1=.故选A.3.下列数列中,既是递增数列又是无穷数列的是( C )(A)1,,,,…(B)-1,-2,-3,-4,…(C)-1,-,-,-,…(D)1,,,…,解析:根据定义,属于无穷数列的是选项A、B、C(用省略号),属于递增数列的是选项C、D,故满足要求的是选项C.故选C.4.下列关于星星的图案中,星星的个数依次构成一个数列,该数列的一个通项公式是( C )(A)a n=n2-n+1 (B)a n=(C)a n=(D)a n=解析:从题图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;…∴a n=1+2+3+4+…+n=,故选C.5.下面五个结论:①数列若用图象表示,从图象上看都是一群孤立的点;②数列的项数是无限的;③数列的通项公式是唯一的;④数列不一定有通项公式;⑤将数列看做函数,其定义域是N*(或它的有限子集{1,2,…,n}).其中正确的是( B )(A)①②④⑤ (B)①④⑤(C)①③④(D)②⑤解析:②中数列的项数也可以是有限的,③中数列的通项公式不唯一,故选B.6.(2013东莞模拟)数列{a n}满足:a1+3a2+5a3+…+(2n-1)·a n=(n-1)·3n+1+3,则数列{a n}的通项公式a n=( C ) (A)3n-1(B)(2n-1)·3n(C)3n(D)(2n-1)·3n-1解析:当n≥2时,有a1+3a2+5a3+…+(2n-3)·a n-1=(n-2)·3n+3,两式相减得(2n-1)a n=(n-1)3n+1-(n-2)3n,即(2n-1)a n=(2n-1)·3n,故a n=3n.又a1=3满足a n=3n,故选C.7.(2013太原一模)已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( C ) (A)[,3) (B)(,3)(C)(2,3) (D)(1,3)解析:由题意,a n=f(n)=要使{a n}是递增数列,必有解得,2<a<3.故选C.二、填空题8.数列-,,-,,…的一个通项公式为.解析:观察各项知,其通项公式可以为a n=.答案:a n=9.(2013广西一模)数列{a n}中,已知a1=1,a2=2,a n+1=a n+a n+2(n∈N*),则a7= .解析:由a n+1=a n+a n+2,得a n+2=a n+1-a n.所以a3=a2-a1=1,a4=a3-a2=-1,a5=a4-a3=-1-1=-2.a6=a5-a4=-2-(-1)=-1,a7=a6 -a5=-1-(-2)=1.答案:110.(2013清远调研)已知数列{a n}的前n项和S n=n2+2n-1,则a1+a25= .解析:∵S n=n2+2n-1,∴a1=S1=2.当n≥2时,a n=S n-S n-1=n2+2n-1-[(n-1)2+2(n-1)-1]=2n+1.∴a n=∴a1+a25=2+51=53.答案:5311.(2013东莞市高三模拟)已知数列{a n}的前n项和S n=n2-3n,若它的第k项满足2<a k<5,则k= .解析:a1=S1=1-3=-2,当n≥2时a n=S n-S n-1=n2-3n-(n-1)2+3(n-1),∴a n=2n-4,由2<a k<5得2<2k-4<5,则3<k<,所以k=4.答案:4三、解答题12.数列{a n}的通项公式是a n=n2-7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解:(1)当n=4时,a4=42-4×7+6=-6.(2)是.令a n=150,即n2-7n+6=150,解得n=16或n=-9(舍去),即150是这个数列的第16项.(3)令a n=n2-7n+6>0,解得n>6或n<1(舍).故数列从第7项起各项都是正数.13.(2013潮州期末质检)数列{a n}的前n项和S n=,若a1=,a2=.(1)求数列{a n}的前n项和S n;(2)求数列{a n}的通项公式;(3)设b n=,求数列{b n}的前n项和T n.解:(1)由S1=a1=,得=;由S2=a1+a2=,得=.∴解得故S n=.(2)当n≥2时,a n=S n-S n-1=-==由于a1=也适合a n=.∴a n=.(3)b n===-.∴数列{b n}的前n项和T n=b1+b2+…+b n-1+b n=1-+-+…+-+-=1-=.B组14.对于数列{a n},a1=4,a n+1=f(a n),依照下表则a2015=( D )(A)2 (B)3 (C)4 (D)5解析:由题意a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a5=f(a4)=f(2)= 4,a6=f(a5)=f(4)=1.则数列{a n}的项周期性出现,其周期为4,a2015=a4×503+3=a3=5.故选D.15.已知数列{a n}的通项a n=n2(7-n)(n∈N*),则a n的最大值是.解析:设f(x)=x2(7-x)=-x3+7x2,当x>0时,由f′(x)=-3x2+14x=0得,x=.当0<x<时,f′(x)>0,则f(x)在上单调递增,当x>时,f′(x)<0,f(x)在上单调递减,所以当x>0时,f(x)max=f.又n∈N*,4<<5,a4=48,a5=50,所以a n的最大值为50.答案:5016.已知数列{a n}的通项公式为a n=n2-n-30.(1)求数列的前三项,60是此数列的第几项?(2)n为何值时,a n=0,a n>0,a n<0?(3)该数列前n项和S n是否存在最值?说明理由. 解:(1)由a n=n2-n-30,得a1=12-1-30=-30,a2=22-2-30=-28,a3=32-3-30=-24.设a n=60,则60=n2-n-30.解之得n=10或n=-9(舍去).∴60是此数列的第10项.(2)令a n=n2-n-30=0,解得n=6或n=-5(舍去).∴a6=0.令n2-n-30>0,解得n>6或n<-5(舍去).∴当n>6(n∈N*)时,a n>0.令n2-n-30<0,解得0<n<6.∴当0<n<6(n∈N*)时,a n<0.(3)S n存在最小值,不存在最大值.由a n=n2-n-30=-30,(n∈N*)知{a n}是递增数列,且a1<a2<…<a5<a6=0<a7<a8<a9<…,故S n存在最小值S5=S6,不存在最大值.。
