21二次函数教学设计
- 格式:doc
- 大小:106.00 KB
- 文档页数:6
二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
22.1.1二次函数一、教学设计1、知识与技能(1)理解并掌握二次函数的概念和一般形式。
(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。
(3)会列二次函数表达式解决实际问题。
2、过程与方法学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义。
3、情感态度与价值观使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。
二、教学重点理解并掌握二次函数的概念和一般形式。
三、教学难点会列二次函数表达式解决实际问题。
四、教学方法引导法五、学习方法小组合作交流探讨得出二次函数的一般形式六、教学准备多媒体课件七、教学过程(一)复习引入1、一元二次方程的一般形式是什么?2、什么叫函数?3、什么是一次函数?正比例函数?追问:一次函数和正比例函数的图像是什么形状?生:一条直线教师用多媒体展示几张有关二次函数的图像的图片,问同学们这还是我们学过的一次函数和正比例函数的图像吗?学生很容易的回答说不是,接着教师很自然的告诉学生这将是我们本节课要学习的二次函数的图像,我们首先来学习二次函数的定义。
(引出本节课课题)(二)提出学习目标(1)理解并掌握二次函数的概念和一般形式。
(重点)(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。
(3)会列二次函数表达式解决实际问题。
(难点)(三)探究新知问题1 正方体六个面是全等的正方形,设正方体棱长为x,表面积为y,则y 关于x 的关系式为。
问题2n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?教师引导:每个球队n要与其他个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛时同一场比赛,所以比赛的场次数。
问题3某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?教师引导:这种产品的原产量是20件, 一年后的产量是件,再经过一年后的产量是件,即两年后的产量y=________。
二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计一. 教材分析《二次函数与反比例函数》是沪科版数学九年级上册第21章的内容,本章主要让学生掌握二次函数和反比例函数的性质、图象和应用。
内容涵盖了二次函数的定义、开口方向、对称轴、顶点坐标的求法,以及反比例函数的定义、图象、性质等。
这一章内容在初中数学中占有重要地位,对于学生来说,理解掌握二次函数和反比例函数的知识,对于高中阶段的学习有着重要的铺垫作用。
二. 学情分析九年级的学生已经学习过一次函数和二次函数的基础知识,对于函数的概念、图象和性质有一定的了解。
但是,对于二次函数和反比例函数的性质、图象和应用,部分学生可能还存在着一定的困难。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学设计,帮助学生理解和掌握二次函数和反比例函数的知识。
三. 教学目标1.知识与技能:使学生掌握二次函数和反比例函数的定义、性质、图象和应用,能够熟练运用二次函数和反比例函数解决实际问题。
2.过程与方法:通过自主学习、合作交流等方式,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学素养,使学生认识到数学在生活中的重要性。
四. 教学重难点1.重点:二次函数和反比例函数的定义、性质、图象和应用。
2.难点:二次函数和反比例函数的性质、图象和应用的理解和运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数和反比例函数的定义和应用。
2.自主学习法:鼓励学生自主探究二次函数和反比例函数的性质、图象,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,培养学生的合作交流能力。
4.案例教学法:通过分析实际问题,引导学生运用二次函数和反比例函数解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。
2.教学素材:准备相关的实际问题,作为教学案例。
九年级数学二次函数教案(优秀9篇)二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法讨论探索法。
教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
