酶
- 格式:ppt
- 大小:3.90 MB
- 文档页数:86
酶的六大类
首先,我们要知道的是,根据酶的性质和作用,酶大致可以分为六大类。
这六大类包括:氧化还原酶、转移酶、水解酶、裂解酶、异构酶、酶联接酶。
氧化还原酶主要参与氧化还原反应,例如脱氢酶、氧化酶、过氧化物酶等,都是氧化还原酶的一种。
氧化还原酶在生物体的能量代谢、物质合成和信号传导等
生物过程中具有重要作用。
转移酶是指可以催化生物体内一种物质的化学基团转移到另一种物质上的酶类。
比如转酮糖酶就是转移酶的一种,主要参与糖类的代谢。
水解酶是一种可以催化水分子参与反应,使某种化合物发生水解的酶。
例如淀粉酶、脂肪酶等,它们能分别催化淀粉和脂肪的水解反应。
裂解酶是一类在没有水参与的情况下,能催化某些化合物分解的酶。
例如裂解酮体酶,它能催化酮体的裂解。
异构酶是指能催化某种物质的结构在化学上发生变化的酶类,例如果糖磷酸异构酶,它能催化磷酸果糖在其同分异构物间的转换。
酶联接酶是指可以催化两种不同的物质分子联接成一种新的化合物的酶类,例如赖氨酸酶,它能催化两个赖氨酸分子的连接。
以上这六大类的酶在生物体的各种代谢活动中都发挥着重要的作用。
在研究和利用酶的过程中,我们需要掌握他们的性质和作用,以便更好地利用它们进行科研和生产。
酶的定义名词解释酶(enzyme),又称酵素,是生物体内特定的蛋白质分子,能够在生理条件下催化生物体内的化学反应,以加速反应速率并调节代谢过程。
酶通过降低反应活化能,使化学反应在细胞内温和的温度和pH条件下进行,以促进生物体的正常功能。
酶是生物体内许多生化反应的催化剂,实际上,生物体内的所有化学反应几乎都与酶有关。
酶的作用是选择性的,只催化特定的底物反应而不影响其他底物。
酶能够将底物转化为产物,同时也可以逆转反应,将产物转变回底物。
这种能力使得酶在细胞内起着调节和平衡代谢的重要作用。
酶具有高度的专一性。
不同酶对应不同的底物,而同一种底物可能会被多种酶所催化。
酶的专一性与酶与底物之间的结合方式密切相关。
酶与底物之间通过非共价键(如氢键、疏水相互作用等)相互结合形成酶底复合物。
这种结合使酶能够选择性地与特定底物结合,从而催化特定的化学反应。
酶的活性受许多因素的影响。
温度、pH和离子环境是主要影响酶活性的因素。
酶的活性随温度的升高而增加,直至达到最适温度,进而由于蛋白质的变性而失去活性。
不同酶对温度的最适值有所差异,这与酶的生存环境有关。
酶的活性也受pH值的影响。
不同酶对pH的最适值也有所差异,这是由于酶分子内部的氨基酸残基的带电性质会随pH的变化而改变。
离子环境的改变也会影响酶的活性,因为离子能够影响酶与底物之间的结合。
酶的命名多以“底物+酶”或者“反应类型+酶”的方式进行。
酶名的命名方式基于酶所催化的底物或产物、催化反应的类型及其所属的酶家族。
例如,DNA聚合酶催化DNA分子的合成,丙酮酸脱氢酶催化丙酮酸的脱氢反应。
酶家族的命名通常以希腊字母命名,各个家族下又可进一步分为不同的亚家族。
酶家族和亚家族的命名有利于对酶进行分类和研究。
酶在许多领域有重要的应用价值。
在医药领域中,酶作为药物,能够用于治疗各种疾病。
例如,青霉素酶能够降解青霉素,从而提高患者对青霉素的耐药性。
在食品工业中,酶可以用于改善食品品质、提高产量和延长保质期。
第三章酶本章要点生物催化剂——酶:由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质。
一、酶的分子结构与功能1.单体酶:由单一亚基构成的酶。
(如溶菌酶)2.寡聚酶:由多个相同或不同的亚基以非共价键连接组成的酶。
(如磷酸果糖激酶-1)3.多酶复合物(多酶体系):几种具有不同催化功能的酶可彼此聚合。
(如丙酮酸脱氢酶复合物)4.多功能酶(串联酶):一些酶在一条肽链上同时具有多种不同的催化功能。
(如氨基甲酰磷酸合成酶Ⅱ)(一)、酶的分子组成中常含有辅助因子1.酶蛋白主要决定酶促反应的特异性及其催化机制;辅助因子主要决定酶促反应的性质和类型。
2.酶蛋白和辅助因子单独存在时均无催化活性,只有全酶才具有催化作用。
3.辅酶与酶蛋白的结合疏松,可以用透析和超滤的方法除去。
在酶促反应中,辅酶作为底物接受质子或基团后离开酶蛋白,参加另一酶促反应并将所携带的质子或基团转移出去,或者相反。
4.辅基则与酶蛋白结合紧密,不能通过透析或超滤将其除去。
在酶促反应中,辅基不能离开酶蛋白。
5.作为辅助因子的有机化合物多为B族维生素的衍生物或卟啉化合物,它们在酶促反应中主要参与传递电子、质子(或基团)或起运载体作用。
金属离子时最常见的辅助因子,约2/3的酶含有金属离子。