高二上期数列单元达标卷第I卷(选择题)一、选择题(每题5分,本大题共12小题,共60.0分)1.已知数列{a n}中,a n+1=3a n,a1=2,则a4=()A. 18B. 54C. 36D. 722.已知在等差数列{a n}中,a1007=4,S2014=2014,则S2015=()A. −2015B. 2015C. −4030D. 40303.已知等比数列{a n}的公比q=2,前100项的和S100=90,则a2+a4+a6+⋯+a100=()A. 15B. 30C. 45D. 604.设等比数列{a n}满足a1+a2=12,a1−a3=6,则a1a2⋯a n的最大值为()A. 32B. 128C. 64D. 2565.已知数列{a n}中,a1=1,a n+a n+1=3,则S2017=()A. 3009B. 3025C. 3010D. 30246.已知等差数列的前n项和为18.若S3=1,a n+a n−1+a n−2=3,则n的值为()A. 27B. 21C. 9D. 367.在等差数列{a n}中,已知a2+a5+a12+a15=36,则S16=()A. 288B. 144C. 572D. 728.等差数列{a n}的前n项和为S n,已知a5=8,S3=6,则S10−S7的值是()A. 24B. 48C. 60D. 729.在等比数列{a n}中,a2,a18是方程x2+6x+4=0的两根,则a4a16+a10=()A. 6B. 2C. 2或6D. −210.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A. 21B. 42C. 63D. 8411.已知S n是等差数列{a n}的前n项和,a2+a4+a6=12,则S7=()A. 20B. 28C. 36D. 412.在正项等比数列{a n}中,a2a7=4,则log2a1+log2a2+⋯+log2a8=()A. 2B. 4C. 6D. 8第II卷(非选择题)二、填空题(每题5分,本大题共4小题,共20.0分)=6,则{a n}的公差d=.13.已知等差数列{a n}的前n项和为S n.若a2=3,S9S314.等差数列{a n}中,a1=1,a9=21,则a3与a7等差中项的值为.15.公差不为零的等差数列{a n}中,2a3−a72+2a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=.16.已知数列{a n}的前n项和为S n,且S n=n2+4,则a n=.三、解答题(本大题共6小题,共70.0分)17.(本题10分)已知等差数列{a n}满足a1+a2=10,a4−a3=2.(1)求{a n}的通项公式.(2)设等比数列{b n}满足b2=a3,b3=a7,问b6与数列{a n}中的第几项相等⋅18.(本题12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=−5.(1)求{a n}的通项公式;(2)求a1+a4+a7+⋯+a3n+1.19. (本题12分)设数列{a n }满足a n+1=13a n +2,a 1=4.(1)求证:{a n −3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n .20. (本题12分)已知S n 是数列{a n }的前n 项和,且S n =2a n +n −4.(1)求a 1的值;(2)若b n =a n −1,试证明数列{b n }为等比数列.21. (本题12分)已知数列{a n }是首项a 1=14,公比q =14的等比数列,设b n +3log 4a n +2=0,数列{c n }满足c n =a n ·b n .(1)求数列{b n}的通项公式;(2)求数列{c n}的前n项和S n.,n∈N∗.(本题12分)已知数列{a n}的各项均为正数,前n项和为S n,且S n=a n(a n+1)2(1)求证:数列{a n}是等差数列;,T n=b1+b2+⋯+b n,求T n.(2)设b n=12S n高二上期数列单元卷参考答案1-5BCDCB 6-10ABBBB 11-12BD13.d=1 14.11 15. 16 16、 {5,n =1,2n −1,n ≥2,n ∈N ∗17. 【分析】本题主要考查等差数列和等比数列的通项公式,熟练利用公式进行计算是解题的关键, 属于基础题.(1)根据已知条件列出关于a 1和d 的方程组,解方程组得出a 1和d 的值,进一步即可得出{a n }的通项公式;(2)根据已知条件代入等比数列的通项公式,列出关于b 1和q 的方程组,解方程组得出b 1和q 的值,进而得出数列{b n }的通项公式,算出b 6的值,令a n =b 6,解出n ,即为所求.【解答】解:(1)设等差数列{a n }的公差为d .∵a 4−a 3=2,∴d =2.∵a 1+a 2=10,∴2a 1+d =10,∴a 1=4. ∴a n =4+2(n −1)=2n +2. (2)设等比数列{b n }的公比为q(q ≠0). ∵b 2=a 3=8,b 3=a 7=16,∴{b 1q =8,b 1q 2=16, ∴{q =2,b 1=4,∴b 6=4×26−1=128.令128=2n +2,∴n =63, ∴b 6与数列{a n }中的第63项相等.18. 【分析】本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.(Ⅰ)设出等差数列{a n }的首项和公差,直接由S 3=0,S 5=−5列方程组求出,然后代入等差数列的通项公式整理;(Ⅱ)由{a n }为等差数列,可得a 1+a 4+a 7+⋯+a 3n+1以1为首项,以−3为公差的等差数列,进而可得出答案.