数学2004年高考理科试题解析
- 格式:doc
- 大小:451.50 KB
- 文档页数:8
2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)当前第3 页共10页三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC-A1B1C1中,∠ACB=90o,AC=1,CB=2,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)当前第5 页共10页2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C(II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B F B FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,A'C'2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)当前第7 页共10页∴与G B 1的夹角θ等于所求二面角的平面角, cos .33||||11-=∙=G B CD θ 所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln(2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x ∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)C已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值. 19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去 当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f图2Cy图1在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x ex x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nqq q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq q q q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分,考试用时120分钟。
第一卷1至2页,第二卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第一卷(选择题 共60分)注意事项:1. 答第一卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+。
如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅。
柱体(棱柱、圆柱)的体积公式Sh V =柱体。
其中S 表示柱体的底面积,h 表示柱体的高。
一. 选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,3)2)(1(ii i ++-= A. i +1 B. i --1 C. i 31+D. i 31--2. 不等式21≥-xx 的解集为 A. )0,1[- B. ),1[∞+-C. ]1,(--∞D. ),0(]1,(∞+--∞3. 若平面向量与向量)2,1(-=的夹角是︒180,且53||=,则= A. )6,3(-B. )6,3(-C. )3,6(-D. )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF A. 1或5B. 6C. 7D. 95. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.21 6. 如图,在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于A.510 B.515 C.54 D.32 ACC 1D E7. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 A. 03=--y x B. 032=-+y x C. 01=-+y xD. 052=--y x8. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是A. ]3,0[π B. ]127,12[ππC. ]65,3[ππD. ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA 。
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
04高考试题全国卷1理科数学及答案(必修选修Ⅱ河南河北山东山西安徽江西)2004年高考试题全国卷1理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分.共150分.考试时间120分钟.第I卷(选择题共60分)球的表面积公式S=4其中R表示球的半径,球的体积公式V=,其中R 表示球的半径参考公式:(II)设直线l与y轴的交点为P,且求a的值.22.(本小题满分14分)已知数列,且a2k=a2k-1+(-1)k,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3,a5;(II)求{an}的通项公式.2004年高考试题全国卷1理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.{某|某≥-1}14.某2+y2=415.16.①②④三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:所以函数f(某)的最小正周期是π,最大值是,最小值是.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52某0.62=0.09.P(ξ=1)=某0.52某0.62+某0.52某0.4某0.6=0.3P(ξ=2)=某0.52某0.62+某0.52某0.4某0.6+某0.52某0.42=0.37.P(ξ=3)=某0.52某0.4某0.6+某0.52某0.42=0.2P(ξ=4)=0.52某0.42=0.04于是得到随机变量ξ的概率分布列为:ξ01234P0.090.30.370.20.04所以Eξ=0某0.09+1某0.3+2某0.37+3某0.2+4某0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f(某)的导数:(I)当a=0时,若某<0,则<0,若某>0,则>0.所以当a=0时,函数f(某)在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II)当由所以,当a>0时,函数f(某)在区间(-∞,-)内为增函数,在区间(-,0)内为减函数,在区间(0,+∞)内为增函数;(III)当a<0时,由2某+a某2>0,解得0-.