基于深度学习改善英文写作
- 格式:pdf
- 大小:1.60 MB
- 文档页数:3
deep learning英语作文篇1Deep learning is an amazing and revolutionary field that has transformed the way we think about technology and problem-solving! It's like a magic key that unlocks countless possibilities. So, what exactly is deep learning? Well, it's a branch of artificial intelligence that involves training complex neural networks to learn and make predictions based on large amounts of data. Let's take the example of self-driving cars. How do they navigate the roads safely and recognize traffic signals? It's all thanks to deep learning! The system is trained on countless images and data related to roads and traffic, enabling it to make split-second decisions. Or think about image recognition software. How can it accurately distinguish between different objects? Again, deep learning plays a crucial role. It analyzes patterns and features in the images, allowing it to classify and identify with astonishing accuracy. Isn't it mind-blowing? Deep learning is not just a buzzword; it's a powerful tool that is changing our lives in so many ways. It makes us wonder what else it will enable us to achieve in the future. The potential is truly limitless!篇2Deep learning is undoubtedly one of the most revolutionary technologies of our time! How will it shape the future of our society? Let'sexplore this fascinating topic.In the field of healthcare, deep learning has brought about remarkable changes. It can analyze vast amounts of medical data with astonishing accuracy, helping doctors diagnose diseases that were once difficult to identify. Isn't this a huge leap forward? But wait, there are also challenges. For instance, the widespread application of deep learning could lead to significant changes in the employment structure. Many routine jobs might be replaced by automated systems based on this technology. Will this cause widespread unemployment? That's a big question mark!However, we should not be overly pessimistic. New opportunities will arise. People can focus on more creative and strategic roles that require human intelligence and emotional intelligence. Isn't it exciting to think about the potential for innovation and progress that deep learning can bring?In conclusion, deep learning holds both great promise and potential challenges for the future of our society. How we navigate and adapt to these changes will determine whether we can fully leverage its benefits and minimize the negative impacts. So, let's embrace this technological wave with optimism and caution!篇3When I embarked on the journey of learning deep learning, it was like stepping into a vast and mysterious forest. At the beginning, I was completely lost and confused. The complex theories and algorithmsseemed like an insurmountable mountain in front of me! How could I understand them? But I didn't give up. I spent countless hours reading books and online materials, trying to make sense of this challenging field.There were times when I faced problems that made me want to throw in the towel. For instance, when dealing with neural networks and backpropagation, I just couldn't get it right. However, I kept telling myself, "I mustn't give up! I can do this!" And so, I sought help from online forums and asked for advice from experts. Little by little, I started to see the light.When I finally solved those difficult problems and saw my progress, oh my goodness, the joy in my heart was indescribable! It was like finding a precious treasure. I realized that as long as I persisted and was willing to learn, nothing could stop me. Now, looking back on this journey, I'm so glad that I had the courage and determination to keep going. Deep learning has not only broadened my knowledge but also taught me the value of perseverance.篇4Deep learning has emerged as a revolutionary force in the field of artificial intelligence! How significant is it? Well, let's take a look. Consider the common voice assistants we use daily. They can understand our speech and respond accurately, all thanks to deep learning. Through complex neural networks, these systems learn to recognize patterns in human language and provide useful answers. Isn't that amazing? Anothergreat example is the recommendation systems. They use deep learning to analyze our preferences and behaviors. How? By processing vast amounts of data, they can suggest products, movies, or music that are tailored just for us. This personalized service has transformed our online experiences. But it doesn't stop there! In healthcare, deep learning helps diagnose diseases more accurately. In finance, it predicts market trends. The list goes on and on. So, it's clear that deep learning is not just an important part of artificial intelligence, it's the key that unlocks countless possibilities and innovations. How can we not be excited about its potential?