【解答】 解:(1)由等差数列的性质可得{3a 1+3d =05a 1+5×4d 2=−5,解得a 1=1,d =−1, 则{a n }通项公式a n =1−(n −1)=2−n ; (2)∵{a n }为等差数列,∴a 1+a 4+a 7+⋯+a 3n+1以1为首项,以−3为公差的等差数列, ∴a 1+a 4+a 7+⋯+a 3n+1=n +1+(n+1)(n+1−1)×(−3)2=(n+1)(2−3n )2.19. 【分析】本题考查的知识要点:等比数列的判定与证明,等比数列的通项公式的求法,分组转化求和在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.(1)直接利用递推关系式得{a n −3}是首项为1,公比为13的等比数列,进而即可求出数列的通项公式.(2)利用(1)的通项公式,进一步利用分组法求出数列的和.【解答】(1)证明:∵a n+1=13a n +2,a 1=4,∴a n+1−3=13(a n −3), 因为a 1−3=1≠0,所以{a n −3}是首项为1,公比为13的等比数列. a n −3=(13)n−1,∴a n =3+(13)n−1.(2)解:由(1)知,a n =3+(13)n−1,故T n =3n +[(13)0+(13)1+⋯+(13)n−1]=3n +1−(13)n1−13=3n +32−12⋅3n−1.20. 【分析】本题主要考查的是数列的递推公式及等比数列的定义. (1)直接令n =1求解即可.(2)先把所给的递推公式转化为a n =2a n−1−1,再结合等比数列的定义证明即可. 【解答】 解:(1)因为S n =2a n +n −4,所以当n =1时,S 1=2a 1+1−4,解得a 1=3; (2)证明:因为S n =2a n +n −4,所以当n ≥2时,S n−1=2a n−1+(n −1)−4, S n −S n−1=(2a n +n −4)−(2a n−1+n −5), 即a n =2a n−1−1,所以a n −1=2(a n−1−1),又b n =a n −1,所以b n =2b n−1,且b 1=a 1−1=2≠0, 所以数列{b n }是以b 1=2为首项,2为公比的等比数列.21. 【分析】本题主要考查了等比数列的通项公式,错位相减法,属于中档题. (1)由等比数列通项公式得a n =(14)n ,代入b n =−3log 4a n −2,求得b n ; (2)由(1)知,c n =(3n −2)(14)n ,利用错位相减法求和. 【解答】解:(1)由题意,得a n =(14)n , 又b n =−3log 4a n −2, 故b n =3n −2.(2)由(1)知a n =(14)n ,b n =3n −2, 所以c n =(3n −2)(14)n ,所以S n =1×14+4×(14)2+7×(14)3+ ⋯+(3n −5)×(14)n−1+(3n −2)×(14)n ,① 于是14S n =1×(14)2+4×(14)3+7×(14)4+ ⋯+(3n −5)×(1)n +(3n −2)×(1)n+1,②①−②得,34S n =14+3×[(14)2+(14)3+⋯+(14)n ] −(3n −2)×(14)n+1=12−(3n +2)×(14)n+1,所以S n =23−3n+23×4.22、【分析】(1)运用数列的递推式:当n =1时,a 1=S 1,当n ≥2时,a n =S n −S n−1,结合等差数列的定义,即可得证;(2)运用等差数列的通项公式和求和公式,求得b n =12S n=1n(n+1)=1n −1n+1,数列的求和方法:裂项相消求和,化简即可得到所求和.本题考查数列的递推式的运用:求通项,考查等差数列的定义和通项公式的运用,数列的求和方法:裂项相消求和,化简整理的运算能力,属于中档题. 【解答】解:(1)证明:∵S n =a n (a n +1)2,n ∈N ∗,∴当n =1时,a 1=S 1=a 1(a 1+1)2,∴a 1=1(0舍去);当n ≥2时,由2S n =a n 2+a n , 2S n−1=a n−12+a n−1,相减可得2a n =a n 2+a n −a n−12−a n−1,即(a n +a n−1)(a n −a n−1−1)=0, ∵a n +a n−1>0,∴a n −a n−1=1(n ≥2), 所以数列{a n }是以1为首项,1为公差的等差数列; (2)由(1)可得a n =n , 2S n =n(n +1),∴b n =12S n=1n(n+1)=1n −1n+1,∴T n =b 1+b 2+b 3+⋯+b n =1−12+12−13+⋯+1n−1n+1=1−1n+1=nn+1.22.。
课时作业9 等比数列的前n 项和时间:45分钟 ——基础巩固类——一、选择题1.数列{1+2n -1}的前n 项和为( C ) A .1+2n B .2+2n C .n +2n -1D .n +2+2n解析:由题意得a n =1+2n -1, 所以S n =n +1-2n1-2=n +2n -1.2.在等比数列{a n }中,公比q =-2,S 5=22,则a 1的值等于( D ) A .-2 B .-1 C .1D .2 解析:∵S 5=22,q =-2, ∴a 1[1-(-2)5]1-(-2)=22,∴a 1=2.3.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( B ) A .81 B .120 C .168D .192 解析:a 5a 2=27=q 3,q =3,a 1=a 2q =3,S 4=3(1-34)1-3=120.4.设f (n )=2+24+27+210+…+23n +10(n ∈N +),则f (n )等于( D )A.27(8n-1)B.27(8n +1-1)77解析:依题意f (n )为首项为2,公比为8的等比数列前n +4项的和,根据等比数列的求和公式计算可得.5.