数学北师大版六年级下册圆柱的容积
- 格式:ppt
- 大小:332.00 KB
- 文档页数:11
课题;圆柱的体积练习课教学内容:北师大版六年级数学下册9—10页。
教学目标:1、进一步理解圆柱体积公式的由来。
2、能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。
教学重、难点:目标2。
教学过程:教师活动学生活动活动一:复习圆柱体积的计算公式。
1、长、正方体的体积都可以用什么公式进行计算?2、圆柱的体积该怎样计算?活动二:解决简单的实际问题。
1、看图计算下面各圆柱的体积。
2、一个底面直径是14指名请学生说。
明确:长、正方体和圆柱的体积都可以用底面积乘高来进行计算。
说说每个图已知什么和什么,求什么?怎么求?自己试独立计算,请同学板演。
集体讲评。
请先求杯子的容积,再求能装厘米,高是20厘米的杯子。
能装下3000毫升的牛奶多少杯?要求能装多少杯牛奶,必须先求什么?3、一个装满稻谷的圆柱形粮屯,底面面积为2平方米,高为80厘米。
每立方米稻谷约重600千克,这个粮屯存放的稻谷约重多少千克?通过读题,你发现了什么?(要换算单位)要求这个粮屯能存放多少稻谷,必须先求什么?(先求体积)4、一个正方体的棱长4分米,一个圆柱的底面直径2分米,高4分米。
这两个立体图哪个面积大?为什么?师:高相等,可以比较底面积几杯?自己独立计算。
明确题意后,自己独立计算。
先独立思考,然后同桌交流自己的想法。
说说看不计算,怎样判断他们的大小?求铁块的体积就是求底面直径是10厘米,高2厘米的圆柱形的水的体积。
圆柱的表面积包括什么?怎样计算?侧面积怎样计算?的大小。
5、一个圆柱形容器的底面直径是10厘米,把一块铁块放入这个容器中,水面上升2厘米,这块铁块的体积是多少?这个铁块的体积和什么有关系?求铁块的体积就是求什么?6、一根圆柱形木料底面周长是12。
56分米,高是4米。
1)它的表面积是多少平方米?2)它的体积是多少立方米?3)如果把它截成三段小圆柱,表面积增加多少平方分米?7、一个圆柱形水桶的体积是24立方分米,底面积体积怎样计算?要求底面积先求什么?表面积增加的部分是什么?增加了几个底面?必须先求什么?弄清题意,自己计算。
北师大版六年级(下册)数学知识要点归纳第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
北师大版六年级下册数学全册教案第一单元圆柱与圆锥单元教学内容:面的旋转圆柱的表面积圆柱的体积圆锥的体积单元教学目标:一、结合具体情境和操作活动,引导学生整体把握“点、线、面、体”之间的联系。
二、从多种角度探讨圆柱和圆锥的特点。
3、探讨圆柱表面积的计算方式,进展空间观念。
4、经历圆柱和圆锥体积计算方式的探讨进程,体会“类比”的思想。
五、在解决实际问题顶用活所学知识,感受数学与生活的联系。
单元教材分析:学生已经直观熟悉了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还熟悉了长方体(正方体),把握了长方体(正方体)表面积与体积的含义及其计算方式。
在此基础上,本单元进一步学习圆柱和圆锥的知识。
本单元要紧通过五个活动,引导学生学习面的旋转(圆柱和圆锥的熟悉)、圆柱的表面积、圆柱的体积、圆锥的体积等内容,并参与实践活动。
本单元教材编写力图表现以下要紧特点:1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的进程,体会“点、线、面、体”之间的联系教材的第一个活动表现的内容是“由平面图形通过旋转形成几何体”,这不仅是对几何体形成进程的学习,同时体会面和体的关系也是进展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的缘故。
教材呈现了几个生活中的具体情境,鼓舞学生进行观看,激活学生的生活体会,使学生经历“点动成线”“线动成面”“面动成体”的进程。
在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成进程,进展空间观念。
教材还提供了假设干由面旋转成体的练习。
2.重视操作与试探、想象相结合,进展学生的空间观念操作与试探、想象相结合是学生熟悉图形、探讨图形特点、进展空间观念的重要途径。
在本单元中,教材重视学生操作活动的安排,在每一个主题活动中都安排了操作活动,增进学生明白得数学知识、进展空间观念。
《圆柱与圆锥》单元教材解读尊敬的各位领导,亲爱的老师们:大家下午好!我是江山市中山小学的徐建青,很荣幸能与大家分享圆柱与圆锥的单元解读,还请各位亲不吝批评指正接下来,我将从课标要求、地位作用、教材对比及编排特点、教学建议几个方面对《圆柱与圆锥》这一单元进行汇报。