篇5Deep learning has emerged as a revolutionary force in the field of technology, but it is not without its challenges! One significant concern is the issue of data privacy. In the process of deep learning, vast amounts of data are collected and analyzed. How can we ensure that this data remains confidential and protected? It's a crucial question that demands immediate attention. Another challenge is the overfitting phenomenon of deep learning models. Sometimes, these models become too tailored to the training data, resulting in poor generalization to new, unseen data. So, what can be done to address this? Well, one possible solution could be to increase the size and diversity of the training dataset. Additionally, regularization techniques such as L1 and L2 regularization can be employed to prevent overfitting. Moreover, early stopping during the training process can alsohelp. Isn't it fascinating how we need to constantly think and innovate to overcome these hurdles? The future of deep learning depends on our ability to find effective solutions to these challenges. Let's keep exploring and working towards a more advanced and reliable deep learning landscape!。
基于深度学习视角下的初中英语写作教学策略摘要:随着素质教学的不断推进,深度学习对于初中英语写作的要求也越来越高,不仅需要初中英语教师打破浅层教学,还需要对浅层学习的局限性进行科学考察,进一步挖掘初中生的深度学习的能力。
英语写作在初中英语教学中起着举足轻重的作用,本文从深度学习的角度出发,提出若干有关初中英语写作的教学策略,期待无论是在研究的理论内容方面,还是在实践价值方面,都能够为其他学者提供一些启发。
关键词:深度学习;英语写作;策略深度学习是由外国学者提出的概念,主要是指培养学生“迁移”知识的能力,让学生可以将理论知识学以致用,进一步提高学生学习英语的积极主动性。
在这阶段,初中英语教师要引导学生积极参与,在掌握相关的理论知识的同时,进一步提升学生的学习能力,使其体验成功并获得发展,从而树立学生正确的价值观,为以后的英语学习打下坚实的基础。
深度学习,是指在教师引领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程。
在这个过程中,学生掌握学科的核心知识,理解学习的过程,把握学科的本质及思想方法,形成积极的内在学习动机、高级的社会性情感、积极的态度、正确的价值观,成为既具独立性、批判性、创造性又有合作精神、基础扎实的优秀的学习者。
一、通过多读形式来积累素材初中生可以通过多读的形式来积累一定的英语素材,进一步提高初中生的英语写作水平。
目前,由于这个年龄阶段的中学生缺乏人生阅历和良好的英语环境,初中生在学习英语时,往往把写作视为“拦路虎”,就会在写英语作文的时候,容易出现用词简单、内容匮乏的情况。
因此,就需要初中英语教师在教学过程中,可以让初中生通过概括教材或者重写教材,进一步提升初中生的英语写作能力。
比如,在教学英语七年级上册Unit10 Can you play the guitar的课时,初中英语教师需要引领初中生运用相关知识点来缩写文章。
本篇主要讲述了每个初中生的兴趣,擅长的领域。
对深度学习的认识英文作文1. Deep learning is an incredibly powerful tool in the field of artificial intelligence. It allows machines to learn and make decisions in a way that is similar to how humans do. By analyzing and processing large amounts of data, deep learning algorithms can identify patterns and make predictions, leading to breakthroughs in various industries.2. One of the key features of deep learning is its ability to automatically extract features from raw data. This means that instead of relying on handcrafted features, deep learning models can learn directly from the data itself. This not only saves time and effort but also allows for more accurate and robust models.3. Deep learning models are often built using neural networks, which are inspired by the structure and function of the human brain. These networks consist of interconnected layers of artificial neurons that processand transmit information. By adjusting the weights and biases of these neurons, the network can learn and improve its performance over time.4. Another advantage of deep learning is its ability to handle unstructured data. Traditional machine learning algorithms often struggle with data such as images, audio, and text, as they require manual feature engineering. Deep learning, on the other hand, can directly process raw data and extract meaningful information, making it well-suitedfor tasks like image recognition, speech recognition, and natural language processing.5. However, deep learning also has its limitations. One major challenge is the need for large amounts of labeled data to train the models effectively. This can be a time-consuming and expensive process, especially in domainswhere obtaining labeled data is difficult or costly. Additionally, deep learning models can be computationally intensive and require powerful hardware to train and deploy.6. Despite these challenges, deep learning has alreadymade significant contributions in various fields. It has revolutionized computer vision, enabling machines to recognize objects, faces, and even emotions in images and videos. It has also improved speech recognition systems, making voice assistants like Siri and Alexa more accurate and responsive.7. Looking ahead, the potential applications of deep learning are vast. It has the potential to transform healthcare by aiding in the diagnosis of diseases and the development of personalized treatment plans. It can also enhance autonomous vehicles, making them safer and more efficient. The possibilities are endless, and as researchers continue to push the boundaries of deep learning, we can expect even more exciting advancements in the future.8. In conclusion, deep learning is a game-changing technology that has the potential to revolutionize many industries. Its ability to automatically extract features, handle unstructured data, and learn from large amounts of data make it a powerful tool in the field of artificialintelligence. While there are challenges to overcome, the future of deep learning looks promising, and we can expect to see even more groundbreaking applications in the years to come.。
基于深度学习的初中英语写作教学策略【摘要】本文旨在探讨基于深度学习的初中英语写作教学策略。
在将介绍背景和研究意义。
在分析深度学习在英语教育中的应用,初中英语写作教学现状,并设计基于深度学习的教学策略,并给出实施步骤和案例分析。
结论部分将讨论深度学习技术对初中英语写作教学的影响,并展望未来发展。
通过本文的研究和分析,可以为初中英语写作教学提供新的思路和方法,促进学生写作能力的提升,推动英语教育的发展。
【关键词】深度学习、初中英语、写作教学、教学策略、实施步骤、案例分析、影响、未来发展、英语教育、研究意义1. 引言1.1 背景介绍随着初中英语教育的不断改革,写作教学也面临着新的挑战和机遇。