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( D )A .514B .513C .512D .510解析:∵a 1+a 4=18,a 2+a 3=12, ∴a 1(1+q 3)=18,a 1(q +q 2)=12, ∴1+q 3q +q 2=32,即1+q 2-q q =32, ∴2q 2-5q +2=0, ∴q =2或12(舍去), ∴a 1=2,∴S 8=2(1-28)1-2=510.6.在等比数列{a n }中,其前n 项和S n =5n +1+a ,则a 的值为( D )A .-1B .1C .5D .-5解析:S n =5n +1+a =5×5n +a ,当q ≠1时,由等比数列的前n 项和S n =a 1(1-q n )1-q =a 11-q -a 11-q ·q n,可知其常数项与q n 的系数互为相反数,所以a =-5.7.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n+1=( C )A .16(1-4-n )B .16(1-2-n )33解析:由条件先求公比q ,再由等比数列的前n 项和公式求解.∵a 5a 2=q 3=18,∴q =12,∴a 1=4,∴a n ·a n +1=4⎝ ⎛⎭⎪⎫12n -1·4·⎝ ⎛⎭⎪⎫12n =25-2n ,故a 1a 2+a 2a 3+a 3a 4+…+a n a n +1=23+21+2-1+2-3+…+25-2n =8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n). 8.“今有垣厚一丈二尺半,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增半尺,小鼠前三日日倍增,后不变,问几日相逢?”意思是“今有土墙厚12.5尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多半尺,小鼠前三天每天打洞长度比前一天多一倍,三天之后小鼠每天打洞按第三天长度保持不变,问两鼠几天打通相逢?”两鼠相逢最快需要的天数为( C )A .2B .3C .4D .5 解析:由题意,知大鼠前三天打洞1+1.5+2=4.5(尺),小鼠前三天打洞0.5+1+2=3.5(尺),大鼠与小鼠前三天共打洞4.5+3.5=8(尺),第四天大鼠打洞2.5尺,小鼠打洞2尺,故前四天两鼠共打洞8+2+2.5=12.5(尺).故两鼠相逢最快需4天.二、填空题9.在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =4n -1.解析:设前三项为aq ,a ,aq , ∴a4+a +4a =21, ∴a =4,a n =4·4n -2=4n -1.10.设等比数列{a n }的前n 项和为S n .若a 1=1,S 6=4S 3,则a 4=3.解析:设公比为q ,由S 6=4S 3知q ≠1,由S 6=4S 3得 a 1(1-q 6)1-q =4·a 1(1-q 3)1-q ,得q 3=3. ∴a 4=1×q 3=1×3=3.11.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N +)等于6.解析:记第n 天植树的棵数为a n ,则数列{a n }是以2为首项,2为公比的等比数列,解S n =2(1-2n )1-2=2n +1-2≥100,得n ≥6.三、解答题12.在等比数列{a n }中,S 3=72,S 6=632,求a n . 解:解法一:由已知S 6≠2S 3, 则q ≠1,又S 3=72,S 6=632,即⎩⎪⎨⎪⎧a 1(1-q 3)1-q=72, ①a 1(1-q 6)1-q =632, ②②÷①得1+q 3=9,所以q =2. 可求出a 1=12,因此a n =a 1q n -1=2n -2.解法二:已知等比数列{a n }中S m 与S n ,求q ,还可利用性质S n +m =S n +q nS m 转化为q n=S n +m -S nS m 求得,即q 3=S 6-S 3S 3=2872=8,∴q =2,再代入S 3=a 1(1-q 3)1-q求得a 1=12.∴a n =a 1q n -1=2n -2.13.已知等比数列{a n }中,a 1,a 2,a 3分别是下表中第1,2,3行中的某一个数,且a 1,a 2,a 3中任何两个数不在下表的同一列中.(1)求数列{a n (2)设b n =3na n ,求数列{b n }的前n 项和T n . 解:(1)由题意知a 1=2,a 2=6,a 3=18, ∴q =3,a n =2·3n -1. (2)b n =3na n =2n ·3n , ∴T n =b 1+b 2+b 3+…+b n ,则T n =2×1×31+2×2×32+2×3×33+…+2n ×3n , 3T n =2×1×32+2×2×33+…+2(n -1)×3n +2n ×3n +1 ∴-2T n =2(31+32+33+…+3n )-2n ×3n +1 =6(1-3n )1-3-2n ×3n +1=-3-(2n -1)×3n +1, ∴T n =3+(2n -1)×3n +12. ——能力提升类——14.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和.记T n =17S n -S 2na n +1,n ∈N +,设Tn 0为数列{T n }的最大项,则n 0=( B )A .3B .4C .5D .6 解析:由题意,得T n=17×a 1(1-q n )1-q -a 1(1-q 2n )1-qa 1q n=q 2n -17q n +16(1-q )q n=11-q (q n +16q n -17),令q n =(2)n =t ,函数g (t )=t +16t ,易知函数g (t )在(0,4)上单调递减,在(4,+∞)上单调递增,所以当t =4时,函数g (t )取得最小值,此时n =4,而11-q =11-2<0,故此时T n 最大,所以n 0=4.15.