计算机图形学裁剪技术
- 格式:ppt
- 大小:389.00 KB
- 文档页数:35
实验题目:实验三图形裁剪算法1.实验目的:理解区域编码(Region Code,RC)设计Cohen-Sutherland直线裁剪算法编程实现Cohen-Sutherland直线裁剪算法2.实验描述:设置裁剪窗口坐标为:wxl=250;wxr=850;wyb=250;wyt=450;裁剪前如下图所示:裁剪后结果为:3.算法设计:Cohen-Sutherland 直线裁剪算法:假设裁剪窗口是标准矩形,由上(y=wyt)、下(y=wyb)、左(x=wxl)、右(x=wxr)四条边组成,如下图所示。
延长窗口四条边形成 9个区域。
根据被裁剪直线的任一端点 P(x,y)所处的窗口区域位置,可以赋予一组4位二进制区域码C4C3C2C1。
编码定义规则:第一位C1:若端点位于窗口之左侧,即 X<Wxl,则 C1=1,否则 C1=0。
第二位C2:若端点位于窗口之右侧,即 X>Wxr,则 C2=1,否则 C2=0。
第三位C3:若端点位于窗口之下侧,即 Y<Wyb,则 C3=1,否则 C3=0。
第四位C4:若端点位于窗口之上侧,即 Y>Wyt,则 C4=1,否则 C4=0。
裁剪步骤:1. 若直线的两个端点的区域编码都为0,即 RC1|RC2=0(二者按位相或的结果为0,即 RC1=0 且RC2=0),说明直线两端点都在窗口内,应“简取”。
2. 若直线的两个端点的区域编码都不为0,即 RC1&RC2≠0(二者按位相与的结果不为0,即 RC1≠0且 RC2≠0,即直线位于窗外的同一侧,说明直线的两个端点都在窗口外,应“简弃”。
3. 若直线既不满足“简取”也不满足“简弃”的条件,直线段必然与窗口相交,需要计算直线与窗口边界的交点。
交点将直线分为两段,其中一段完全位于窗口外,可“简弃”。
对另一段赋予交点处的区域编码,再次测试,再次求交,直至确定完全位于窗口内的直线段为止。
4. 实现时,一般按固定顺序左(x=wxl)、右(x=wxr)、下(y=wyb)、上(y=wyt)求解窗口与直线的交点。
简单多边形裁剪算法摘要:多边形裁剪算法与线性裁剪算法具有更广泛的实用意义,因此它是目前裁剪研究的主要课题。
本文主要介绍了一种基于多边形顶点遍历的简单多边形裁剪算法,它有效降低了任意多边形裁剪复杂度。
通过记录交点及其前驱、后继信息,生成结果多边形,该算法简化了交点的数据结构,节省了存储空间,降低了算法的时间复杂度,具有简单、易于编程实现、运行效率高的特点。
关键词:多边形裁剪;交点;前驱;后继;矢量数组一、技术主题的基本原理简单多边形裁剪算法综合考虑现有多边形裁剪算法的优缺点,它是一种基于多边形顶点遍历来实现简单多边形裁剪工作的。
其主要的原理是遍历多边形并把多边形分解为边界的线段逐段进行裁剪,输出结果多边形。
二、发展研究现状近年来,随着遥感绘图、CAD辅助设计、图象识别处理技术的发展,图形裁剪算法从最初在二维平面上线和图形的裁剪扩展到三维空间里体和场的裁剪,国内外相继提出不少行之有效的算法,但越来越复杂的图形和计算也对算法的速度和适用性提出了越来越高的要求。
因此,不断简化算法的实现过程,完善细节处理,满足大量任意多边形的裁剪也就成了当今算法研究的焦点之一。
以往多边形裁剪算法不是要求剪裁多边形是矩形,就是必须判断多边形顶点的顺时针和逆时针性,即存在不实用或者是增加了多边形裁剪算法的难度。
为了解决现在的问题,我们研究现在的新多边形算法,其中,裁剪多边形和被裁剪多边形都可以是一般多边形,且不需要规定多边形输入方向。
它采用矢量数组结构,只需遍历剪裁多边形和被裁剪多边形顶点即完成多边形的裁剪,具有算法简单、运行效率高的特点。
三、新算法设计1、算法的思想本算法是为了尽量降低任意多边形裁剪算法复杂度而提出的,其主要思想是采用矢量数组结构来遍历裁剪多边形和被裁多边形顶点,记录裁剪多边形和被裁减多边形交点及其前驱、后继信息,并通过记录相邻交点的线段,然后通过射线法选择满足条件的线段,之后进行线段连接,输出对应的裁剪结果。
实验2使用线段剪裁Cohen——sutherland算法一.实验目的及要求根据Cohen——sutherland算法,掌握直线剪裁的程序设计方法。
注意,不能使用语言库中的画圆函数。
二.理论基础将不需要裁剪的直线挑出,并删去其中在窗外的直线,然后对其余直线,逐条与窗框求交点,并将窗框外的部分删去。