一. 课标要求在课标第二学段图形与几何板块的图形认识第9条提出在测量部分第7条提出二.地位作用本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的,是小学阶段学习几何知识的最后一部分内容。
圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。
教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于学生进一步发展空间观念。
三.教材对比凸现编排特点1、本单元不同版本教材整体比较那么,不同版本的教材,这一单元的编写又有什么异同呢?带着这个疑问,我们从单元整体编写的角度,梳理了“人教版、苏教版、冀教版、北师版”这些教材的编排:从学习内容和编排方式两个方面进行分析:(1).学习内容从表格中我们发现,每版教材编排的内容大致上是相同的,主要有:圆柱和圆锥的认识,圆柱的表面积,圆柱体积和圆锥的体积。
同时,每版教材也都有自己的编排特点,如苏教版把“圆柱的侧面积”拎出来专门作为1个内容,冀教版增设了“容积”“木材加工问题”这两个内容。
其中,人教版最重视这一板块内容,它的前两个单元负数与百分数(二)都是只有一个练习,而到了本单元几乎每一个知识点后面都要专门设置练习课,最后还要加单元知识整理及练习七进行综合练习,总共有11个内容23页。
(2).编排方式从编排方式上看,人教版与冀教版采取的是分段式的编排,即先学习圆柱的相关知识,再学习圆锥,而苏教版以及北师大版,采取的是混合式的编排,即同时认识圆柱与圆锥。
2.本单元教材编排特点(1).经历由面旋转成圆柱、圆锥的活动,沟通二维图形与三维图形之间的内在联系。
不同教材引入圆柱与圆锥的方式大致可以分成两类:一类是从实物的抽象中引入,如人教版、苏教版、冀教版等大多数国内教材都是从实物中抽象出圆柱与圆锥,抽象的过程,舍弃了图形的颜色、材质等物理属性,只保留空间、大小、位置等数学属性。
面积:S 侧=ch S 侧=πdh S 侧=2πrhS 圆=πr ² S 长方形=axb S 正方形=axa体积:V 正方体=sh V 正方体=axaxa=a ³ 正方体的高h=v ÷a ÷a正方体的高h=v ÷(a x a)V 长方体=sh V 长方体=axbxh 长方体的高h=v ÷a ÷b长方体的高h=v ÷(axb)长方体的高a=v ÷b ÷h 长方体的高b=v ÷a ÷h长方体的高b=v ÷(axh )V 圆柱体=sh V 圆柱体=πr ²h 圆柱的高h=v ÷π÷r ² 圆柱的高h=v ÷(πx r ²) V 圆锥体= 31sh V 圆锥体=31πr ²h 圆锥的高h=3v ÷π÷r ² 圆锥的高h=3v ÷(πx r ²) 圆柱体礼盒包装绳长=直径x 4 + 高x 4 + 打结部分面积:S 侧=ch S 侧=πdh S 侧=2πrhS 圆=πr ² S 长方形=axb S 正方形=axa体积:V 正方体=sh V 正方体=axaxa=a ³ 正方体的高h=v ÷a ÷a正方体的高h=v ÷(a x a)V 长方体=sh V 长方体=axbxh 长方体的高h=v ÷a ÷b长方体的高h=v ÷(axb)长方体的高a=v ÷b ÷h 长方体的高b=v ÷a ÷h长方体的高b=v ÷(axh )V 圆柱体=sh V 圆柱体=πr ²h 圆柱的高h=v ÷π÷r ² 圆柱的高h=v ÷(πx r ²) V 圆锥体= 31sh V 圆锥体=31πr ²h 圆锥的高h=3v ÷π÷r ² 圆锥的高h=3v ÷(πx r ²) 圆柱体礼盒包装绳长=直径x 4 + 高x 4 + 打结部分长度单位:km 1000m 10dm 10cm 10 mm面积单位:km²1000000 m²100dm²100cm²100mm²100公顷10000体积单位:m³1000 dm³1000 cm³1000 mm³1:1 1:1容积单位:L 1000mL长度单位:km 1000m 10dm 10cm 10 mm面积单位:km²1000000 m²100dm²100cm²100mm²100公顷10000体积单位:m³1000 dm³1000 cm³1000 mm³1:1 1:1容积单位:L 1000mL。
小学数学单元作业设计一、单元信息二、单元分析(-)课标要求通过观察、操作,认识圆柱和圆锥,认识圆柱的展开图。
结合具体情境,探索并掌握圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