传统的写作教学方法往往比较传统、单一,难以激发学生的学习兴趣和积极性。
基于深度学习的写作教学策略的提出,为初中英语教学带来了新的思路和方法。
通过深度学习技术,可以更好地了解学生的写作需求和特点,有针对性地设计教学内容和方法,提高学生的写作水平和表达能力。
探究基于深度学习的初中英语写作教学策略的意义重大,对于促进英语教育的发展具有重要价值。
1.2 研究意义深度学习作为人工智能领域的重要分支,在教育领域有着广泛的应用前景。
在英语教育中,深度学习技术能够为学生提供更加个性化、有效的学习方式,有助于提高学习者的写作水平和表达能力。
初中阶段是学生英语写作能力形成的关键阶段,因此探讨基于深度学习的初中英语写作教学策略具有重要的研究意义。
通过深度学习技术,可以实现对学生写作过程的全程跟踪和分析,帮助教师深入了解学生的写作习惯和问题所在,从而有针对性地指导学生提升写作能力。
深度学习可以为写作教学提供更加个性化的辅助,根据不同学生的写作水平和需求,制定个性化的教学计划和反馈机制,使写作教学更加贴近学生实际需求。
基于深度学习的初中英语写作教学策略设计不仅可以提高学生写作成绩,还有助于培养学生的创造力、思维能力和表达能力,对学生整体发展具有积极的促进作用。
关于深度学习的作文英文回答:Deep learning is a subfield of machine learning that focuses on training artificial neural networks to learn and make predictions. It has gained significant attention and popularity in recent years due to its ability to handle complex and large-scale data sets. Deep learning models are capable of automatically extracting features from raw data, which eliminates the need for manual feature engineering. This makes deep learning particularly effective in tasks such as image and speech recognition, natural language processing, and recommendation systems.One of the key advantages of deep learning is itsability to learn from unstructured data. Traditional machine learning algorithms often require structured and pre-processed data, which can be time-consuming and labor-intensive. Deep learning algorithms, on the other hand, can directly process raw data, such as images, audio, and text,without the need for explicit feature extraction. This allows deep learning models to capture complex patterns and relationships that may not be apparent to human experts.Another strength of deep learning is its scalability. Deep neural networks can be trained on large-scale datasets with millions or even billions of examples. This enables deep learning models to learn from diverse and representative data, leading to improved generalization and performance. For example, in image recognition tasks, deep learning models have achieved state-of-the-art performance by training on massive image datasets such as ImageNet.Furthermore, deep learning models are highly flexible and can be adapted to various domains and applications. They can be trained to solve a wide range of problems, including object detection, speech synthesis, sentiment analysis, and drug discovery. The versatility of deep learning makes it a powerful tool for addressing complex real-world challenges.中文回答:深度学习是机器学习的一个子领域,专注于训练人工神经网络以学习和进行预测。
deep learning英语作文English:Deep learning is a subset of machine learning, which is a type of artificial intelligence (AI) that involves the use of neural networks to interpret data. These neural networks are designed to simulate the way a human brain operates, capable of processing and learning from large sets of input data to make complex decisions. Deep learning algorithms are able to automatically detect patterns and features within the data, making it particularly useful in fields such as image and speech recognition, natural language processing, and autonomous vehicles. One of the key advantages of deep learning is its ability to continuously improve its performance through exposure to more data, making it a powerful tool for solving complex problems in various industries.中文翻译:深度学习是机器学习的子集,是一种涉及使用神经网络来解释数据的人工智能(AI)类型。
[英语作文]deep learning专四作文Title: The Emergence of Deep Learning: A Technological Revolution in Artificial IntelligenceIn the realm of artificial intelligence, deep learning has emerged as a transformative force, reshaping industries and igniting new possibilities for human innovation. This essay will explore the concept of deep learning, its significance in the era of Big Data, the challenges it presents, and its potential impact on society.The Concept of Deep Learning:Deep learning is a subset of machine learning that involves the use of neural networks with multiple layers, simulating the human brain's ability to learn from data. These networks can recognize patterns and make predictions based on unsupervised learning or be taught through supervised learning. By processing vast amounts of data, deep learning algorithms become adept at tasks such as image recognition, natural language processing, and strategic gaming.Significance in the Era of Big Data:We are living in an age where data is generated at an unprecedented rate. Deep learning offers a means to harness this deluge of information, extracting insights that were previously beyond our reach. In healthcare, deep learning algorithms can analyze medical images to aid in early disease detection. In finance, they can predict market trends and manage risk. In consumer technology, they power voice assistants and improve user experiences. The significance of deep learning lies in its ability to scale and automate complex tasks, driving efficiency and innovation.Challenges Posed by Deep Learning:Despite its potential, deep learning is not without challenges. One major issue is the need for extensive datasets to train these algorithms, which can lead to concerns over privacy and data ethics. Additionally, the "black box" nature of deep learning, where the inner workings of decisions