采用Cohen-Sutherland直线剪裁的算法一区域编码为基础,将窗口及周围的八个方向以4位的二进制数进行编码。
4个位分代表窗外上,下,左右的编码值。
三、算法分析1. Cohen—SutherLand直线裁剪算法裁剪的实质,就是决定图形中那些点、线段、文字、以及多边形在窗口之内。
Cohen—SutherLand直线裁剪算法的基本大意是:对于每条线段P1P2,分为三种情况处理。
1) 若P1P2完全在窗口内,则显示该线段P1P2,简称“取”之。
2) 若P1P2明显在窗口外,则丢弃该线段P1P2,简称“弃”之。
3) 若线段既不满足“取”的条件,也不满足“弃”的条件,则把线段分为两段。
其中一段完全在窗口外,可弃之。
然后对另一段重复上述处理。
为了使计算机能够快速地判断一条线段与窗口属何种关系,采用如下的编码方法。
延长窗口的边,把未经裁剪的图形区域分为9个区,每个区具有一个四位代码,即四位二进制数,从左到右各位依次表示上、下、左、右。
裁剪一条线段时,先求出端点P1P2所在的区号code1和code2。
若code1=0且code2=0,则说明P1和P2均在窗口内,那么整条线段也比在窗口内,应取之。
若code1和code2经按位与运算后的结果code1&code2不为0,则说明两个端点同在窗口的上方、下方、左方或右方。
若上述两种条件均不成立,则按第三种情况处理,求出线段与窗口某边的交点,在交点处把线段一分为二,其中必有一段完全在窗口外,可以弃之。
再对另一段重复进行上述处理。
计算线段与窗口边界(或其延长线)的交点,属于线段与直线求交问题。
计算机图形学的裁剪算法
计算机图形学的裁剪算法是图形学的一种重要算法,它的基本思想是将一个完整的几何图形(如线段、多边形、圆圈等)按照指定的裁剪窗口(矩形)进行裁剪,只保留在窗口内的部分,而把窗口外的部分抛弃掉。
由于裁剪算法的应用非常广泛,像图形显示系统、图形设备接口(GDI)和图形处理器(GPU)等都广泛使用裁剪算法。
计算机图形学的裁剪算法可以分为两种:2D裁剪算法和
3D裁剪算法。
2D裁剪算法是基于二维空间的,它将一个几何
图形投影到一个平面上,然后按照指定的窗口裁剪;而3D裁
剪算法是基于三维空间的,它将一个几何图形投影到一个三维空间,然后按照指定的窗口裁剪。
2D裁剪算法的基本步骤如下:首先,将要裁剪的几何图
形投影到平面上;其次,计算出投影后的几何图形以及裁剪窗口之间的交点;最后,将裁剪窗口内的部分保留,而把窗口外的部分抛弃掉。
3D裁剪算法的基本步骤如下:首先,将要裁剪的几何图
形投影到三维空间;其次,计算出投影后的几何图形以及裁剪窗口之间的交点;最后,将裁剪窗口内的部分保留,而把窗口外的部分抛弃掉。
计算机图形学的裁剪算法在图形处理中有着重要的作用,它不仅能够有效减少图形处理时间,而且还可以节约存储空间。
此外,它还可以有效提高图形处理效率,提高图形显示效果。
但是,它也存在着一定的局限性,比如,当几何图形的运动变得复杂时,它就会变得费时费力,这就对性能产生了一定的影响。
总之,计算机图形学的裁剪算法是图形学的重要算法,它的应用非常广泛,在图形处理中有着重要的作用。
虽然它也存在着一定的局限性,但是它仍然是一种有效的图形处理算法。
一、实验目的:直线段的裁剪:编码裁剪算法,中点分割裁剪算法。
二、实验内容://BasicGraph.cpp//请将下列裁剪程序补充完整,并用注释说明是何种裁剪算法void Encode (int x,int y,int *code,int XL,int XR,int YB,int YT) {//请将此程序补充完整int c=0;if(x<XL) c=c|LEFT;else if(x>XR) c=c|RIGHT;if(y<YB) c=c|BOTTOM;else if(y>YT) c=c|TOP;(*code)=c;}//编码裁剪算法:void C_S_Line(POINT &p1,POINT &p2,int XL,int XR,int YB,int YT) {//请将此程序补充完整int x1,x2,y1,y2,x,y,code1,code2,code;x1=p1.x; x2=p2.x; y1=p1.y; y2=p2.y;Encode(x1,y1,&code1,XL,XR,YB,YT);Encode(x2,y2,&code2,XL,XR,YB,YT);while(code1!=0||code2!=0){if((code1&code2)!