沪科版数学九年级上册21.1《二次函数》教学设计一. 教材分析《二次函数》是沪科版数学九年级上册第21.1节的内容,本节主要让学生了解二次函数的定义、性质及其图象。
通过学习,学生能运用二次函数解决一些实际问题,为高中阶段更深入地学习函数打下基础。
二. 学情分析九年级的学生已经学习了初中阶段的数学基础知识,对函数有一定的认识。
但二次函数相对于一次函数和反比例函数,其性质和图象更为复杂,需要学生具有一定的抽象思维能力。
同时,学生需要掌握一些数学解题技巧和方法,提高解决问题的能力。
三. 教学目标1.让学生了解二次函数的定义、性质及其图象。
2.培养学生运用二次函数解决实际问题的能力。
3.提高学生的抽象思维能力和数学解题技巧。
四. 教学重难点1.二次函数的定义和性质。
2.二次函数图象的特点。
3.运用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生探究二次函数的性质;通过案例分析,让学生了解二次函数在实际问题中的应用;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.制作课件,展示二次函数的图象和性质。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如抛物线、卫星轨迹等,引导学生思考这些问题的数学模型是什么。
让学生认识到二次函数在实际生活中的重要性。
2.呈现(10分钟)介绍二次函数的定义、性质及其图象。
通过课件展示,让学生直观地了解二次函数的特点。
同时,引导学生总结二次函数的性质,如开口方向、对称轴等。
3.操练(10分钟)让学生分组讨论,分析给出的实际问题,将其转化为二次函数模型。
每组选取一个问题,进行解答和分享。
教师在这个过程中给予指导,帮助学生掌握解题方法。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括判断题、填空题和解答题。
完成后,教师进行讲解和点评,确保学生掌握所学知识。
沪科版数学九年级上册21.2.2《二次函数y=a2+b+c的图象和性质》(第5课时)教学设计一. 教材分析《二次函数y=a2+b+c的图象和性质》是沪教版数学九年级上册第21章第2节的内容。
这部分内容是在学生已经掌握了二次函数的一般形式y=ax^2+bx+c的基础上,进一步探讨二次函数的图象和性质。
本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来理解和掌握。
教材中提供了丰富的例题和练习题,以及一些探究活动,帮助学生逐步深入理解二次函数的图象和性质。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式已经有了一定的了解。
但是,对于二次函数的图象和性质,学生可能还存在一些困惑和疑问。
因此,在教学过程中,需要引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
同时,学生对于数学的兴趣和积极性也需要教师的激发和引导。
三. 教学目标1.让学生理解二次函数的图象和性质,能够运用二次函数的性质解决一些实际问题。
2.培养学生的观察能力、分析能力和推理能力。
3.激发学生对数学的兴趣和积极性,培养学生的合作意识和探究精神。
四. 教学重难点1.二次函数的图象和性质的理解和运用。
2.二次函数的图象和性质的推导和证明。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
2.运用多媒体教学手段,展示二次函数的图象和性质的实例,帮助学生直观地理解和掌握。
3.学生进行小组讨论和探究活动,培养学生的合作意识和探究精神。
六. 教学准备1.多媒体教学设备。
2.相关的教学PPT或投影片。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象和性质的概念。
2.呈现(10分钟)利用多媒体展示一些二次函数的图象和性质的实例,让学生直观地感受和理解二次函数的图象和性质。
3.操练(10分钟)让学生通过观察和分析,找出二次函数的图象和性质的特点,并进行推理和证明。
22.1二次函数(第1课时)教学设计一、教学目标:知识技能:1.探索并归纳二次函数的定义;2.能够表示简单变量之间的二次函数关系.数学思考:1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法;2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.解决问题:1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。
情感态度:1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.二、教学重点、难点:教学重点:1.经历探索和表示二次函数关系的过程,获得二次函数的定义。
2.能够表示简单变量之间的二次函数关系.教学难点:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.三、教学方法:教师引导——自主探究——合作交流。