made by the algorithms are often opaque, raises questions about transparency and accountability. Furthermore, the high computational demands of deep learning models require significant resources, which can limit their accessibility.Potential Impact on Society:The impact of deep learning on society is multifaceted. On one hand, it promises to enhance productivity, enable new scientific discoveries, and improve daily life through smarter technologies. On the other hand, it could exacerbateexisting inequalities if not managed properly, leading to job displacement and widening the digital divide. As deep learning continues to advance, it is crucial to consider its ethical implications and work towards creating a balanced and inclusive future.Conclusion:Deep learning represents a monumental leap forward in artificial intelligence, offering immense potential to revolutionize how we live, work, and interact with technology. While it presents unique challenges that must be addressed, the opportunities it provides for progress are undeniable. As we move forward, it is essential to foster a collaborative approach between technologists, policymakers, and society at large to ensure that the benefits of deep learning are harnessed responsibly and equitably.。
ai批改作文英语English:In the realm of AI-powered essay grading in English, there are several key considerations to ensure accurate and effective assessment. Firstly, the AI system should possess advanced natural language processing (NLP) capabilities, enabling it to understand the nuances of human language, including grammar, syntax, semantics, and context. This involves utilizing deep learning algorithms and machine learning models trained on vast amounts of annotated text data. Additionally, the AI should be equipped with sophisticated scoring rubrics that encompass various aspects of writing, such as content, organization, coherence, vocabulary usage, and argumentation. These rubrics should be flexible and adaptable to different types of essays and writing styles. Moreover, the AI system should continuously learn and improve through feedback loops, incorporating human feedback to refine its grading criteria and enhance its accuracy over time. It's also essential for the AI to detect and address issues like plagiarism, ensuring the integrity of the grading process. Furthermore, transparency and explainability are crucial, allowing students and educators to understand how the AIarrives at its assessments and providing insights for improvement. Lastly, privacy and data security must be prioritized, safeguarding the confidentiality of student essays and personal information throughout the grading process. By integrating these elements, AI-powered essay grading systems can offer efficient, fair, and insightful evaluations, enriching the educational experience for students and educators alike.中文翻译:在英语AI批改作文领域,有几个关键考虑因素可以确保准确有效的评估。
基于深度学习的初中英语写作教学策略深度学习是一种基于大数据和神经网络模型的机器学习方法,已在各个领域得到广泛应用。
在初中英语写作教学中,利用深度学习的方法可以帮助学生提高写作能力,增强语言表达能力,提高写作水平。
本文将介绍基于深度学习的初中英语写作教学策略。
使用自动评测系统进行作文评估。
基于深度学习的自然语言处理技术可以实现对作文的自动评估,通过分析作文中的语法错误、拼写错误和逻辑错误等,给出相应的评分和建议。
这样可以节省教师的批改时间,同时帮助学生及时发现和纠正自己的错误,提高写作能力。
自动评测系统可以根据预先设定的标准对作文进行评估,例如语法准确性、内容连贯性和逻辑思维能力等。
通过反复练习和改进,学生可以不断提高自己的写作水平。
采用个性化学习模式进行写作指导。
在初中英语写作教学中,由于学生的水平、兴趣和学习习惯各不相同,教师可以根据每个学生的特点设计不同的写作教学方案。
基于深度学习的个性化学习模式可以根据学生的学习数据自动调整教学内容和教学进度,帮助学生更好地理解和掌握写作技巧。
对于写作能力较弱的学生,教师可以设置更简单和易懂的写作任务,激发学生的兴趣,并提供更多的辅导和指导;对于写作能力较强的学生,教师可以设置更复杂和有挑战性的写作任务,培养学生的创造性思维和批判性思维能力。
利用深度学习的多模态技术进行写作训练。
多模态技术是深度学习的一个重要应用领域,在写作教学中可以通过结合文字、图片、音频和视频等多种表达方式,帮助学生提高写作能力。
教师可以给学生呈现一张图片或播放一段视频,要求学生根据所看到的内容进行描述和写作;教师还可以要求学生根据一段音频或视频进行听写和写作,提高学生的听写能力和写作表达能力。
以深度学习为基础的初中英语写作教学研究张琳琳发布时间:2022-07-09T07:57:23.501Z 来源:《现代中小学教育》2022年4月作者:张琳琳[导读] 初中英语写作是学生应当掌握的一项英语技能,是学生英语知识掌握和实践的具体体现。
勃利县第二中学张琳琳摘要:初中英语写作是学生应当掌握的一项英语技能,是学生英语知识掌握和实践的具体体现。
在新时期背景下,教学工作者要以深度学习为基础,开展高校的初中英语写作教学,通过运用新时期课程改革背景下新的教学方式和教学理念,进行教学模式的转变和创新,让学生具备较强的英语思维和英语实践能力。
这个阶段的英语教学对于学生今后的学习和成长至关重要。
如何在英语教学当中以深度学习为基础开展良好的英语写作教学,成为当前非常重要的课题之一。
所以本篇文章主要针对以深度学习为基础的初中英语写作教学进行进一步的研究,通过采取有效的方式方法,引导学生更加深刻的理解英语知识,实践英语知识,满足学生在学习过程中的需求,培养学生良好的写作素养。
关键词:初中英语;写作教学;深度学习在深度学习背景下,传统的教学方式不能满足深度学习的要求,也就使得学生的英语知识应用能力不强,在写作方面会出现许多问题,也让学生不能够在关键的时期构建完善的英语知识体系,所以在新教学背景下,以深度学习为基础,进一步加强学生的英语写作教学是非常必要的。
一、当前初中英语教学写作教学存在的问题分析(一)缺乏较强的理论体系支撑以深度学习为基础的初中英语教学,就目前来说仍是一个新的研究领域。
这些工作者必须要把握深度教学的具体标准,在深度学习的基础之上,着重加强学生的写作引导,让学生能够在有效的教学当中进一步侧重于写作练习,提高学生英语知识的实践应用能力。
但就目前来说,很多教师在教学的时候,仍旧运用传统的教学方法,更加注重学生语法词汇,单词的背诵和记忆,而对于这些知识的综合实践应用则不重视。
换言之就是学生的写作没有得到很好的引导,而且很多教师在教学过程当中缺乏足够的理论支撑,从而不能够让学生进行更加深入的写作学习[1]。
基于深度学习的初中英语写作教学策略1. 引言1.1 背景介绍随着信息技术的快速发展,深度学习作为人工智能领域的重要技术手段,逐渐在教育领域得到广泛应用。
在英语教学领域,写作是一个重要的技能,对学生的语言表达能力和逻辑思维能力有着重要的影响。
传统的英语写作教学往往存在一些问题,比如教学内容单一、难以满足各个学生的个性化需求、评价非常主观等。
基于深度学习的初中英语写作教学策略为教师提供了更多实用的工具和方法,可以更好地促进学生的写作技能提升。
深度学习技术的引入可以实现对学生写作表现的自动评价和反馈,减轻教师的工作负担,提高教学效率。
1.2 问题提出Problem StatementIn the field of English writing teaching for middle school students, there are several challenges that need to be addressed. One major issue is the lack of personalized feedback and guidance for each student's writing abilities. Traditional teaching methods often rely on standardized assessments andgeneralized feedback, which may not effectively cater to the diverse needs and learning styles of individual students.1.3 研究意义基于深度学习的写作评价方法和指导策略可以为教师提供更全面和个性化的教学支持,帮助他们更好地了解学生的写作水平和需求,从而更好地指导他们提高写作能力。