=0) return;code=code1;if(code1==0) code=code2;if((LEFT&code)!=0){x=XL;y=y1+(y2-y1)*(XL-x1)/(x2-x1);}else if((RIGHT&code)!=0){x=XR;y=y1+(y2-y1)*(XR-x1)/(x2-x1);}if((BOTTOM&code)!=0){y=YB;x=x1+(x2-x1)*(YB-y1)/(y2-y1);}else if((TOP&code)!=0){y=YT;x=x1+(x2-x1)*(YT-y1)/(y2-y1);}if(code==code1){x1=x;y1=y;Encode(x,y,&code1,XL,XR,YB,YT);}else{x2=x;y2=y;Encode(x,y,&code2,XL,XR,YB,YT);}}p1.x=x1;p1.y=y1;p2.x=x2;p2.y=y2;}int IsInArea(POINT point,int XL,int XR,int YB,int YT){//请将此程序补充完整if(point.x>=XL && point.x<=XR && point.y>YB && point.y<YT) return 1;else return 0;}int NotIntersect(POINT begin,POINT end,int XL,int XR,int YB,int YT) {//请将此程序补充完整int maxx,maxy,minx,miny;maxx=(begin.x>end.x)?begin.x:end.x;minx=(begin.x<end.x)?begin.x:end.x;maxy=(begin.y>end.y)?begin.y:end.y;miny=(begin.y<end.y)?begin.y:end.y;if(maxx<XL|| minx>XR||maxy<YB||miny>YT) return 1;else return 0;}//中点裁剪算法:POINT ClipMid(POINT begin,POINT end,int XL,int XR,int YB,int YT){//请将此程序补充完整POINT mid,temp;if(IsInArea(begin,XL,XR,YB,YT)) temp=begin;else if(NotIntersect(begin,end,XL,XR,YB,YT)) temp=begin;else{mid.x=(begin.x+end.x)/2;mid.y=(begin.y+end.y)/2;if(abs(mid.x-end.x)<=1&& abs(mid.y-end.y)<=1) temp=mid;else{if(NotIntersect(begin,mid,XL,XR,YB,YT))temp=ClipMid(mid,end,XL,XR,YB,YT);elsetemp=ClipMid(begin,mid,XL,XR,YB,YT);}}return temp;}//Liang-Barsky直线裁剪算法:void ClipParameter(POINT &p1,POINT &p2,int XL,int XR,int YB,int YT) {float u1=0.0,u2=1.0;float dx=p2.x-p1.x,dy=p2.y-p1.y;if(clipTest(-dx,p1.x-XL,&u1,&u2))if(clipTest(dx,XR-p1.x,&u1,&u2))if(clipTest(-dy,p1.y-YB,&u1,&u2))if(clipTest(dy,YT-p1.y,&u1,&u2)){if(u2<1.0){p2.x=p1.x+u2*dx;p2.y=p1.y+u2*dy;}if(u1>0.0){p1.x=p1.x+u1*dx;p1.y=p1.y+u1*dy;}}}int clipTest(float p,float q,float *u1,float *u2){float r;int remainFlag=1;if(p<0.0){r=q/p;if(r>*u2) remainFlag=0;else if(r>*u1) *u1=r;}else if(p>0.0){r=q/p;if(r<*u1) remainFlag=0;else if(r<*u2) *u2=r;}else //*p=0if(q<0.0) remainFlag=0;return