《义务教育数学课程标准》中对第二学段有明确要求:“初步形成数感和空间观念,感受符号和几何直观的作用。
”“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果。
”“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决。
”(二)教材分析1 .知识网络2 .内容分析本单元的主要内容有:面的旋转、圆柱的表面积和体积、圆锥的体积。
圆柱和圆锥是人们在生产和生活中经常遇到的几何体,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。
本单元加强了与现实生活的联系,加强了对图形特征、计算方法的探索,加强了在操作中对空间与图形问题的思考,使学生在经历观察、操作、推理、想象的过程中认识并掌握圆柱、圆锥的特征及体积的计算方法,进一步发展空间观念。
(H)学情分析本单元的教学对象是六年级毕业班的学生,在知识系统上已经认识了长方形、正方形、平行四边形、三角形、梯形、圆等平面图形和长方体、正方体等立体图形,对于圆柱和圆锥,学生已经能够直观辨认,但在学习过程中还存在以下困难:1、平面图形经过旋转成几何体,是从“静态”到“动态”的转化;对圆柱、圆锥侧面的认识,是学生从“整体辨识”到“局部刻画特征”的又一个提升。
2、对于圆柱和圆锥体积的学习,由于空间想象能力有限,学生往往不能讲圆锥(或圆锥)的底面半径(或直径)及圆柱(或圆锥)的高分辨清楚,特别是圆柱的体积等于和它等底等高的圆锥的3倍,在计算时学生可能经常出现错误。
三、单元学习与作业目标1、在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。
2、结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱和圆锥体积的计算方法,并能解决简单的实际问题。
北师大版六年级数学下册知识点归纳The document was prepared on January 2, 2021圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πd h;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πr h4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2=或S表=2πrh+2πr25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。
2.圆柱的体积=底面积×高。
如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。
3.圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。
(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示是V=Sh。
一圆柱与圆锥第1课时面的旋转 (1)第2课时面的旋转 (2)第3课时圆柱的表面积 (4)第4课时圆柱的表面积 (5)第5课时圆柱的表面积 (6)第6课时圆柱的体积 (7)第7课时圆柱的体积(2) (8)第8课时圆锥的体积(1) (9)第9课时圆锥的体积(2) (10)第10课时练习一(1) (11)第11课时练习一(2) (13)第1课时面的旋转教学目标1.通过初步认识圆柱和圆锥,使学生感受到数学与生活的密切联系。
2.通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。
3.通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。
教学重点联系生活,在生活中辨认有圆柱和圆锥特征的物体,并能抽象出几何图形的形状来。
教学难点通过观察,初步了解圆柱和圆锥的组成及其特点。
教学准备各种面、圆柱和圆锥模型。
教法小组合作交流法。
学法小组合作学习法。
教学课时1课时一、合作探究1.观察课本P2的各图,你发现了什么?2.如图:用纸片和小棒做成下面的小旗,快速地旋转小棒,观察并想象旋转后形成的图形,再连一连。
二、汇报点评(自学后完成下面问题)1.风筝的每一个节连起来看,形成了一条线的样子;雨刷器扫过后形成一个半圆形面;旋转门旋转成一个圆柱体。
学生体验:点动成线,线动成面,面动成体。
2.学生实际动手操作,然后根据想象的图形连线。
学生体验:面动成体。
3.介绍:圆柱、圆锥、球的名称。