深度学习还可以为学生提供更有效的写作训练模式和反馈机制,帮助他们获得更有效的学习体验和更好的学习成果。
基于深度学习的自然语言生成的新里程碑(英文中文双语版优质文档)A new milestone in deep learning-based natural language generation (high-quality documentation in English and Chinese bilingual versions)Summary:Natural Language Generation (NLG) is an important research direction in the field of artificial intelligence, which aims to enable computers to generate accurate, fluent, and contextually logical text in the form of human natural language. In recent years, the rapid development of deep learning has brought great progress to the field of natural language generation. This paper will introduce the research results of a new milestone in deep learning-based natural language generation, which achieves more accurate and expressive results when generating text by combining multiple advanced deep learning techniques.1 IntroductionNatural language generation is a challenging task that requires computers to understand the input semantic information and generate corresponding language texts. Past research mainly relies on rules and templates, but this method is limited by the complexity and flexibility of language expression. With the rise of deep learning techniques, neural network-based methods have made remarkable progress in the field of natural language generation.2. Application of deep learning in natural language generation The emergence of deep learning provides new solutions for natural language generation. Neural network models, such as Recurrent Neural Networks (RNN) and Transformer models (Transformer), have the ability to process sequence data, can capture the contextual information of language, and generate coherent text. In addition, the introduction of Generative Adversarial Networks (GANs) also brings new ideas to natural language generation.3. Achievement of new milestonesTo achieve a new milestone in natural language generation, we combine several advanced deep learning techniques. First, we use a pre-trained language model, such as GPT-3, through the pre-training of large-scale text data, so that the model has a wide range of language knowledge and expression ability. Second, we introduce a generative adversarial network, which combines a generator and a discriminator to improve the quality and accuracy of generated text through adversarial training. Finally, we use the reinforcement learning algorithm to further optimize the generated results, and guide the model to generate more accurate and reasonable text through the reward mechanism.4. Experiment and ResultsWe experiment with our method on several natural language generation tasks, including machine translation, summarization, and dialogue systems, among others. Experimental result tableIt is shown that our method significantly improves both generation accuracy and fluency. Compared with traditional methods, our model generates text that is more grammatical and semantically better understands the context of the input, resulting in more expressive text.5. Discussion and OutlookThis paper presents the results of a new milestone in deep learning-based natural language generation. By combining multiple advanced deep learning techniques, we achieve more accurate and expressive results when generating text. However, natural language generation still faces some challenges, such as dealing with complex contextual information, maintaining the diversity of generated text, etc. Future research can further improve the performance of the model and explore more application areas, such as text summarization, literature creation, etc.6 ConclusionThis paper presents new milestone research results in deep learning-based natural language generation. By combining multiple advanced deep learning techniques, we achieve more accurate and expressive results when generating text. This research achievement provides a new direction for the development of the field of natural language generation, and provides a more reliable basis for practical applications.Keywords: Natural Language Generation, Deep Learning, Neural Networks, Generative Adversarial Networks, Reinforcement Learning摘要:自然语言生成(Natural Language Generation,NLG)是人工智能领域的一个重要研究方向,旨在使计算机能够以人类自然语言的形式生成准确、流畅、具有上下文逻辑的文本。
基于深度学习改善英文写作作者:蔡畅之来源:《电子技术与软件工程》2018年第18期摘要:近些年,人工智能和深度学习蓬勃发展,但在帮助学习者提高英语写作方面应用十分有限。
本文首先介绍深度学习,自然语言处理以及机器翻译的相关背景和发展情况;接着介绍如何搭建递归神经网络的框架,获取训练相关数据,通过选择序列到序列模型,得出可靠的结果,以增强英语写作能力;最后讨论本文中选择数据以及搭建模型的优点和缺点以及未来的研究改进方向。
【关键词】深度学习自然语言1 简介随着当今国际间交流更加频繁和深入,作为世界上应用最广泛的语言,英语已经渗入到生活的方方面面,学习英语对于绝大部分非英语母语的学生们来说都是必要的。
而这其中,在英语学习以及国际性英语考试(如IELTS,TOEFL)中,写作均占了很大的比例,达到考试总成绩的25% - 35%。
同时,写作和阅读是息息相关的,在提高学生写作水平的同时,也会相应地提高他们的阅读水平。
但当今传统的写作批改和提高反馈大多是书面形式,一方面,由于繁重的教学任务,很多英语教师对学生的反馈十分有限,另一方面,学生对老师给予的写作反馈也马虎对待,敷衍了事。
所以开发帮助提高写作水平的软件就显得十分必要。
对于非英语母语学生英语写作的评改,在中国比较流行的为批改网( ),它是基于语料库和云计算的英语作文自动批改的在线服务。
但该网站对于使用者输入的英文语句目前仅限于指出作者的一些”语法错误”或“词汇,时态错误”的问题,并不能判断写作水平的高低,以及给出修改句子的合理化建议,使表达更加地道,接近于母语表达者的习惯。