四、教具:小黑板五、教学过程:1.温故知新,引出课题。
1、大家还记得我们学过哪些函数吗?2、它们是如何定义的?3、我们分别从哪些方面对它们进行了研究?2. 实际问题,列出函数关系式,探究新知问题1:已知正方体粉笔盒的棱长x,粉笔盒的表面积为y,探讨y与x有什么关系?问题2:多边形的对角线数d与边数n有什么关系?[1]问题3:某工厂一种产品的年产量是20 件,计划今后两年增加产量。
如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量将随计划所定的x的值而确定,y与x之间的关系应怎样表示?[2]学生活动:学生自主学习教材第4-5页,发现书中显性问题,找出隐含问题,提出新问题,并尝试解决,记录解决问题的方案。
二次函数数学教案优秀5篇初二二次函数教案篇一一。
学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
二。
知识导学(一)情景导学1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是。
2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?设长方形的长为x 米,则宽为米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为.3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?在这个问题中,地板的费用与有关,为元,踢脚线的费用与有关,为元;其他费用固定不变为元,所以总费用y(元)与x(m)之间的函数关系式是。
(二)归纳提高。
上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?一般地,我们称表示的函数为二次函数。
其中是自变量,函数。
一般地,二次函数中自变量x的取值范围是,你能说出上述三个问题中自变量的取值范围吗?(三)典例分析例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值。
(1) y=1― (2)y=x(x-5) (3)y=-x+1 (4) y=3x(2-x)+3x2(5)y=(6) y=(7)y=x4+2x2-1 (8)y=ax2+bx+c例2.当k为何值时,函数为二次函数?例3.写出下列各函数关系,并判断它们是什么类型的函数.⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;⑴圆的面积y(cm2)与它的周长x(cm)之间的函数关系;⑴某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;⑴菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.三。
21.2二次函数的图象和性质第1课时二次函数y=ax2的图象和性质教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.教学过程一、问题引入1.一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线.)2.画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).3.二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)二、新课教授【例1】画出二次函数y=x2的图象.(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.【例2】在同一直角坐标系中,画出函数y=x2及y=2x2的图象.思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。
《2.1 二次函数》教学设计一、教学目标1.通过三种情境探究,对比理解二次函数的概念和一般形式;2.能尝试结合生活实际,确定二次函数自变量的取值范围;3.通过课堂问题探究,能举出生活中有关二次函数的例子.二、教学重难点1.教学重点:通过情境探究,对比理解二次函数的概念和一般形式;2.教学难点:通过问题探究,能举出生活中有关二次函数的例子.三、教学流程教学程序教学活动学生活动设计意图(一)课题引入1.观看篮球比赛视频,视频中显示姚明命中三分球;2.视频结束,显现篮球的运动轨迹在一个平面直角坐标系中的图象.教师发问:在篮球运动过程中,h与t之间的关系是函数吗?学生回答以后,教师继续追问,你能说出函数的定义吗?它是一次函数吗?它是反比例函数吗?3.通过褚时健波折的一生引出本节课关于二次函数的问题情境.学生观看视频.学生自主思考教师提出的问题,并回顾已学的函数知识.让学生从视频中感受数学源于生活,而高于生活.一系列的追问可以让学生充分的思考,唤醒已有的认知.次函数。