remainFlag;}//逐边裁剪算法://typedef struct tRes { int yes,isIn; POINT pout;} Res;Res TestIntersect(int edge,int type,POINT p1,POINT p2){//判断p2是否在所裁剪的窗边edge的内侧,是否与p1点分别在窗边edge的异侧float dx,dy,m;Res res;int isIn=0,yes=0;POINT pout;dy=p2.y-p1.y;dx=p2.x-p1.x;m=dy/dx;switch(type){case 1: /*right*/if(p2.x<=edge){isIn=1;if(p1.x>edge)yes=1;}else if(p1.x<=edge)yes=1;break;case 2: /*bottom*/if(p2.y>=edge){isIn=1;if(p1.y<edge)yes=1;}else if(p1.y>=edge)yes=1;break;case 3: /*left*/if(p2.x>=edge){isIn=1;if(p1.x<edge)yes=1;}else if(p1.x>=edge)yes=1;break;case 4: /*top*/if(p2.y<=edge){isIn=1;if(p1.y>edge)yes=1;}else if(p1.y<=edge)yes=1;default: break;}if(yes){if((type==1) || (type==3)){ pout.x=edge;pout.y=p1.y+m*(pout.x-p1.x);}if((type==2) || (type==4)){ pout.y=edge;pout.x=p1.x+(pout.y-p1.y)/m;}}res.isIn=isIn;res.yes=yes;res.pout=pout;return res;}int clipSingleEdge(int edge,int type,int nin,POINT pin[50],POINT pout[50])/*对多边形pin与窗边edge进行裁剪,返回裁剪后的多边形pout及点数*/ {int i,k=0;POINT p;Res res;p.x=pin[nin-1].x;p.y=pin[nin-1].y;for(i=0;i<nin;i++){res=TestIntersect(edge,type,p,pin[i]);if(res.yes){ pout[k].x=res.pout.x;pout[k].y=res.pout.y;k++;} if(res.isIn){ pout[k].x=pin[i].x;pout[k].y=pin[i].y;k++;}p.x=pin[i].x;p.y=pin[i].y;}return k;}void ClipEdgePolygon(POINT ps[50],int &n,int XL,int XR,int YB,int YT) { /*对多边形ps进行逐边裁剪*/int n1=0,n2=0;POINT pt[50];n1=clipSingleEdge(XR,1,n,ps,pt);n2=clipSingleEdge(YB,2,n1,pt,ps);n1=clipSingleEdge(XL,3,n2,ps,pt);n2=clipSingleEdge(YT,4,n1,pt,ps);n=n2;}//多边形编码裁剪算法:void ClipEncodePolygon(POINT ps[50],int &n,int XL,int XR,int YB,int YT) {POINT tp[50];int k=0,m;int code1,code2,code;int x,y;for(int i=0;i<n-1;i++){Encode(ps[i].x,ps[i].y,&code1,XL,XR,YB,YT);Encode(ps[i+1].x,ps[i+1].y,&code2,XL,XR,YB,YT);code=code1;m=i;for(int j=0;j<2;j++){if((code1 & code2)!