本设计基于深度学习(Deep Leaming),通过构建递归神经网络( Recurrent NeuralNetwork)中的编码器(Encoder)和译码器( Decoder),以及序列到序列(Sequence-to-Sequence)模型,使用Python语言和PyTorch工具,训练大量的英语母语者的写作文本( txt),以及英语学习者的写作文本,使机器可以判断出英语学习者的写作习惯以及英语母语表达者的习惯。
基于深度学习的小学英语写作教学【摘要】写作是检验学生综合语言运用能力的有效手段,是学生基于自身阅读与思考,实现思维联动,由内向外输出语言进行书面交际的学习过程。
基于当前学生写作兴趣不高、过程指导欠缺、思维能力薄弱、评价方式单一的现状,教师应以深度学习为统领,通过创设情境、导入主题、激活思维、建构图示、强化指导、学评一体探究意义。
本文以一节写作课为例,阐述如何基于深度学习的理念,秉持英语学习活动观,提高学生的写作能力。
【关键词】深度学习;小学英语;写作教学;思维能力写作通常被认为是英语教学的薄弱环节,主要在于以下几点:第一,从写作教学本质来看,兼具复杂性与特殊性,写作过程需要学生整合与主题相关的词汇,借力高阶思维,将所思所想以严密的逻辑性语言表述出来,实现与他人的交际互动;第二,在日常写作实践中,学生对写作不感兴趣;第三,教师过程性指导欠缺,过多关注语言积累;第四,对于写作的评价方式单一,造成二次修改缺乏方向性。
在多种因素的相互作用下,写作成为了英语教学亟待改进的环节。
基于此,需要以深度学习为基础,立足单元整体教学,有效整合教学资源,调动教材、学生、教师等多维教学因素共同发力,来提升学生的写作素养。
一、深度学习与写作教学深度学习是相较于浅层学习的一种学习方式,是指学生在学习过程中,积极建构学习内容之间的关联,挖掘主题意义,变被动学习为主动探究。
深度学习提倡“应用、分析、评价、创造”这四个较高级的认知层次。
它不仅强调学生积极主动的学习态度、知识整合和意义连接的学习内容、举一反三的学习方法,还注重学生的高阶思维及复杂问题解决能力的提升。
由此可见,深度学习是一种提升学生能力和素养的学习,与目前提倡的核心素养关联紧密。
《义务教育英语课程标准(2022年版)》指出,听、读、看是理解性技能,说、写是表达性技能。
理解性技能和表达性技能在语言学习过程中相辅相成、相互促进。
理解性技能是表达性技能的物质基础,表达性技能是理解性技能的深层延伸。
高中英语作文课上提现深度学习During the high school English composition class, the essence of deep learning is vividly demonstrated.It"s not merely about memorizing vocabulary or mastering grammar rules, but rather, it"s a process of cultivating critical thinking, creativity, and the ability to express oneself effectively in written words.在高中英语作文课上,深度学习的精髓得以生动体现。
这不仅仅是关于词汇的记忆或语法规则的掌握,更是一个培养批判性思维、创造力和有效书面表达能力的过程。
Students are encouraged to delve into various topics, exploring nuances and perspectives that go beyond the surface level.This encourages them to analyze, synthesize, and evaluate information, which are the hallmarks of deep learning.学生被鼓励深入探讨各种话题,挖掘超越表面的细微差别和观点。
这促使他们进行分析、综合和评估信息,这些都是深度学习的标志。
The composition class also emphasizes the importance of reflection and self-assessment.Students are prompted to revise their drafts, not just for grammatical correctness but also for content depth and coherence.This iterative process mirrors the cycle of deep learning, where constant review and refinement lead to better understanding and mastery.作文课还强调了反思和自我评估的重要性。
deepl作文批改英文回答:Introduction.The ability to effectively evaluate and provide constructive criticism on written compositions is a valuable skill in both academic and professional settings. This comprehensive guide will provide a detailed framework for providing in-depth and actionable feedback on essays, reports, articles, and other types of written work. By following these best practices, you can help writers improve the clarity, organization, style, and overall impact of their writing.Step 1: Read and Analyze the Composition.Before you begin providing feedback, it is crucial to thoroughly read and analyze the composition. This involves understanding the writer's purpose, main argument,supporting evidence, and overall structure. Pay attentionto the language used, the organization of ideas, and theflow of the writing.Step 2: Identify Areas for Improvement.Once you have a clear understanding of the composition, identify areas where the writer can improve. Consider the following aspects:Clarity and Conciseness: Is the writing clear and easy to understand? Are there any convoluted sentences or unnecessary details?Organization and Structure: Is the composition well-organized with a logical flow of ideas? Are there anyabrupt transitions or digressions?Style and Language: Is the writing style appropriatefor the intended audience? Are there any grammatical errors, awkward phrasing, or inconsistencies in tone?Evidence and Support: Does the writer providesufficient evidence and support for their claims? Are the sources credible and relevant?Step 3: Provide Specific and Actionable Feedback.When providing feedback, be specific and actionable. Avoid general statements such as "the writing is good" or "needs improvement." Instead, provide concrete suggestions for how the writer can enhance their work.Use clear and precise language. Example: "Replace the phrase 'very important' with a more specific descriptor, such as 'crucial' or 'paramount'."Be constructive and solution-oriented. Example: "Consider adding a transition sentence between paragraphs 2 and 3 to improve the flow of the writing."Avoid personal attacks or subjective opinions. Example: "Instead of stating 'the writing is boring,' focus on the specific aspects that need improvement, such as 'the lackof vivid imagery' or 'the repetitive use of passivevoice'."Step 4: Use a Constructive and Positive Tone.Even when providing critical feedback, it is important to maintain a constructive and positive tone. This will help the writer feel encouraged to make improvements rather than discouraged.Use positive language. Example: "The structure of the composition is well-organized, but there are some areas where you could improve the flow within paragraphs."Offer praise for strengths. Example: "The writer effectively uses vivid imagery to engage the reader."Avoid negative or judgmental language. Example: "The writing is sloppy and lacks proper grammar."Step 5: Encourage Revision and Improvement.Once you have provided feedback, encourage the writerto revise and improve their work. Let them know that youare available to answer any questions or provide additional support.Set clear expectations. Example: "I would like you to revise this draft and focus on improving the clarity and organization of your paragraphs."Offer assistance. Example: "If you have any questionsor need further assistance, please do not hesitate to contact me."Conclusion.Providing effective and actionable feedback on written compositions is a skill that can be developed with practice. By following these steps, you can help writers improvetheir communication skills, enhance the quality of their work, and achieve their writing goals.中文回答:引言。