a为二次项系数,ax2叫做二次项;b为一次项系数,bx叫做一次项;c为常数项。
思考:判断2233y x x=-+-的二次项,一次项系数和常数项。
学生充分感受知识的生成过程.(三)知识应用例1.下列函数中哪些是二次函数?为什么?(x是自变量)①2y ax bx c=++;②232s t=-;③2y x=;④21yx=;⑤2325y x x=++;⑥22(3)y x x=+-教师追问:判定一个函数是否为二次函数,有哪些注意事项?变式:1.27(3)my m x-=+(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是二次函数?例2.已知某一片“褚橙”果园为矩形,且该矩形的周长为400m,如果设该矩形果园的其中一边长为x米,请表示出这个矩形的面积s与这一边长x的关系.教师追问:在这个问题情境中,x的取值范围有何限制?二次函数自变量的取值范围是所有实数,但在实际问题中,它的自变量的取值范围会有一些限制.教师追问:对于最初的三个问题情境,自变量x的取值范围为多少?问题解决:我们知道2y ax bx c=++(a,b,c是常数,a≠)叫做二次函数的一般式,请举出生活中有关二次函数的例子。
20.1 二次函数一、教学目标:1.知识与技能:通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数.2.数学思考:学生能对具体情境中的数学信息作出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.3.解决问题:体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程.4.情感与态度:通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识.二、教学重点、难点:教学重点:认识二次函数,经历探索函数关系、归纳二次函数概念的过程.教学难点:根据函数解析式的结构特征,归纳出二次函数的概念.三、教学方法和教学手段:在确定二次函数的概念和寻求生活实例中的二次函数关系式的过程中,引导学生观察、比较、分析和概括,以小组讨论的形式,进行合作探究.在教学手段方面,选择了多媒体课件辅助教学的方式.四、教学过程:师生活动设计意图1、 问题感知,情境切入.以“世界杯足球赛”这样 贴近学生生活实际的问题为 背景,力求更好地激发学生的 求知欲,使之成为主动、积极的探索者,并在解决实际问题 的过程中体验成功的快乐,同 时为新课的引出和学习奠定 了基础.这是一道结合实际的自编题,其中的数据来源于自己做的社会调查.足球运动是一教师展示实际问题:项集体运动项目,对运动员的“第 18 届世界杯足球赛”是今年夏天最“热”的一个话题,绿荫场 配合意识要求很高,所以运动上运动员挥汗如雨,绿荫场外教练员运筹帷幄.足球运动是一项对运动员 员上场后 30 分钟左右才进入状态(包括体能、速度和技术意识)要求很高的项目,一般情况下,足 最佳状态,中场休息后状态仍球运动员的状态会随着时间的变化而变化:比赛开始后,球员慢慢进入 能保持到最佳,50 分钟后由状态,中间有一段时间球员保持较为理想的状态,随后球员的状态慢慢 于体能的下降影响了状态的 下降.经实验分析可知:球员的状态综合指数 y 随时间 t 的变化规律有如 发挥. 下关系:4t 100 (0 t 30) y 220 (30 t 50) (1)比赛开- 0始.1后t 2第 91t0分2钟0(时50与比t 赛 开90始) 后第 50 分钟时比较,什么时间球员的状态更好? (2)比赛开始后多少分钟时,球员的状态最好,这样的最好状态能持续 多少分钟?通过学生之间的讨论,很容易得出第(1)问的答案:比赛开始后第 10 分钟时,y = 140;比赛开始后第 50 分钟时,y = 220;所以,比赛开 始后第 50 分钟时球员的状态更好.当学生开始进行第(2)问的解答时,遇到了不同的困难:(1)不知道如何讨论当 50 t 90 时,y 的变化范围?(2)通过模仿一次函数的性质,学生求出了函数 y =- 0.1t 2 9t 20(50 t 90) 中,y 的变化范围是 20 y 220.却无法说出这样做的数学依据是什么? 所有的困难都指向一个焦点问题:y = - 0.1t2 9t 20(50 t 90) 是个什么样的函数?它具有什么样的独特性质?因此,学生产生了研究函数 y = - 0.1t2 9t 20(50 t 90) 的兴趣,教师趁势提出今天的学习内容.2、讲解新课,提炼知识.(1)对比、分析通过两个实例的分析,教师举出生活中的其它实例,感受二次函数的意义,进一步深化对 让学生通过自己列解析式,来二次函数概念的认识.思考所列解析式的结构特征,① 如图,正方形中圆的半径是 4cm,阴影部分的面积 Q(cm2)和正方 为概括二次函数的定义打下形的边长 a(cm)的函数关系式是____________________.基础.