并请学生根据自己的观察介绍一下这几个立体图形的特点。
指名请学生说。
小结:圆柱的上下两个面叫做底面,它们是完全相同的两个圆。
圆柱有一个曲面,叫做侧面。
圆柱两个底面之间的距离叫做高。
圆锥的底面是一个圆。
圆锥的侧面是一个曲面。
从圆锥顶点到底面圆心的距离是圆锥的高。
(教师画出平面图进行讲解。
并在图上标出各部分的名称。
)三、巩固练习判断:(1)一个圆柱有无数条高,一个圆锥也有无数条高。
(2)圆锥的表面有两个面(侧面和底面)。
北师大版六年级下册《第1章圆柱和圆锥》小学数学-有答案-单元测试卷(7)一、填空题.(每1分,共25分)1.2. 圆柱的侧面展开可得到一个长方形,它的长等于圆柱的________,宽等于圆柱的________,所以圆柱的侧面积=________×________.3. 圆柱的表面积=________+________×2.4. 一个长方形的长为5cm,宽为3cm,以它的宽为轴旋转一周,得到的图形是________,它的底面直径是________cm,它的高是________cm.5. 一个直角三角形的两条直角边分别是3cm和4cm,以较长的一条直角边为轴旋转一周得到的图形是________,它的底面直径是________cm,高是________cm.6. 一个圆柱体底面直径是2cm,高是6cm,它的侧面积是________平方厘米,表面积是________平方厘米,体积是________立方厘米。
7. 将一个棱长为6厘米的正方体削成一个最大的圆锥,这个圆锥的体积是________厘米3.8. 一个圆柱的底面半径扩大3倍,高不变,则底面周长扩大________倍,体积扩大________倍。
二、判断题.(对的在括号里打“√”,错的打“×”)(每题2分,共12分)体积一般比表面积大。
________.(判断对错)铁丝是圆柱体。
________.(判断对错)底面积相等的两个圆柱体积相等。
________.(判断对错)圆柱体的体积等于圆锥体的体积的3倍。
________.(判断对错)求圆柱形容器的容积,就是求圆柱形容器的体积。
________.(判断对错)把一个圆柱平均切成3个小圆柱,那么每个小圆柱的表面积是原来的圆柱表面积的1.________.3三、选择题.(把正确答案的序号填在括号里)(每题2分,共10分)求圆柱形的铁桶能装多少升油,是求它的()A.表面积B.体积C.侧面积D.容积压路机的前轮转动一周能压多少路面是指()A.前轮的两个圆的面积B.前轮的侧面积C.前轮的表面积一个圆柱体和一个圆锥体的底面积和体积都相等,圆锥的高是18厘米,圆柱的高是()厘米。
第一单元教材分析圆柱与圆锥单元目标:1.通过动手操作、观察等活动,认识圆柱与圆锥。
了解圆柱与圆锥的基本特征,知道圆柱与圆锥各部分的名称。
经历由面旋转成圆柱与圆锥的活动,体会面与体之间的关系,在参与教学活动中积累活动经验,丰富对现实空间的认识,发展空间观念。
2.经历圆柱侧面展开等活动,认识圆柱展开图,探索并掌握圆柱表面积的计算方法。
并能运用圆柱表面积的知识解决生活中一些简单的问题。
3.经历“类比猜想-验证”的活动,探索并掌握圆柱和圆锥体积的计算方法,体验某些实物体积的测量方法,体会圆柱、圆锥体积知识在生活中的实际应用,解决一些简单的实际问题。
单元重点:1.能正确描述圆柱与圆锥的特征,认识圆柱和圆锥及其各部分名称。
2.能正确描述圆柱表面积的含义,能正确计算圆柱的表面积。
3.能正确计算圆柱和圆锥的体积。
4.能根据不同的问题情境正确选择相应的计算方法解决一些简单的实际问题。
单元难点:1.能正确描述圆柱与圆锥的特征,认识圆柱和圆锥及其各部分名称。
2.能正确描述圆柱表面积的含义,能正确计算圆柱的表面积。
3.能正确计算圆柱和圆锥的体积。
4.能根据不同的问题情境正确选择相应的计算方法解决一些简单的实际问题。
学情分析:本单元是在学生已经探索并掌握了长方体、正方体、圆等一些常见的平面图形的特征,已经长方体、正方体的特征,并直观认识圆柱和圆锥的基础上编排的。
此前对圆面积公式的探索以及长方体、正方体特征和表面积、体积计算方法的探索,为进一步学习本单元知识奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。
圆柱和圆锥是小学阶段学习几何知识的最后一部分内容。
圆柱与圆锥是基本的几何形体,也是生产、生活中经常遇到的几何形体,这些都是本单元知识学习的重要基础。
学习圆柱和圆锥的知识扩大了学生认识形体的范围,增加了形体的知识,促进空间观念的进一步发展。
从认识长方体和正方体这样由几个平面图形围成的几何体,到认识圆柱和圆锥这样含有曲面的几何体,在图形的认识上又深入了一步。