=0) //线段两端都在窗口外的同一侧{switch(code){case 1:x=XL;y=ps[m].y;break;case 2:x=XR;y=ps[m].y;break;case 4:x=ps[m].x;y=YB;break;case 5:x=XL;y=YB;break;case 6:x=XR;y=YB;break;case 8:x=ps[m].x;y=YT;break;case 9:x=XL;y=YT;break;case 10:x=XR;y=YT;break;}tp[k].x=x;tp[k].y=y;k++;}else if((code1 & code2)==0) //线段两端不在窗口的同一侧{if(code==0){tp[k]=ps[m];k++;}else if ((LEFT & code) !=0) //线段与左边界相交 {x=XL;y=ps[i].y+(ps[i+1].y-ps[i].y)*(XL-ps[i].x)/(ps[i+1].x-ps[i].x);if(y>YB && y<YT){tp[k].x=x;tp[k].y=y;k++;}}else if((TOP & code)!=0) //线段与上边界相交{y=YT;x=ps[i].x+(ps[i+1].x-ps[i].x)*(YT-ps[i].y)/(ps[i+1].y-ps[i].y);if(x>XL && x<XR){tp[k].x=x;tp[k].y=y;k++;}}else if((RIGHT & code)!=0) //线段与右边界相交 {x=XR;y=ps[i].y+(ps[i+1].y-ps[i].y)*(XR-ps[i].x)/(ps[i+1].x-ps[i].x);if(y>YB && y<YT){tp[k].x=x;tp[k].y=y;k++;}}else if((BOTTOM & code) != 0) //线段与下边界相交 {y=YB;x=ps[i].x+(ps[i+1].x-ps[i].x)*(YB-ps[i].y)/(ps[i+1].y-ps[i].y);if(x>XL && x<XR){tp[k].x=x;tp[k].y=y;k++;}}}code=code2;m++;}//for(j)}//for(i)for(i=0;i<k;i++)ps[i]=tp[i];n=k;}//函数的调用,裁剪窗口的调整//DrawView.cpp文件//裁剪窗口的调整CDrawView::CDrawView(){/************请在此函数中将裁剪窗口大小调整为长度100单位像素,宽度50单位像素的矩形********/// TODO: add construction code here//m_pWidth=1;m_pStyle=PEN_STYLE_SOLID;m_pColor=RGB(0,0,0);m_FFlag=0;m_FColor=RGB(0,0,0);m_HFlag=0;CurrentDraw=DRAW_VCLINE;m_Num=0;m_Drag=0;m_HCursor=AfxGetApp()->LoadStandardCursor(IDC_CROSS);//DrawType=0;ClipFlag=0;ClipType=-1;XL=200;XR=300;YB=150;YT=200;//XL=200;XR=500;YB=150;YT=400;ClipWindowColor=RGB(192,192,50);}void CDrawView::OnDraw(CDC* pDC){CDrawDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(ClipFlag){CPen NewPen,*pOldPen;NewPen.CreatePen(PS_DASH,1,ClipWindowColor);pOldPen=pDC->SelectObject(&NewPen);pDC->MoveTo(XL,YB);pDC->LineTo(XR,YB);pDC->LineTo(XR,YT);pDC->LineTo(XL,YT);pDC->LineTo(XL,YB);}int index;index=pDoc->GetShapeNumber();for(int i=0;i<index;i++)pDoc->GetShape(i)->Drawing(pDC);}void CDrawView::OnInitialUpdate(){CSize sizeTotal;sizeTotal.cx = 640; sizeTotal.cy = 480;SetScrollSizes(MM_TEXT, sizeTotal);// TODO: Add your specialized code here and/or call the base class }void CDrawView::OnLButtonDown(UINT nFlags, CPoint point){// TODO: Add your message handler code here and/or call defaultCClientDC dc(this);OnPrepareDC(&dc);dc.DPtoLP(&point);m_pPrev=point;m_pOrigin=point; //点击鼠标左键作为拖动绘图的第一点m_Drag=1;SetCapture();RECT rect;GetClientRect(&rect);ClientToScreen(&rect);ClipCursor(&rect);CScrollView::OnLButtonDown(nFlags, point);}//函数调用处void CDrawView::OnLButtonUp(UINT nFlags, CPoint point){// TODO: Add your message handler code here and/or call defaultif(m_Drag){m_Drag=0;ReleaseCapture();ClipCursor(NULL);CDrawDoc *pDoc=GetDocument();CShape *pShape;POINT p1,p2;if(CurrentDraw==DRAW_VCLINE || CurrentDraw==DRAW_DDALINE ||CurrentDraw==DRAW_MIDLINE || CurrentDraw==DRAW_BSHLINE){if(ClipFlag){switch(ClipType){/****************编码裁剪函数调用处*************/case CLIP_ENCODE:C_S_Line(m_pOrigin,m_pPrev,XL,XR,YB,YT); break; /****************中点分割裁剪函数调用处************/case CLIP_MIDPOINT: ClipMid(m_pPrev,m_pOrigin,XL,XR,YB,YT);p1=ClipMid(m_pPrev,m_pOrigin,XL,XR,YB,YT);p2=ClipMid(m_pOrigin,m_pPrev,XL,XR,YB,YT);m_pOrigin=p1;m_pPrev=p2;break;case CLIP_PARAMETER:ClipParameter(m_pOrigin,m_pPrev,XL,XR,YB,YT);break;}}pShape=newCLine(m_pOrigin,m_pPrev,m_pWidth,m_pStyle,m_pColor,DrawType);pDoc->AddShape(pShape);}if(CurrentDraw==DRAW_RECTANGLE){if(ClipType==CLIP_WINDOW){XL=m_pOrigin.x;XR=m_pPrev.x;YB=m_pOrigin.y;YT=m_pPrev.y;}else{pShape=newCRectangle(m_pOrigin,m_pPrev,m_pWidth,m_pStyle,m_pColor,m_FFlag,m_FColor,m_HFlag,m_Hatch);pDoc->AddShape(pShape);}}if( CurrentDraw==DRAW_VCCIRCLE || CurrentDraw==DRAW_MIDCIRCLE || CurrentDraw==DRAW_BSHCIRCLE){pShape=newCCircle(m_pOrigin,m_pPrev,m_pWidth,m_pStyle,m_pColor,m_FFlag,m_FColor,m_HFlag,m_Hatch,DrawType);pDoc->AddShape(pShape);}if(CurrentDraw==DRAW_VCELLIPSE || CurrentDraw==DRAW_MIDELLIPSE) {pShape=newCEllipse(m_pOrigin,m_pPrev,m_pWidth,m_pStyle,m_pColor,m_FFlag,m_FColor,m_HFlag,m_Hatch,DrawType);pDoc->AddShape(pShape);}pDoc->UpdateAllViews(NULL);}CScrollView::OnLButtonUp(nFlags, point);}三实验结果:四、实验总结通过这次试验使我了解到如何运用计算机程序对窗口进行剪裁,了解到编码剪裁算法直观方便,速度较快,中点分割剪裁算法不用进行乘除运算,剪裁效率高,Liang-Barsky直线裁剪算法更快。