答案:Q = a2 - 16 ② 某种药品现价每盒 26 元,计划两年内每年的降价率都为 p,那么, 两年后这种药品每盒的价格 M(元)和年降价率 p 的函数关系式是 ____________________.答案:M = 26(1- p)2(2)类比、迁移教师顺势提问:对 y = - 0.1t2 9t 20(50 t 90) 、Q = a2 - 16 、M = 26(1- p)2 这三个函数你能用一个一般形式来表示吗?教师参与到学生的分组讨论中去,合作交流,注意及时抓住学生智慧火花的闪现进行引导.教师鼓励学生用不同字母表示,只要把握概念的实质即可,必要时可提示学生,类比一次函数的知识.引导学生侧重从解析式(3)二次函数的认识的特征思考,透过“引用不同一般地,我们把形如 y = ax2 + bx + c(a≠0)(说明:括号内的条件, 字母” 的表层现象,看到解在第(4)步之后再补写)的函数叫做二次函数,其中 a、b 分别是二次项系 析式的“结构一致”的本质.数、一次项系数,c 是常数项.敞开思想,广泛议论,实现对二次函数本质的认识.(4)加深理解二次函数的定义给出后,教师引导学生分别讨论“a、b、c 的取值范充分肯定学生的探究结围”.学生就问题自由发言,教师充分引导学生发表自己的看法,只要合 果,使其树立“我也能发现数学”的信心.理,都应肯定.最后师生达到共识:① a 不能为 0,因为当 a=0 时,右边不再是 x 的二次式;② b、c 都能为 0,因为当 b=0 、c=0 或 b、c 都为 0 时,右边仍是 x教师的提问意在引起学的二次式.生的思维冲突,使之产生探究教师对所得出的常量范围,进行概念补写.的欲望.遵循学生认知发展及知识系统的形成过程,由一般到特殊逐步为概念的理解铺平道路.3、分层实践,能力升级.[快速抢答]下面各函数中,哪些是二次函数?(1)① y = 2x2② y = - 1 x2 + 32③ y = 2 (x≠0) ④ y = 15x -1x⑤ y = (x + 1)2 +2 ⑥ y = 3x2-2x-5⑦ y = -x(x2 + 4) ⑧ y = x 2答:①、②、⑤、⑥是二次函数这是一道概念辨析题,目 的是让学生正确识别二次函 数,同时认识二次函数解析式 中 a、b、c 的意义.(2)请写出这些二次函数中 a、b、c 的值.abc① y = 2x2200② y = - 1 x2 + 3-10322⑤ y = (x + 1)2 +2123= x2 + 2x + 3⑥ y = 3x2-2x-53-2-5特别强调:只有把解析式⑤整理成一般形式,才能正确判断解析式 中的 a、b、c.1.[轻松完成]:矩形的周长为 20cm,它的面积 S(cm2)和它的一边长 a(cm)的函数关系式是怎样的?并求出此函数的定义域.答案:S = a(10-a) = -a2 + 10a,其中函数的定义域为:0< a < 10.通过求函数的定义域,让学生体会实际问题中的二次2.[物理中的数学]:钢球从斜面顶端由静止(运动开始时的速度 函数的特点。
第二章二次函数
《二次函数》教学设计说明
深圳市大鹏新区葵涌中学王思诺
本节通过对具体情境的分析,概括出二次函数的表达形式,明确二次函数的概念.通过例题和学生列举的实例可以丰富对二次函数的认识,理解二次函数的意义.
一、教材分析
本节通过对具体情境的分析,概括出二次函数的表达形式,明确二次函数的概念.通过例题和学生列举的实例可以丰富对二次函数的认识,理解二次函数的意义.
二、学情分析
函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要的数学概念,是研究现实世界变化规律的重要数学模型.学生曾在七年级下册、八年级上册学习过“变量之间的关系”和“一次函数”和九年级上册学习过“反比例函数”等内容,对函数已经有了深刻的认识,在此基础上讨论二次函数及其性质可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,这对后继学习会产生积极影响.
三、学习目标
1、结合具体实际问题和已有函数知识,发现并归纳出两个变量之间的关系;说出二次函数的表达式及其限制条件的必要性;
2、能根据一些具有实际意义的问题,确定二次函数表达式;能辨析、区分一个函数是不是二次函数;
3、结合例子说出表达式及自变量的范围并解决变式练习.
重难点:会叙述二次函数的定义及一般形式,并作出正确的判断;能用数学符号表示简单变量之间的二次函数关系.
四、评价设计
1、结合具体例子,发现归纳出两个变量之间的关系(目标达成率100%);
2、说出二次函数的表达式及限制条件(目标达成率98%);
3、能辨析区分一个函数是不是二次函数(目标达成率95%);
4、能根据已知条件列出二次函数的表达式及自变量的范围(目标达成率90%);
5、解决变式练习(目标达成率85%).
五、学习过程
(一)知识准备
说说什么是函数?
我们学习过的函数
有
(二)研讨交流
1、研讨问题1:
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
(独立思考)
①说一说问题中有哪些变量?其中哪些是自变量?哪些因变量?