已知数列{a n }是首项a 1=14,公比q =14的等比数列,设b n +3log 4a n +2=0,数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .解:(1)由题意,得a n =⎝ ⎛⎭⎪⎫14n,b n =-3log 4a n -2,故b n =3n -2.(2)由(1)知a n =⎝ ⎛⎭⎪⎫14n,b n =3n -2,所以c n =(3n -2)⎝ ⎛⎭⎪⎫14n .所以S n =1×14+4×⎝ ⎛⎭⎪⎫142+7×⎝ ⎛⎭⎪⎫143+…+(3n -5)×⎝ ⎛⎭⎪⎫14n -1+(3n -2)×⎝ ⎛⎭⎪⎫14n,① 于是14S n =1×⎝ ⎛⎭⎪⎫142+4×⎝ ⎛⎭⎪⎫143+7×⎝ ⎛⎭⎪⎫144+…+(3n -5)×⎝ ⎛⎭⎪⎫14n +(3n -2)×⎝ ⎛⎭⎪⎫14n +1.②①-②,得34S n =14+3×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -(3n -2)×⎝ ⎛⎭⎪⎫14n +1=12-(3n +2)×⎝ ⎛⎭⎪⎫14n +1. 所以S n =23-3n +23×⎝ ⎛⎭⎪⎫14n.由Ruize收集整理。
济源四中高二数学周考试题一(2012-09-09)一、选择题(每小题5分,共60分)1、下列说法正确的是 ( ) A. 数列1,3,5,7可表示为{}7,5,3,1B. 数列1,0,2,1--与数列1,0,1,2--是相同的数列C. 数列⎭⎬⎫⎩⎨⎧+n n 1的第k 项是k 11+D. 数列可以看做是一个定义域为正整数集*N 的函数2、数列 ,28,21,,10,6,3,1x 中,由给出的数之间的关系可知x 的值是( ) A. 12 B. 15 C. 17 D. 183、数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( )A. 第4项B. 第5项C. 第6项D. 第7项4、已知数列 ,12,,7,5,3,1-n ,则53是它的 ( ) A. 第22项 B. 第23项 C. 第24项 D. 第28项5、已知031=--+n n a a ,则数列{}n a 是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列6、数列 ,1,0,1,0,1的一个通项公式是 ( )A. ()2111+--=n n a B. ()2111+-+=n n a C. ()211--=nn a D. ()211nn a ---=7、已知等差数列{}n a 的通项公式为32n a n =- , 则它的公差为 ( ) A .2 B .3 C. 2- D.3-8、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0A 4-B 6-C 8-D 10-9、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是 AB.C.3-D .不确定10.在A B C ∆中,若,2A B C A C B <<+=且,最大边为最小边的2倍,则三个角::A B C =( ).A .1:2:3B .2:3:4C .3:4:5D .4:5:611、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为A .6B .8C .10D .12 12、在数列{}n a 中,13a =且对于任意大于1的正整数n ,点1(,)n n a a -在直线60x y --=上,则357a a a -+的值为( ).A .27B .6C .81D .9济源四中高二数学周考试题一(2012-09-09)二、填空题(每小题5分,共20分)13、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.14、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+, 则100a =15. 已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 16.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .三、解答题17、写出以下各数列的通项公式:① ,81,41,21,1-- ② ,1,0,1,0,1,0③ ,544,433,322,211④,6,7,8,9,10⑤ ,31,17,7,5,1 ⑥ ,6463,3635,1615,43 ⑦,301,201,121,61,21 ⑧ ,9999,999,99,918、已知数列{}n a 的通项公式为35n a n =-,证明数列{}n a 是等差数列。
第二章 数列2.4 等比数列第1课时 等比数列的概念与通n 项公式A 级 基础巩固一、选择题1.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D .1 解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1,所以2a 1+a 22a 3+a 4=4a 116a 1=14. 答案:A2.公差不为0的等差数列的第2,3,6项构成等比数列,则公比是( )A .1B .2C .3D .4解析:设等差数列的第2项是a 2,公差是d ,则a 3=a 2+d ,a 6=a 2+4d .由等差数列的第2,3,6项构成等比数列,得(a 2+d )2=a 2(a 2+4d ),则d =2a 2,公比q =a 3a 2=a 2+d a 2=a 2+2a 2a 2=3.答案:C3.若正数a ,b ,c 组成等比数列,则log 2a ,log 2b ,log 2c 一定是( )A .等差数列B .