基于深度学习的初中英语写作教学改进研究作者:裘雪峰来源:《校园英语》 2020年第31期文/裘雪峰【摘要】深度学习要求教师必须打破浅层教学的思维定势,科学审视学生浅层学习的局限性,从而深挖其深度学习的能力。
写作是初中英语教学中不可或缺的环节,用深度教学方式来改进写作教学、促进学生思维品质的提升具有重要的意义。
本文分析了初中英语写作教学中存在的问题并结合课例探讨如何运用深度学习策略, 改进英语写作教学。
【关键词】深度学习;初中英语;写作教学【作者简介】裘雪峰,苏州工业园区第八中学。
随着学习的革命,深度学习成为教育的热点话题。
深度学习强调学习方式的转变,即以知识转化为起点、在深度理解的基础上内化知识;深度学习导向下的学习过程,知识迁移是关键环节,旨在将知识记忆转向知识的整合与运用;学习结果上,深度学习以培养高阶思维能力为目标、从单一的分数评价转向多维度的评价,即注重对学生思维品质和逻辑思维能力、思辨能力的培养。
写作训练是初中英语教学中必不可少的环节,旨在训练学生的语言运用能力和信息整合能力。
在初中英语教学中,提升学生写作能力,需要开展有规律的写作练习,要让学生进行自由写作的训练,在写作完成后,还需要学生对文章进行修改和完善,促进学生思维品质的提升。
一、深度学习导向下初中英语写作教学存在的问题1.教师不重视写作教学指导,学生写作兴趣缺失。
初一时,大部分英语教师往往重视听说训练,忽视读写的练习,尤其是写作练习。
他们认为,学生到了高年级有了一定的语言基础后,才能进行系统的写作培训。
因此,在这种认知的导向下,老师往往只重视语法和句型,忽略写作的话题性,从而导致学生写作没有中心思想,久而久之,学生对英语写作缺乏兴趣,积极性不高,有些学生甚至有厌烦心理,不愿意参与话题写作训练,就更谈不上理想的教学效果了。
在写作教学中学生对听说读写认识不全面,教师对写作的指导也不足,大部分学生对写作毫无经验和方法可言,有的甚至觉得无话可说,这使得学生对写作提不起兴趣,畏难心理更是导致英语学习的积极性下降。
高中英语作文课上提现深度学习Deep learning, a subset of machine learning, has become a hot topic in recent years, especially in the field of artificial intelligence. It has revolutionized various industries, from healthcare to finance, and has the potential to significantly impact the way we live and work. In this essay, we will delve into the historical background, perspectives, case studies, and a critical evaluationof deep learning, followed by future implications and recommendations related to this transformative technology.Historical Background and DevelopmentDeep learning has its roots in the 1940s when researchers began to explore the concept of artificial neural networks. However, it wasn't until the 1980s that significant progress was made in this field, with the introduction of backpropagation, a method for training multi-layer neural networks. Over the years, advancements in computing power, the availability of large datasets, and breakthroughs in algorithms have propelled deep learning to the forefront of research and applications.Perspectives and OpinionsThere are various perspectives and opinions surrounding deep learning. Proponents argue that it has the potential to revolutionize industries by automating tasks that were once thought to be too complex for machines to handle. For example, in healthcare, deep learning algorithms are being used to analyze medical images and diagnose diseases with a high degree of accuracy. On the other hand, skeptics raise concerns about the potential for deep learning to replace human jobs and the ethical implications of relying on algorithms to make critical decisions.Case Studies and ExamplesOne of the most well-known examples of deep learning in action is the development of self-driving cars. Companies like Tesla and Waymo have invested heavily in deep learning algorithms to enable vehicles to perceive theirenvironment and make real-time decisions. Another example is the use of deep learning in natural language processing, which has led to significant advancements in virtual assistants and language translation services.Critical EvaluationWhile deep learning has shown tremendous promise in various applications, it is not without its drawbacks. One of the main challenges is the 'black box' nature of deep learning algorithms, where it can be difficult to interpret how the algorithm arrives at a particular decision. This has raised concerns about accountability and transparency, especially in high-stakes applications such as healthcare and criminal justice.Future Implications and RecommendationsLooking ahead, the future of deep learning holds both exciting possibilities and potential pitfalls. It is crucial for researchers, policymakers, and industry leaders to work together to address the ethical, legal, and societal implications of deep learning. Additionally, there is a need for continued investment in education and training to ensure that the workforce is prepared for the changes that deep learning will bring about.In conclusion, deep learning is a powerful and transformative technology that has the potential to reshape industries and improve our lives in numerous ways. However, it is essential to approach its development and deployment with caution, considering the potential risks and ethical considerations. By fostering collaboration and investing in responsible research, we can harness the full potential of deep learning while mitigating its drawbacks.。
基于深度学习的初中英语写作教学研究作者:谢晓明来源:《速读·中旬》2021年第05期◆摘要:初中英语教学中,英语写作是重要组成部分。
写作过程并非简单的文字输出行为,還要求写作者掌握相应的语言表达能力,并在其中渗透一定思维品质,这样才能保证整体写作效果。
而深度教学和深度学习作为新时期的新型教学理念,对教师深挖教材文本进行写作教学,实现思维发散,不断提升学生对知识学习的效果,更好地掌握相关内容均具有重要意义。
基于此,本文主要从深度学习入手,对其进行阐述,并分析其理论依据,然后探讨提升初中英语写作教学质量的措施。