裁剪算法的发展与应用裁剪算法的发展与应用是计算机图形学领域的一个重要研究方向。
裁剪算法主要用于确定哪些图形对象或图像区域需要在屏幕上显示,从而提高渲染效率和节省计算资源。
随着计算机图形学的发展,裁剪算法也逐步演化和改进。
以下是裁剪算法的一些发展与应用:1. Cohen-Sutherland裁剪算法:Cohen-Sutherland算法是早期裁剪算法的一种,用于线段的裁剪。
该算法通过将屏幕区域划分为九个区域(中心、上、下、左、右、左上、右上、左下、右下),根据线段的端点所在的区域来判断线段是否需要被裁剪。
这种算法被广泛应用于计算机图形学领域。
2. Cyrus-Beck裁剪算法:Cyrus-Beck算法是一种更普遍的线段裁剪算法。
与Cohen-Sutherland算法不同的是,Cyrus-Beck算法不仅仅裁剪直线段,还能裁剪任意形状的曲线段。
该算法基于向量运算,通过计算线段与裁剪边界的交点来确定裁剪结果。
3. Sutherland-Hodgman多边形裁剪算法:Sutherland-Hodgman算法是一种用于裁剪多边形的算法。
该算法通过逐一处理多边形的顶点,并根据顶点与裁剪边界的相对位置来确定裁剪结果。
该算法可以应用于各种形状的多边形裁剪,例如矩形、圆形、星形等。
4. 裁剪算法在实际应用中的应用:裁剪算法在计算机图形学和计算机视觉等领域有广泛的应用。
例如,在计算机游戏中,裁剪算法用于确定场景中需要渲染的可见物体,从而提高游戏的渲染性能。
在计算机辅助设计中,裁剪算法用于显示和编辑图像区域,例如裁剪图像中的不需要的部分或者提取感兴趣的区域。
此外,裁剪算法还在计算机辅助制造、计算机动画等领域有广泛的应用。
总之,裁剪算法的发展和应用为计算机图形学的发展提供了重要的技术基础,同时也为各个应用领域提供了一种实用的算法工具。
随着计算机技术的不断发展,裁剪算法的研究和应用仍将继续推进。
图形裁剪的概念图形裁剪是一种计算机图形学技术,它用于在图形显示过程中从原始图形中裁剪出用户需要的部分,以便将其显示或保存。
图形裁剪可以用于各种图形应用程序,包括计算机游戏、动画、CAD、虚拟现实等等。
在图形显示过程中,图形裁剪通常被认为是一项重要的技术,因为它可以大大提高图形显示的效率和质量。
图形裁剪的原理是基于几何形状相交的概念,即裁剪区域与原始图形之间的相交。
在使用图形裁剪时,需要首先定义一个裁剪区域,然后在该区域与原始图形之间进行相交计算,从而找到需要保留的部分。
裁剪区域可以采用不同的形状和尺寸,例如矩形、圆形、椭圆形等等,具体选择取决于应用需求。
在实际应用中,图形裁剪可以用于各种情况,例如在一些图片编辑软件中,用户可能需要对图片进行裁剪以符合网页尺寸;在科学研究中,图形裁剪可以用于过滤和分析大量数据;在游戏设计中,图形裁剪可以用于限制视野和物体的出现。
图形裁剪可以分为硬件裁剪和软件裁剪两种技术。
硬件裁剪是由图形处理器(GPU)硬件直接实现的裁剪,所以速度快,但可裁剪形状和尺寸通常较为固定。
软件裁剪是由应用程序软件通过算法实现的裁剪,可自由选择裁剪形状和尺寸,但速度比较慢。
在图形裁剪中,还有一项称为“后剖面裁剪(Backface Culling)”的技术,用于从渲染队列中删除不可见的三角形和面片以提高渲染效率。
在此技术中,判断三角形和面片是否可见是通过计算它们的法向量来实现的,只有正面朝向摄像机的面才是可见的。
此外,在图形裁剪中,还有另一项技术,称为“裁剪链(Clipping Chain)”。
当裁剪区域超出屏幕边界时,由于GPU只能处理屏幕内的图像,因此需要对图形进行逐步裁剪,直至完全进入屏幕。
这一过程称为裁剪链。
总之,图形裁剪是一项重要的计算机图形学技术,可用于各种图形应用程序中,例如游戏、动画和CAD等。
硬件裁剪和软件裁剪是两个主要的实现技术,后剖面裁剪和裁剪链是常用的技术,它们可以提高图形显示效率和质量。