既是等差数列又是等比数列C .等比数列D .既不是等差数列也不是等比数列解析:由题意得b 2=ac (a ,b ,c >0),所以log 2b 2=log 2ac即2log 2b =log 2a +log 2c ,所以log 2a ,log 2b ,log 2c 成等差数列.答案:A4.已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .±6D .±12解析:a =1+22=32, b 2=(-1)(-16)=16,b =±4,所以ab =±6.答案:C5.(2016·四川卷)某公司为激励创新,计划逐步加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2018年B .2019年C .2020年D .2021年解析:设第n 年的研发投资资金为a n ,a 1=130,则a n =130×1.12n -1,由题意,需a n =130×1.12n -1≥200,解得n ≥5,故从2019年该公司全年的投入的研发资金超过200万,选B.答案:B二、填空题6.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为________.解析:a 4=a 1q 3=18×23=1, a 8=a 1q 7=18×27=16, 所以a 4与a 8的等比中项为±16=±4.答案:±47.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列的公比为q ,由⎩⎨⎧a 1+a 3=10,a 2+a 4=5得⎩⎨⎧a 1(1+q 2)=10,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=8,q =12,所以a 1a 2…a n =a n 1q 1+2+…+(n -1)=8n ×⎝ ⎛⎭⎪⎫12n (n -1)2=2-12n 2+72n ,于是当n =3或4时,a 1a 2…a n 取得最大值26=64.答案:648.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 6+a 7a 8+a 9等于________. 解析:设等比数列{a n }的公比为q ,由于a 1,12a 3,2a 2成等差数列, 则2⎝ ⎛⎭⎪⎫12a 3=a 1+2a 2,即a 3=a 1+2a 2, 所以a 1q 2=a 1+2a 1q .由于a 1≠0,所以q 2=1+2q ,解得q =1±2.又等比数列{a n }中各项都是正数,所以q >0,所以q =1+ 2.所以a 6+a 7a 8+a 9=a 1q 5+a 1q 6a 1q 7+a 1q 8=1q 2=1(1+2)2=3-2 2. 答案:3-2 2三、解答题9.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式. 解:设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3.q =2q , 所以2q +2q =203. 解得q =13或q =3. 当q =13时,a 1=18, 所以a n =18×⎝ ⎛⎭⎪⎫13n -1=2×33-n . 当q =3时,a 1=29, 所以a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ; 当q =3时,a n =2×3n -3.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827. (1)求证:{a n }是等比数列,并求出其通项.(2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.解:(1)因为2a n =3a n +1,所以a n +1a n =23. 又因为数列{a n }的各项均为负数,所以a 1≠0,所以数列{a n }是以23为公比的等比数列. 所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1. 所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1, 又因为a 2·a 5=23a 1·1681a 1=827, 所以a 21=94. 又因为a 1<0,所以a 1=-32. 所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *). (2)令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681, 则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项. B 级 能力提升1.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( )A .-4B .-2C .2D .4答案:A2.已知等比数列{a n },若a 3a 4a 8=8,则a 1a 2…a 9=________. 答案:5123.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n ,αβ=1a n .代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n =3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝ ⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0. 所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列. (3)解:当a 1=76时,a 1-23=12, 所以数列⎩⎨⎧⎭⎬⎫a n -23是首项为12,公比为12的等比数列. 所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n , 所以a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…, 即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…. 由函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。