所以当a<0时,函数f(某)在区间(-∞,0)内为减函数,在区间(0,-)内为增函数,在区间(-,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.∵AD⊥PB,∴AD⊥OB,∵PA=PD,∴OA=OD,于是OB平分AD,点E为AD的中点,所以PE⊥AD.由此知∠PEB为面PAD与面ABCD所成二面角的平面角,∴∠PEB=120°,∠PEO=60°由已知可求得PE=∴PO=PE·in60°=,即点P到平面ABCD的距离为.(II)解法一:如图建立直角坐标系,其中O为坐标原点,某轴平行于DA..连结AG.又知由此得到:所以等于所求二面角的平面角,于是所以所求二面角的大小为.解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.∵AD⊥PB,∴BC⊥PB,FG⊥PB,∴∠AGF是所求二面角的平面角.∵AD⊥面POB,∴AD⊥EG.又∵PE=BE,∴EG⊥PB,且∠PEG=60°.在Rt△PEG中,EG=PE·co60°=.在Rt△PEG中,EG=AD=1.于是tan∠GAE==,又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分.解:(I)由C与t相交于两个不同的点,故知方程组有两个不同的实数解.消去y并整理得(1-a2)某2+2a2某-2a2=0.①双曲线的离心率(II)设由于某1+某2都是方程①的根,且1-a2≠0,22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I)a2=a1+(-1)1=0,a3=a2+31=3.a4=a3+(-1)2=4,a5=a4+32=13,所以,a3=3,a5=13.(II)a2k+1=a2k+3k=a2k-1+(-1)k+3k,所以a2k+1-a2k -1=3k+(-1)k,同理a2k-1-a2k-3=3k-1+(-1)k-1, (3)a1=3+(-1).所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],由此得a2k+1-a1=(3k-1)+[(-1)k-1],于是a2k+1=a2k=a2k-1+(-1)k=(-1)k-1-1+(-1)k=(-1)k=1.{an}的通项公式为:当n为奇数时,an=当n为偶数时,正确地体现了党和国家的相关方针政策。
2004年高考试题全国卷2(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有()条 (A )1条 (B )2条 (C )3条 (D )4(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明:(Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=λ,若λ∈[4,9],求l 在y 轴上截距的变化范围.(22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x . (1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 参考答案(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B F B FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与B 1的夹角θ等于所求二面角的平面角,cos .3311-==θ 所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,A'C'∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln (2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +). 设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年浙江省高考数学卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分。
1. 若U ={1,2,3,4},M ={1,2}, N ={2,3}, 则U ð(M N )=(A){1,2,3} (B){2} (C){1,3,4} (D){4} 2. 点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动23π弧长到达Q 点,则Q 的坐标为(A)(-21,) (B) (-21) (C)(-21,(D)(,21)3. 已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=(A)-4 (B)-6 (C)-8 (D)-104. 曲线y 2=4x 关于直线x =2对称的曲线方程是(A)y 2=8-4x (B)y 2=4x -8 (C)y 2=16-4x (D)y 2=4x -165. 设z =x -y , 式中变量x 和y 满足条件3020x y x y +-≥⎧⎨-≥⎩, 则z 的最小值为(A)1 (B)-1 (C)3 (D)-36. 已知复数z 1=3+4i , z 2=t +i , 且12z z 是实数,则实数t =(A)43 (B)34 (C)-34(D)-437.若n展开式中存在常数项,则n 的值可以是 (A)8 (B)9 (C)10 (D)128. 在△ABC 中,“A >30︒”是“sin A >21”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件9. 若椭圆12222=+by a x (a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3的两段,则此椭圆的离心率为 (A)1617(C)4510. 如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,若AD 与平面AA 1CC 所成的角为α,则α=(A)3π(B)4π (C)(D)CC 1 1D11.设f '(x)是函数f(x)的导函数,y=f '(x)的图象如右图所示,则y=f(x)的图象最有可能的是(A) (B)(D)12.若f(x)和g(x)都是定义在实数集R上的函数,且方程x-f[g(x)]=0有实数解,则g[f(x)]不可能是(A)x2+x-51(B)x2+x+51(C)x2-51(D)x2+51二、填空题:本大题共4小题,每小题4分,满分16分。
把答案填在题中横线上。
13.已知f(x)=1,0,1,0,xx≥⎧⎨-<⎩,则不等式x+(x+2)·f(x+2)≤5的解集是__________.14.已知平面上三点A、B、C满足|AB|=3, ||BC=4, |CA|=5,则AB BC BC CA CA AB++的值等于________.15.设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有__________种(用数字作答).16.已知平面α与平面β交于直线l,P是空间一点,P A⊥α,垂足为A,PB⊥β,垂足为B,且P A=1,PB=2,若点A在β内的射影与点B在α内的射影重合,则点P到l的距离为________.三、解答题:本大题共6小题,满分74分。
解答应写出文字说明证明过程或演算步骤。