②设果园增种x棵橙子树,则果园共有棵橙子树,
这时平均每棵树结个橙子
③如果果园橙子的总产量为y个,请写出y与X之间的关系式:
y= .化简得:
y=
2、研讨问题2
银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储存转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)
(合作交流)
①本金:;
②一年到期后,利息:;本息和;
③两年到期后,本金;利息:;
本息和;
④请写出y与x之间的关系式:
试试身手:
请用适当的函数解析式表示下列问题中的两个变量 y 与 x 之间的关系:
①某商店1月份的利润是2万元,2、3月份利润逐月增长,这两个月利润的月平均增长率为x,3月份的利润为y= 即:
y=
②用总长为60 m的篱笆围成矩形场地,矩形面积y (m2)与矩形一边长x(m)之间是函数关系y= 即:y=
③设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是210元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).
3、研讨问题3:
上面三个问题中的函数解析式具有哪些共同的特征?
说一说二次函数的定义及一般形式呢?
一般地形
如 的函数叫做x 的二次函数.
友情提示: 二次函数的特点
(1)y=ax 2--- (a ≠0,b=0,c=0).
(2)y=ax ²+c --- (a ≠0,b=0,c ≠0)
(3)y=ax ²+bx ---(a ≠0,b ≠0,c=0
再试身手:下列函数中哪些是二次函数?
( )
①y=ax ²+bx+c ②y=2x ²③y=-5x ²+6
④ y=(x+1)(x-2) ⑤y=2x(x+1)²-2x ²
⑥y=232--x x ⑦x y 2=⑧26x
y = 活学活用:
【例2】底面为正方形的长方体,已知底面边长是a ,长方体的高为5,体积为v ,
(1)求v 与a 之间的函数表达式: , v 是a 的______函数, 其中二次项系数为: 一次项系数为: 常数项为:
(2)当a=2时,v=
【例3】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场每件提价x 元,请你得出每天销售利润y 与售价的函数表达式:
化为一般式为:,y 是x 的函数.
(三)课堂练习
1.下列函数中,不是二次函数()
A.162+=x y
B.26
1x y -= C.12+=x y )2)(1(-+=x x y D.
2 .函数y=(m-n)x 2+mx+n 是二次函数的条件是()
A .m 、n 为常数,且m ≠0
B .m 、n 为常数,且m ≠n
C .m 、n 为常数,且n ≠0
D .m 、n 可以为任何常数
3.如果函数1232++=+-kx x y k k 是二次函数,则k 的值是______ 变式训练如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______
4.半径为3的圆,如果半径增加2x ,面积S 与x 之间的函数表达式
为:
5.某公司1月份营业额100万元,三月份营业额为y 万元,如果每月的增长率为x ,则y 与x 的关系式为:
6.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏,
1)∠B= _
2)用含有x 代数式分别表示:BC AD
3)求梯形的面积y 与高x 的表达式.
7.已知一张三角形纸片ABC,面积为25,BC边的长为10,∠A和∠B都是锐角,M为AB边上的一个动点,且M不与点A点B重合),过点M作MN∥BC交AC 于点N,设MN=x,请用x表示△ANM的面积s.
(四)全课小结
(五)课堂检测
1下列函数中:①y=3;②y=2x;③y=22+x2-x3;④m=3-t-t2
⑤y=(x-1)(x+2) ⑥y= (x+1)2 ⑦y=2(x+3)2-2x2⑧y=1-x2是二次函数的是_____
2若y=(m2+m) 是二次函数,则m的值为
3若函数y=(a—b)x2+ a x+ b是关于x的二次函数,则()
A.a ,b为常数且a≠0
B. a ,b为常数且
b≠0
C. a ,b为常数且a≠b
D. a ,b可为任何实数
4.某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x元/套,请你得出每天销售利润 y 与售价x的函数表达
式:.
(六)能力提升
1.一个菱形的边长为xcm,它的面积为ycm .
(1)当一个内角为60°时,则y与x之间的函数关系式
(2)当一个内角为45°时,则 y与x之间的函数关系
式
2已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.。