.2 写出下面各数列一个通项公式.(1));1(21,111≥+==+n a a a n n 练习1:111,23(1)n n a a a n +==+≥;(2)11=a ,)2(2211≥+=--n a a a n n n ; 练习2:11=a ,)1(331≥+=+n a a a nn n ; (3)11=a ,)2(21≥+=-n n a a n n 练习3:*12211,3,32().n n n a a a a a n N ++===-∈(4)11=a ,)1(11≥+=+n a n n a n n ; 练习4:11=a ,)1(21≥⋅=+n a a n n n 【解】(1)法一:∵11=a ,)1(211≥+=+n a a n n ∴232112112=+=+=a a , 474312123=+=+=a a 8158712134=+=+=a a 故1212--=n n n a . 法二:∵)1(211≥+=+n a a n n ,∴)2(2121-=-+n n a a ∴{2-n a }是一个首项为-1,公比为21的等比数列, ∴1)21)(1(2--=-n n a ,即1)21(2--=n n a . 练习: ∵111,23(1)n n a a a n +==+≥,∴ 132(3)(1)n n a a n ++=+≥,∴{3n a +}是以134a +=为首项,2为公比的等比数列,∴113422n n n a -++=⋅=,所以该数列的通项n a =123n +-.(备用)∵421+=+n n a a , ∴)4(241+=++n n a a∴数列{4+n a }是以2为首项,2为公比的等比数列,∴1224-⨯=+n n a ,即)(42*∈-=N n a n n .[点评]若数列{a n }满足a 1 =a ,a n +1 = pa n +q (p ≠1),通过变形可转化为)1(11p q a p p q a n n --=--+,即转化为}1{pq a n --是等比数列求解. 解:(2)由)2(2211≥+=--n a a a n n n 得21111+=-n n a a ,即21111=--n n a a ,又111=a ,∴数列{n a 1}是以1为首项,21为公差的等差数列. ∴2121)1(111+=⨯-+=n n a a n ,∴)(12*∈+=N n n a n . 练习2:由n n n a a a +=+331得31111+=+n n a a , 即31111=-+n n a a ,又111=a , ∴数列{n a 1}是以1为首项,31为公差的等差数列. ∴3231)1(111+=⨯-+=n n a a n ,∴)(23*∈+=N n n a n . [点评]若数列{n a }满足a a =1,)0,(1≠+=+c b c ba ca a n n n ,通过取倒可转化为c b a a n n =-+111,即转化为{n a 1}是等差数列求解. (3)∵11=a ,)2(21≥+=-n n a a n n ∴2212⨯=-a a 3223⨯=-a a 4234⨯=-a a … … n a a n n ⨯=--21将上述(n -1)个式子相加,得)432(21n a a n ++++⨯=-即2)1)(2(21-+⨯=-n n a a n ,)(12*∈-+=N n n n a n . 练习3: 2132,n n n a a a ++=-21112*2112(),1,3,2().n n n n n n n n a a a a a a a a n N a a ++++++∴-=-==-∴=∈-{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列.∴*12(),n n n a a n N +-=∈ 112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+ 12*22 (21)21().n n n n N --=++++=-∈[点评]若数列{n a }满足a a =1,)(1}为可以求和的数列数列{nn n n b b a a +=+,则用累加法求解,即)()()(123121--++-+-+=n n n a a a a a a a a .(4)∵11=a ,)1(11≥+=+n a n n a n n , ∴11+=+n n a a n n , ∴2112=a a ,3223=a a ,4334=a a ,…, nn a a n n 11-=-, 将上述(n -1)个式子相乘,得n a a n 11=,即)(1*∈=N n n a n . 练习4:∵ n n n a a ⋅=+21,∴n n n a a 21=+ ∴212=a a ,2232=a a ,3342=a a ,…,112--=n n n a a , 将上述(n -1)个式子相乘,得)1(32112-++++=n n a a ,即)(22)1(*-∈=N n a n n n .[点评]若数列{n a }满足a a =1,)(1}为可以求积的数列数列{nn n n b b a a ⋅=+,则用迭乘法求解,即123121-⋅⋅⋅⋅=n n n a a a a a a a a . 三、课堂小结:1. 已知数列的前几项,求数列的通项公式的方法:观察法.2. 已知递推公式,求特殊数列的通项公式的方法:转化为等差、等比数列求通项;累加法;迭乘法.四、课外作业:《习案》作业二十.精美句子1、善思则能“从无字句处读书”。
1
A.