17.(本题满分12分)在△ABC中,角A、B、C所对的边分别为a,b,c,且cos A=31(Ⅰ)求sin22B C++cos2A的值;(Ⅱ)若a=3,求bc的最大值。
18. (本题满分12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个。
第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同),记第一次与第二次取到球的标号之和为ξ。
(1)求随机变量ξ的分布列;(2)求随机变量ξ的期望E ξ。
19. 如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点。
(1)求证AM //平面BDE ;(2)求二面角A -DF -B 的大小;(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60︒。
20. 设曲线y =e -x (x ≥0)在点M (t ,e -t }处的切线l 与x 轴、y 轴围成的三角形面积为S (t ).(1)求切线l 的方程; (2)求S (t )的最大值。
21. 已知双曲线的中心在原点,右顶点为A (1,0),点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1,(1)若直线AP 的斜率为k ,且|k |∈求实数m 的取值范围; (2)当m =2+1时,△APQ 的内心恰好是点M ,求此双曲线的方程。
22. 如图,△OBC 的三个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n ,P n +3为线段P n P n +1的中点,令P n 的坐标为(x n ,y n ),a n =21y n +y n +1+y n +2. (1)求a 1,a 2,a 3及a n ;(2)证明414n n yy +=-,n ∈N *;(3)若记b n =y 4n +4-y 4n ,n ∈N *,证明{b n }是等比数列。
数学答案(理科)一.选择题: 本大题共12小题,每小题5分,共60分.1. D2.A3.B4.C5.A6.A7.C8.B9.D 10.D 11.C 12.B 二.填空题:本大题共4小题,每小题4分,满分16分. 13. ]23,(-∞ 14. 14 --25 15. 5 16. 5三.解答题:本大题共6小题,满分74分. 17. (本题满分12分) 解: (Ⅰ)A CB 2cos 2sin2++ =)1cos 2()]cos(1[212-++-A C B=)1cos 2()cos 1(212-++A A=)192()311(21-++= 91-(Ⅱ) ∵31cos 2222==-+A bc a c b ∴2222232a bc a c b bc -≥-+=, 又∵3=a∴.49≤bc当且仅当 b=c=23时,bc=49,故bc 的最大值是49.(18) (满分12分)解: (Ⅰ)由题意可得,随机变量ε的取值是2、3、4、6、7、10。
E ε=2×0.09+3×0.24+4×0.13+6×0.18+7×0.24+10×0.09=5.2. (19) (满分12分) 方法一解: (Ⅰ)记AC 与BD 的交点为O,连接OE,∵O 、M 分别是AC 、EF 的中点,ACEF 是矩形, ∴四边形AOEM 是平行四边形, ∴AM ∥OE 。
∵⊂OE 平面BDE , ⊄AM 平面BDE , ∴AM ∥平面BDE 。
(Ⅱ)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS ,∵AB ⊥AF , AB ⊥AD , ,A AF AD = ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影, 由三垂线定理得BS ⊥DF 。
∴∠BSA 是二面角A —DF —B 的平面角。
在RtΔASB 中,,2,36==AB AS ∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º。
(Ⅲ)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AF AB = , ∴PQ ⊥平面ABF ,⊂QE 平面ABF , ∴PQ ⊥QF 。
在RtΔPQF 中,∠FPQ=60º, PF=2PQ 。
∵ΔPAQ 为等腰直角三角形, ∴).2(22t PQ -=又∵ΔPAF 为直角三角形, ∴1)2(2+-=t PF ,∴).2(2221)2(2t t -⋅=+- 所以t=1或t=3(舍去) 即点P 是AC 的中点。
方法二(Ⅰ)建立如图所示的空间直角坐标系。
设N BD AC = ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1), ∴NE=()1,22,22--, 又点A 、M 的坐标分别是(022,,)、()1,22,22 ∴ AM=()1,22,22-- ∴NE=AM 且NE 与AM 不共线,∴NE ∥AM 。
又∵⊂NE 平面BDE , ⊄AM 平面BDE , ∴AM ∥平面BDF 。
(Ⅱ)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD =∴AB ⊥平面ADF 。
∴)0,0,2(-=AB 为平面DAF 的法向量。
∵NE·DB=()1,22,22--·)0,2,2(-=0, ∴NE·NF=()1,22,22--·)0,2,2(=0得 NE ⊥DB ,NE ⊥NF ,∴NE 为平面BDF 的法向量。
∴cos<AB,NE>=21 ∴AB 与NE 的夹角是60º。
即所求二面角A —DF —B 的大小是60º。
(Ⅲ)设P(t,t,0)(0≤t≤2)得),1,2,2(t t PF --=∴CD=(2,0,0)又∵PF 和CD 所成的角是60º。
∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去), 即点P 是AC 的中点。
(20)(满分12分)解:(Ⅰ)因为,)()(x x e e x f ---='='所以切线l 的斜率为,1--e 故切线l 的方程为).(t x e e y t t--=---即0)1(1=+-+--t e y x e t 。
(Ⅱ)令y=0得x=t+1,又令x=0得)1(+=-t e y t所以S (t )=)1()1(211+⋅+-t e t =12)1(21-+e t从而).1)(1(21)(1t t e t S +-='-∵当∈t (0,1)时,)(t S '>0, 当∈t (1,+∞)时,)(t S '<0,所以S(t)的最大值为S(1)= (21) (满分12分)解: (Ⅰ)由条件得直线AP 的方程),1(-=x k y 即.0=--k y kx因为点M 到直线AP 的距离为1, ∵,112=+-k k mk即221111kk k m +=+=-. ∵],3,33[∈k ∴,21332≤-≤m 解得332+1≤m ≤3或--1≤m ≤1--332.∴m 的取值范围是].3,3321[]3321,1[+--(Ⅱ)可设双曲线方程为),0(1222≠=-b by x由),0,1(),0,12(A M +得2=AM .又因为M 是ΔAPQ 的内心,M 到AP 的距离为1,所以∠MAP=45º,直线AM 是∠PAQ的角平分线,且M 到AQ 、PQ 的距离均为1。