6.金属离子作为酶的辅助因子的主要作用①作为酶活性中心的组成部分参加催化反应,使底物与酶活性中心的必需基团形成正确的空间排列,有利于酶促反应的发生;②作为连接酶与底物的桥梁,形成三元复合物;③金属离子还可以中和电荷,减小静电斥力,有利于底物与酶的结合;④金属离子与酶的结合还可以稳定酶的空间构象。
7.金属酶:有的金属离子与酶结合紧密,提取过程中不易丢失。
8.金属激活酶:有的金属离子虽为酶的活性所必需,但与酶的结合是可逆结合。
(二)、酶的活性中心是酶分子执行其催化功能的部位1.酶的活性中心(活性部位):酶分子中能与底物特异地结合并催化底物转变为产物的具有特定三维结构的区域。
酶的名词解释生物化学方程式酶的名词解释和生物化学方程式酶是生物体内一类具有催化作用的蛋白质,能够加速生物化学反应的进行,而不影响反应的平衡点。
酶在维持生命活动中起着至关重要的作用。
本文将介绍酶的定义和功能,并探讨酶催化反应的机制。
一、酶的定义酶是一类具有高度专一性的生物催化剂,它能够在细胞内或体外低于常温下加速化学反应的进行。
酶分子通常由一条或多条多肽链组成,并具有特定的三维结构。
酶与底物结合形成酶底物复合物,通过调整底物分子的构型,降低反应所需的活化能,从而促使反应发生。
酶的活性受到温度、pH值、底物浓度和酶浓度等环境因素的影响。
二、酶的功能酶在生物体内起着非常重要的功能,包括代谢调节、物质转运、信号转导等。
酶可以分解复杂的有机物质,提供生物体所需的能量和营养物质。
例如,消化酶能够分解食物中的大分子物质,使其转化为可供细胞吸收和利用的小分子物质。
另外,酶还能够合成生物体内所需的物质,如DNA聚合酶可以将DNA的单链合成成双链,促使DNA复制。
三、酶催化反应的机制酶催化反应的机制可以通过生物化学方程式来表示。
生物化学方程式是描述酶催化反应过程的化学方程式。
以下以酶催化水解蔗糖为例进行具体说明。
蔗糖 + 水 -> 葡萄糖 + 蔗糖酶在这个反应中,蔗糖酶是酶的名称,将蔗糖分解为葡萄糖和蔗糖酶。
酶与蔗糖结合形成酶底物复合物,随后酶通过特定的活性位点将底物转化为产物,最后酶与产物解离,重新进入催化循环。
酶催化反应的机制分为两个基本步骤:底物结合和催化步骤。
底物结合是指酶与底物之间的识别和结合过程,酶通过与底物之间的氢键、离子键或范德华力进行相互作用,形成酶底物复合物。
催化步骤是指酶促使底物转化为产物的过程,酶通过调整底物分子的构型,降低反应所需的活化能,从而促使反应发生。
四、酶的特点和应用酶具有高效、专一和可逆等特点。
由于酶具有高度专一性,使其在医药、食品、生物工程等领域具有广泛的应用。
例如,酶在医药领域用于制药工艺中的底物转化,如蛋白质重组技术中的酶切剂,可以切割目标蛋白质中的特定位点,得到所需的产物。
第一节酶的性质、命名及分类酶是由生物活细胞产生的有催化功能的蛋白质,只要不处于变性状态,无论在细胞内或细胞外都可发挥催化化学反应的作用。
酶是蛋白质,因而能使蛋白质分解的,光、热、酸、碱等均可使酶变性或破坏,在遭到不可逆变性时则完全去活性(如70-80℃,2-15min即可使酶失活),其它电性质及物理化学性质也与蛋白质完全一样。
有些酶是简单蛋白质。
有些酶是结合蛋白质,一般把结合蛋白质的蛋白部分称为酶蛋白,非蛋白质部分称为辅酶。
酶蛋白多为对热不稳定的物质,而辅酶多为低分子量、对热稳定的物质。
酶是一种催化剂,但它和一般的化学催化剂有很大不同,首先,酶的作用具有高度的专一性,酸能催化蛋白质水解,也能催化多糖和脂肪的水解,但是酶则不同,蛋白酶就只能催化蛋白质水解,淀粉酶只能催化淀粉水解,乳酸脱氢酶只能将L(+)-乳酸氧化为丙酮酸,而对D(-)-乳酸就不起作用。
其次,酶催化的反应都是在较温和的条件下,在接近生物体的体温和接近中性的条件下就能进行;酶的催化效率也比一般催化剂高得多,如一种过氧化氢酶1min内能催化5000000个过氧化氢分子分解为水及O2,而在同样条件下,铁离子的催化效率仅为酶的百万分之一。
酶的命名及分类现在普遍使用的酶的习惯名称是以下述三个原则来决定的。
根据酶催化反应的性质来命名,如催化水解反应的酶称为水解酶,催化氧化作用的称为氧化酶或脱氢酶。
根据被作用的底物兼顾反应的性质来命名,如多元酚氧化酶催化多元酚的氧化作用,蛋白酶和淀粉酶都是水解酶,它们的底物分别是蛋白质和淀粉。
结合1,2两点,并根据酶的来源命名,如细菌淀粉酶、胃蛋白酶等。
酶的习惯名称使用起来比较方便,但有时会造成一些混乱,如,当两种酶能作用于同一种底物发生相同反应时,根据上述原则命名就会发生混乱;有时同一种酶会有几个名称,也造成混乱。
因此,1961年,国际生化协会酶委员会规定了酶的系统命名原则。
国际生化协会酶委员会将酶分为六大类:1、氧化还原酶类2、转移酶类:能催化将某一基因从一个化合物转移到另一个化合物反应的酶,如转移氨基,称转氨酶,再如转醛酶、转酰酶等。