圆柱容积计算方法
计算圆柱的容积可以使用以下公式:
容积 (V) = 底面积 (A) ×高度 (h)
圆柱的底面积可以通过计算圆的面积来获得,使用以下公式:
底面积 (A) = π×半径 (r)²
其中,π是一个常数,约等于3.14159。
综合以上公式,我们可以得到完整的圆柱容积计算公式:
V = π× r²× h
请注意,确保所使用的长度单位保持一致(如米、厘米、英尺等)。
例如,如果要计算一个底半径为 2 米,高度为 5 米的圆柱的容积,可以按照以下步骤进行计算:
1. 计算底面积:
A = π× 2² = 12.56636 平方米
2. 计算容积:
V = A × h = 12.56636 平方米× 5 米 = 62.8318 立方米
因此,该圆柱的容积为 62.8318 立方米。
小学六年级数学《圆柱的体积》教案一等奖范文1、小学六年级数学《圆柱的体积》教案一等奖范文教学内容:北师大版数学六年级下册5——6页。
教学目标:1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学重点:目标1。
教学难点:目标2。
教学过程:活动一:复习旧知,巩固学过的公式。
1、一个直径是100毫米的圆,求周长。
2、一个半径3厘米的圆,求周长和面积。
3、一个长为3米,宽为2米的长方形,它的面积是多少?4、出示圆柱体的模型,说说它有什么特征?活动二;探究新知。
1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)要解决这个问题,就是求什么?2、圆柱的表面积包括哪几部分?3、圆柱的表面积的计算关键在哪一部分?4、探索圆柱侧面积的计算方法。
1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。
2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?3)师;圆柱的侧面积就是求长方形的面积。
用长乘宽。
4)长就是圆柱的底面圆的周长,宽就是圆柱的高。
5)请你来总结一下圆柱侧面积的计算方法。
6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。
活动三:新知识的运用。
1、求底面半径是10厘米,高30厘米的圆柱的表面积。
2、教师板书:侧面积:2╳3.14╳10╳30=1884(平方厘米)底面积:3.14╳10╳10=314(平方厘米)表面积:1884+314╳2=2512(平方厘米)要求按步骤进行书写。
2、试一试。
做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?求至少需要多少铁皮,就是求水桶的表面积。
这道题要注意什么?无盖就只算一个底面。
这种题如果求整数,一般用进一法。
3、练一练。
书第6页第1题。
3个小题:已知底面直径或底面周长和高,求圆柱的表面积。
(北师大版)六年级数学下册知识点归纳总结第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh。
圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以:圆的面积=π×半径×半径=π×半径²。
北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题(赶紧收藏)其他单元陆续更新……第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.面的旋转:圆柱(1)圆柱是由是由长方形绕长或宽旋转360度得到的立体图形,这个长方形的长和宽就是圆柱体的底面半径和高,沿高线切割后的切面是长方形;如果由正方形旋转则得到的圆柱体底面半径和高相等,沿高线切割后的切面是正方形。
(2)基本特征:a、圆柱有三个面,2个底面+1个侧面;圆柱的两个底面是半径相等的(或完全相等的)两个圆,侧面是一个曲面。
b、圆柱上下两个底面间的距离叫做圆柱的高。
c、圆柱有无数条高,且高的长度都相等。
圆锥(1)圆锥是由直角三角形绕一条直角边旋转360度得到的立体图形,围绕旋转的直角边是圆锥的高,另一条直角边是圆锥的底面半径;沿高线切割后的切面是等腰三角形。
(2)基本特征:a、圆锥有两个面,1个底面+1个侧面;圆锥的底面是一个圆,和底面相对的位置是顶点,侧面是一个曲面,展开是一个扇形。
b、圆锥顶点到底面圆心的距离是圆锥的高。
c、圆锥只有一条高。
二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