-----------
3/7 + 2
1 1
c. ---- +
------ 3〃 +1
A. 12n
+1
B.
--------------
1 1
C.--------- +
----------- 2n +1 2〃+ 2
1 1
D・
-------------------------
2/2 +1 2〃 + 2章节基础训练题——数列I
一、选择题
1.(2002京皖春,11)若一个等差数列前3项的和为34,最后3项的和为146,且所
有项的和为390,则这个数列有()
A.13 项
B.12 项
C.11 项
D.10 项
2.(2001京皖蒙春,12)根据市场调查结果,预测某种家用商品从年初开始的〃个月内
累积的需求量S?(万件)近似地满足S n= —(21«—H2—5) (M=1,2, ................ ,12).
按此预测,在木年度内,需求量超过1.5万件的月份是()
A.5月、6月
B.6月、7月
C. 7月、8月
D.8月、9月
3.(2001全国理,3)设数列{/}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()
A.l
B.2
C.4
D.6
4.(2001 ±海春,16)若数列{缶}前8项的值各异,且角+8=向对任意〃EN*都成立,则
下列数列中可取遍0}前8项值的数列为()
A.{O2*+1}
B.{Q3R+1}
C.{。
仙+1}
D.{妃+|}
5.(2001天津理,2)设&是数列{电的前〃项和,且&=疽,则{二}是()
A.等比数列,但不是等差数列
B.等差数列,但不是等比数列
C.等差数列,而且也是等比数列
D.既非等比数列又非等差数列
6.(2000京皖春,13)己知等差数列(a n}满足幻+。
2+。
3+…+〃ioi=。
,则有()
A0]+o]()]>O B.%+oio()VO
(2.03+099=0 D.O5i=51
7.(1997 ±海文,6)设/(〃)=! + - + - + ••• + —'— (〃EN),那么f (/?+!) 一
2 3 3/1-1
/(〃)等于()
1 1
B. --------------- ——+
3〃 3〃 +1 1
D. --------------------------------- 1---------- 1 ---------
3/1 3〃 + 1 3〃 + 2
8.(1997 上海理,6)设f 3)+—1—+・・・+-1-(H EN),那么
〃 +1 〃 + 2 〃 + 3 2n
f (H+1)—f (/?)等于( )
9.(1994全国理,12)等差数列皿}的前〃项和为30,前2〃z项和为100,则它的前
3m
项和为()
A.130
B.170
C.210
D.260
10.(1994全国理,15 )某种细菌在培养过程中,每20分钟分裂一次(一个
分裂二个)经过3小时,这种细菌由1个可以繁殖成()
A.511 个
B.512 个
C.1023 个
D.1024 个
二、填空题
11.(2000全国,15)设{⑴}是首项为1的正项数列,且(〃+1)叫广+如血= 0 3 = 1, 2, 3,…),则它的通项公式是.
12.(2000上海,12)在等差数列*〃}中,若4o=O,则有等式。
1+%+・・・+。
和
1+%+…
+s(〃<19, N)成立.类比上述性质,相应地:在等比数列(M 中,若。
9=1,则有等式成立.
13.(1999±海,10)在等差数列{崩中,满足3叫=7时且4>0, &是数列0}前〃项
的和,若,取得最大值,则〃=.
14.(1998上海文、理,10)在数列{a tl)和{如}中,们=2,且对任意自然数”,3加—。
户0,如是与。
〃+]的等差中项,则{如}的各项和是___ .
参考答案:
ACBBB CDDCB
1 *
2 11 N—; 12^ b\b^''b n—b\b^'''b\j-n (H< 17, 〃仁N );13^ 9; 14^ 2 ---------
n - ~ 3”。