◆关键词:深度学习;初中;英语写作;教学策略深度学习,指的是在教师引领下,以具有挑战性的学习内容为主题,以学生为中心,全面参与到学习过程中,积极体验成功,获得相应知识以及进步的学习过程。
这一过程中,要求学生通过深入学习掌握学科核心知识,并了解学习过程,逐渐认识学科本质和思想方法,逐渐养成积极健康的学习动机,端正态度,具有高级社会性情感以及正确的思想价值观,逐渐在学习成长中成为具有批判性、独立性、创造性以及合作精神的优秀学习者。
一、深入挖掘并发挥教材作用以七年级下册英语教材为例,人教版初中英语教科书共12个单元,教学内容涉及天气、动物、学校规范以及自身能力等,教学主题和学生培养功能多样化。
在实际教学中,为充分发挥教材的作用,帮助学生进行深度学习,需要教师找到教学突破口,尽可能将相关知识点以主题教学活动串联起来,通过对英语知识的深度掌握,明确不同知识间的联系,逐渐加深对相应知识的掌握。
在教学中进行写作练习,应以学生已知且熟悉的内容为出发点,从而达到以旧引新的教学目的。
如在Unit3“How do you get to school?”一课教学中,学生能够根据文章中Liang Liang的阅读内容,紧抓“Many of the students and villagers never leave the village.It is their dream to have a bridge”这一句,并在语句分析中得知Liang Liang是山中的农家孩子,对外部世界接触较少,这里的孩子希望通过建造通向外界的桥梁而走出农村,渴望到达外面的世界。
人工智能 •Artificial Intelligence【关键词】深度学习 自然语言1 简介随着当今国际间交流更加频繁和深入,作为世界上应用最广泛的语言,英语已经渗入到生活的方方面面,学习英语对于绝大部分非英语母语的学生们来说都是必要的。
而这其中,在英语学习以及国际性英语考试(如IELTS, TOEFL)中,写作均占了很大的比例,达到考基于深度学习改善英文写作文/蔡畅之试总成绩的25% - 35%。
同时,写作和阅读是息息相关的,在提高学生写作水平的同时,也会相应地提高他们的阅读水平。
但当今传统的写作批改和提高反馈大多是书面形式,一方面,由于繁重的教学任务,很多英语教师对学生的反馈十分有限,另一方面,学生对老师给予的写作反馈也马虎对待,敷衍了事。
所以开发帮助提高写作水平的软件就显得十分必要。
对于非英语母语学生英语写作的评改,在中国比较流行的为批改网(),它是基于语料库和云计算的英语作文自动批改的在线服务。
但该网站对于使用者输入的英文语句目前仅限于指出作者的一些”语法错误”或“词汇,时态错误”的问题,并不能判断写作水平的高低,以及给出修改句子的合理化建议,使表达更加地道,接近于母语表达者的习惯。
本设计基于深度学习(Deep Learning),通过构建递归神经网络(Recurrent Neural Network)中的编码器(Encoder)和译码器(Decoder),以及序列到序列(Sequence-to-Sequence)模型,使用Python语言和PyTorch 工具,训练大量的英语母语者的写作文本(txt),以及英语学习者的写作文本,使机器可以判断出英语学习者的写作习惯以及英语母语表达者的习惯。
这样机器可以了解写作者的常用错误表达习惯,并且给出相应的修改建议。
使用者通过输入自己写作的的英文语句,同时收到更加地道的表达方式输出反馈,通过这种方法,提高使用者的英文写作水平。
2 背景2.1 语言学背景早在上世纪60年代末,Harris, D. P.就曾提到过:书面练习的要点,灵活性,表达方式主要体现在词汇量的积累,以及阅读量的大小,以及实践练习的情况,是从依赖到独立的过程。
表1句子P(futher|句子)P(futher|句子)I need to run farther than Mary0.3350.665Without further issue, we must take action0.9980.002If you complain further, I’m going to shoot you out of the airlock0.9210.079的应用于高校计算机实验室的建设,能够有效促进高校计算机实验室建设的变革。
3.2 云计算技术在高校计算机建设变革中的应用(1)利用云计算技术可以在高校的计算机系统中建立起一个物理资源层,物理资源层主要是指切实的物理计算机,它可以具体指的是一个具体的服务器或是工作站等,通过实际的硬件设备之间的网络连接建设起一个物理资源层,在这个物理资源层中的所有的计算机资源以及相关的理论资源都可以共享并且不受限制,并且在网络中的任一地方都可以调取,通过将学学校内部的计算机资源在局域网中连接起来,就构成了系统中的物理资源层,从而使计算机系统的处理能力更强,网上的知识信息资源的种类也更加的丰富,也可以实现大范围的资源共享。
(2)利用云计算技术可以在校内的计算机控制系统中构建起云管理层,在这个云管理层中可以为整个云计算中心提供安全、稳定的运行条件,有效的减少计算机系统在运行的过程中出现停滞或是系统紊乱的情况,利用云计算技术构建起来的云管理层主要包括云安全管理、云数据管理以及用户管理、云资源管理等,这些内容有着各自的功能,并且均能促进计算机系统的优化,确保电脑信息以及用户信息的安全,例如资源管理主要是对虚拟资源层的各种虚拟资源进行负责,可以对资源的状态进行监控,实现资源的优化配置,加强电脑的安全管理,比如设置电脑的访问权限等,最重要的是通过云计算技术可以实现对数据的加密性管理。
针对机房的云计算可以对学生实现权限管控,对学生终端的操作系统复原保护,病毒源切断,降低软硬件故障率,大大减少了管理人员对软硬件升级维修工作压力。
更直观的是机房空间环境得到改观。
4 结语总而言之,在信息化时代下,高校的计算机实验室建设的改革已经成为高校计算机教育发展的最终归属,高校必须要正视在计算机建设方面存在的问题,必须按照国家标准规范计算机实验室建设,利用先进的信息科学技术实现计算机实验室建设的改革。
参考文献[1]吴薇薇.信息化时代高校计算机实验室建设的变革[J].信息与电脑(理论版),2018(02):12-13+16.[2]王峰.云桌面技术在高校计算机实验室建设和管理中的应用[J].信息与电脑(理论版),2017(18):16-17+20.[3]陈浩新.云桌面技术在高校计算机实验室建设和管理中的应用[J].中国管理信息化,2017,20(06):148-149.[4]王振华,刘慧芳,洪泓.现代高校计算机实验室建设的新趋势[J].网络安全技术与应用,2016(09):96-97.[5]张志华.基于云桌面技术的地方高校计算机实验室建设模型研究[J].信息与电脑(理论版),2015(19):90-91+95.作者简介李渊明(1963-),江苏省无锡市人。
大学本科学历。
研究方向为计算机技术。
作者单位无锡城市职业技术学院 江苏省无锡市214013<<上接210页244 •电子技术与软件工程 Electronic Technology & Software EngineeringArtificial Intelligence •人工智能Electronic Technology & Software Engineering 电子技术与软件工程• 245Kroll, B.也提到过写作可以提高阅读和应用水平,增强语言的综合能力。
写作对于语言的综合应用能力检测起着至关重要的作用,既可以体现学生的词汇积累量,也可以体现学生的表达能力。
2.2 自然语言处理自然语言处理(NLP )是计算机科学的一个领域,它是人工智能的一个分支,帮助计算机理解人类语言的写作和口语,特别是如何对计算机进行编程以成功处理大量自然语言数据。
自然语言处理中的应用方向通常涉及语音识别,自然语言理解和自然语言生成。
2.3 朴素贝叶斯(Na ïve Bayes)自然语言处理中,朴素贝叶斯被广泛应用在句子分类、词汇频率检测等问题中。
该方法基于贝叶斯原理(Bayes Theorem ),特征条件相互独立的模型。
根据贝叶斯原理,对一个分类问题,给定样本特征x ,样本属于类别y的概率是:在这里,x 是一个特征向量,将设x 维度为M 。
因为假设特征条件独立,根据全概率公式展开,上述公式可以表达为:如上式所示,只要分别估计出x^i 在每一类的条件概率就可以。
通过该式我们可以得出对应的每一类上的,条件独立的特征对应的条件概率。
朴素贝叶斯在自然语言处理中常被用于改正语法错误之中。
以现代出版书籍作为语料库,使用“'further vs farther ”方法,围绕关键词的词标记,对朴素贝叶斯公式进行处理,使每个单词在主关键字的左右1-2位[16]。
借此发现,单词"further" 和 “farther ” 的使用均达到了较高的正确率,表1举例说明朴素贝叶斯概率结果。
如表1所示,朴素贝叶斯模型可以很好地纠正这些句子的语法。
Tory 等人以此统计学模型遍历关键词列表来完善功能更加齐全的语法检查器,找出不易察觉的语法错误,由此来改善语法。
2.4 RNN与传统的朴素贝叶斯模型及其它基于统计学的模型不同,递归神经网络(RNN )是一类人工神经网络,单元之间的连接形成沿着序列的有向图。
这使得它可以表现时间序列的动态时间行为。
与前馈神经网络不同,RNN 可以使用其内部状态(内存)来处理输入序列。
这使它们适用于诸如未分割,连接手写识别[4]或语音识别等任务。
递归神经网络有时不加区分地用于两类具有类似结构的网络,其中一个是有限冲动,另一个是无限冲动。
这两类网络都表现出时间动态行为。
有限脉冲递归网络是一个有向无环图,可以展开并用严格前馈神经网络代替,而无限脉冲递归网络是一个不能展开的有向循环图。
有限脉冲和无限脉冲周期性网络都可以有额外的存储状态,并且存储可以由神经网络直接控制。
如果存储时间延迟或有反馈循环,则存储也可以由另一个网络或图形取代。
这种受控状态被称为门控状态或门控记忆,并且是长期短期记忆(LSTM )和门控循环单元(GRU )的一部分。
2.5 序列到序列模型(Sequence to sequence model)递归神经网络(RNN )有许多的变形,例如基本的序列到序列模型由两个递归神经网络组成:处理输入的编码器和生成输出的解码器,图1描述了这个基本架构:图1中的每个框表示RNN 的小区(cell ),最常见的是GRU 小区或LSTM 小区。
编码器和解码器可以共享权重,或者更加常见的是,它们使用不同的参数集。
该模型的工作原理是通过多层LSTM 将输入序列映射为固定维度的向量,然后使用另一个深度LSTM 从向量中解码目标序列。
序列到序列模型有很多应用,比如说谷歌公司将其应用在改正外语语法方面。
除此之外,序列到序列模型还有许多其他应用,例如机器翻译。
2.6 机器翻译(Machine Translation)机器翻译是计算语言学的一个子领域,它主要研究使用软件翻译文本或从一种语言到另一种语言的转化。
机器翻译旨在将源语言句子找到最有可能的目标语言句子,这些句子匹配到最相似的意思。
实质上,机器翻译是序列到序列模型的预测任务。
神经机器翻译(NMT )如今常被作为一种先进的方法,其潜力可以解决传统机器翻译系统的许多缺点。
NMT 的优势在于它能够以端到端的方式直接学习从输入文本到输出文本的相关映射。
其架构通常由两个递归神经网络(RNN )组成,一个用于消耗输入文本序列,另一个用于生成翻译的输出文本。
NMT 通常伴随着注意机制,这有助于它有效处理长输入序列。
Google 公司对NMT 技术进行了相关改进,形成了GNMT 系统,它由一个深度的LSTM 网络组成,该系统有效改正了原来NMT对罕见词语准确性差,反应慢的缺点。
图1:基本的序列到序列模型,此模型读取输入句子“a1a2a3”并输出句子“A1A2A3A4”图2:英文写作具体的提升方法人工智能 •Artificial Intelligence 3 方法3.1 提升过程如图2所示,完成上部分流程,即得到数据并完成清理之后,我们将所整理好的的优质语料库和较差语料库放入写好的序列到序列模型中,进行训练,可以得到一定量的数据来进行测试。