长方形的长相当于圆柱的底面周长,宽相当于圆柱的高;如果展开是一个正方形则说明圆柱的底面周长和高相等。
(如果不是沿高剪开,有可能还会是平行四边形或其他不规则图形,但都可以剪拼成长方形或正方形)2、.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh4、圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或 S表=2πrh+2πr25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
北师大版六年级下册数学第一单元圆柱与圆锥应用题专题训练1.航天运载火箭有一个重要组成部分是整流罩,整流罩外形通常由近似的圆柱和圆锥组成。
下图是某型号运载火箭的简约示意图(整流罩本身的厚度不计),该整流罩的容积是多少?2.一堆玉米堆成圆锥形,底面周长是12.56米,高是1.8米。
(1)这些玉米的体积是多少?(2)如果每立方米玉米重750千克,这些玉米有多少吨?3.一个圆锥谷堆,底而直径为6米,高1.2米。
这堆稻谷的体积是多少立方米?如果每立方米稻谷的质量是800千克,这堆稻谷有多少吨?4.将一个底面半径是10厘米的圆锥形金属全部浸没在底面直径40厘米的圆柱形玻璃容器中,这时水面比原来上升了1.5厘米。
这个圆锥形金属的高是多少厘米?5.把一个长、宽、高分别为9cm、7cm、3cm的长方体铁块和一个棱长为5cm的正方体铁块,熔铸成一个底面直径为10cm的圆锥形铁块,圆锥形铁块的高是多少厘米?6.一个用塑料薄膜搭成的蔬菜大棚(如图),长20m,横截面是一个半径为2m的半圆,如果前后面都算的话,①搭成这个大棚至少需要塑料薄膜多少平方米?②这个大棚的种植面积是多少平方米?7.一个圆柱形蓄水池,底面直径20m,深2m,在水池的侧面和池底抹上水泥,抹水泥的面积有多少m2?这个水池最多能蓄水多少m3?8.有甲、乙两个不同形状的杯子(如下所示),用甲杯盛满水倒入乙杯中,这样倒4次后,乙杯中水的高度是多少厘米?9.工地上有一堆圆锥形沙堆,高1.5米,底面直径是6米。
(1)这个沙堆的占地面积是多少?(2)如果每立方米沙约重1.7吨,这堆沙约重多少吨?10.今天是笑笑的生日,同学们送给她一个大蛋糕,蛋糕盒是圆柱形,做蛋糕的阿姨说要配上十字形丝带才更漂亮(如下图),打结处要用25cm。
(1)捆扎这个蛋糕盒至少需要多长的丝带?(2)在它的侧面贴上商标纸,商标纸的面积至少是多少平方厘米?11.如图,一个醋瓶,底面直径为8cm,瓶里醋深12cm,把瓶盖盖紧后倒置(瓶口向下),无水部分高10cm。
北师大版六年级下册数学第一单元圆柱和圆锥测试卷一.选择题(共6题,共12分)1.一个底面直径是8cm,高是6cm的容器,小明将这个容器装满水,再把一个底面积是3.14平方厘米、高3cm的圆锥体铁块浸入容器的水中.会溢出()立方厘米的水。
A.301.44B.9.42C.3.14D.6.282.下面叙述中,有()句话是正确的。
(1)分母是质数的最简分数,不能化成有限小数(2)任何长方体,只有相对的两个面才完全相等(3)爸爸跑100米用了13分钟(4)长方形的周长一定,长和宽不成比例(5)因为圆周长C=πd,所以,圆周长一定,π和d成反比例(6)圆锥体体积比与它等底等高的圆柱体体积少三分之二A.1B.2C.3D.43.用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()。
A.侧面积和高都相等B.高一定相等C.侧面积一定相等D.侧面积和高都相等4.圆柱体的底面直径20厘米,高是底面直径的。
它的表面积是()。
A.528cm2B.628cm2C.1570cm2D.1256cm25.一个圆锥形沙堆,测得底面周长是12.56米,高1.5米。
这个沙堆的体积是()。
A.12.56立方米B.18.84立方米C.31.4立方米 D.6.28立方米6.下列形状的纸片中,不能围成圆柱形纸筒的是()。
A. B. C.D .二.判断题(共6题,共12分)1.求圆柱体的体积时,可以把圆柱体转化为由一定数量的完全相同的圆片堆积而成。
()2.圆柱和圆锥都有无数条高。
()3.从圆锥的顶点向底面垂直切割,所得到的截面是一个等腰的三角形。
()4.一个圆柱的底面半径是r,高是2πr,那么它的侧面沿高展开是正方形。
()5.圆柱体的侧面展开可以得到一个长方形,这个长方形的长等于圆柱底面的直径,宽等于圆柱的高。
()6.圆柱的体积一定比圆锥的体积大。
()三.填空题(共6题,共11分)1.一个圆柱的底面周长6.28厘米,高是3厘米,它的体积是()立方厘米。