电磁学作业-
- 格式:doc
- 大小:1.91 MB
- 文档页数:30
高二暑假物理作业(电磁学部分常考点复习) 班级: 姓名:1.匝数为N、面积为S、总电阻为R的矩形闭合线圈,在磁感应强度为B的匀强磁场中按如图3-95所示方向(俯视逆时针)以角速度ω绕轴OO′匀速转动.t=0时线圈平面与磁感线垂直,规定adcba的方向为电流的正方向.求:(1)线圈转动过程中感应电动势瞬时值的表达式.(2)线圈从图示位置开始到转过90°的过程中的平均电动势. (3)线圈转到与图示位置成60°角时的瞬时电流. (4)线圈转动一周过程中外力做的功.2.所示为测量某种离子的荷质比的装置.让中性气体分子进入电离室A,在那里被电离成离子.这些离子从电离室的小孔飘出,从缝S1进入加速电场被加速,然后让离子从缝S2垂直进入匀强磁场,最后打在底片上的P点.已知加速电压为U,磁场的磁感应强度为B,缝S2与P之间的距离为a,离子从缝S1进入电场时的速度不计,求该离子的荷质比q/m.3. 在如图3-97所示,以O点为圆心,以r为半径的圆与坐标轴交点分别为a、b、c、d,空间有一与x轴正方向相同的匀强电场,同时,在O点固定一个电量为+Q的点电荷.如果把一个带电量为-q的检验电荷放在c点,恰好平衡,求: (1)匀强电场的场强大小E为多少? (2)a、d点的合场强大小各为多少?(3)如果把O点的正点电荷+Q移走,把点电荷-q从c点沿x轴移到a点,求电场力做的功及点c、a两点间的电势差.4. 如图3-105所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域Ⅰ磁场方向垂直斜面向下,区域Ⅱ磁场方向垂直斜面向上,磁场宽度均为L,一个质量为m、电阻为R、边长也为L的正方形线框,由静止开始下滑,沿斜面滑行一段距离后ab边刚越过ee′进入磁场区域Ⅰ时,恰好做匀速直线运动,若当ab边到达gg′与ff′的中间位置时,线框又恰好做匀速直线运动,求: (1)当ab边刚越过ee′进入磁场区域Ⅰ时做匀速直线运动的速度v; (2)当ab边刚越过ff′进入磁场区域Ⅱ时,线框的加速度a;(3)线框从ab边开始进入磁场Ⅰ至ab边到达gg′与ff′的中间位置的过程产生的热量Q.5. 如图3-108甲所示,x轴上方为一垂直于平面xOy向里的匀强磁场,磁感应强度为B,x轴下方为方向平行于x轴,但大小一定(假设为E0)、方向作周期性变化的电场.在坐标为(R,R)的A点和第四象限中某点各放置一个质量为m,电量为q的正点电荷P和Q,P、Q的重力及它们之间的相互作用力均不计,现使P在匀强磁场中开始做半径为R的匀速圆周运动,同时释放Q,要使两电荷总是以相同的速度同时通过y轴,求:(1)场强E0的大小及方向变化的周期;(2)在如图乙所示的E-t图中作出该电场的变化图象(以释放电荷P时为初始时刻,x轴正方向作为场强的正方向),要求至少画出两个周期的图象.第二题图6. 如图所示,理想变压器原线圈中输入电压U1=3300V,副线圈两端电压U2为220V,输出端连有完全相同的两个灯泡L1和L2,绕过铁芯的导线所接的电压表V的示数U=2V,求: (1)原线圈n1等于多少匝?(2)当开关S断开时,表A2的示数I2=5A,则表A1的示数I1为多少? (3)当开关S闭合时,表A1的示数I1′等于多少?7.在真空室内,速度为v=6.4×107m/s的电子束连续地沿两平行导体极板的中心线射入,如图3-113所示,极板长L=8.0×10-2m,两极板间的距离d=5.0×10-3m,两极板不带电时,电子束将沿中心线射出极板.今在两极板间加上50Hz的交变电压u=U0sin100πt(V),发现有时有电子从两极板之间射出,有时则无电子从两极板间射出.若有电子射出的时间间隔与无电子射出的时间间隔之比为Δt1/Δt2=2∶1,则所加的交变电压的最大值U0为多大?(已知电子的质量为m=9.1×10-31kg,电量为e=1.6×10-19C)8. 一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数n =100,穿过每匝线圈的磁通量φ随时间按正弦规律变化,如图所示。
电磁学试题(含答案)⼀、单选题1、如果通过闭合⾯S 的电通量e Φ为零,则可以肯定A 、⾯S 内没有电荷B 、⾯S 内没有净电荷C 、⾯S 上每⼀点的场强都等于零D 、⾯S 上每⼀点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线⽅向电势逐渐降低 B 、沿电场线⽅向电势逐渐升⾼ C 、沿电场线⽅向场强逐渐减⼩ D 、沿电场线⽅向场强逐渐增⼤3、⾼压输电线在地⾯上空m 25处,通有A 1023的电流,则该电流在地⾯上产⽣的磁感应强度为A 、T 104.15-? B 、T 106.15-? C 、T 1025-? D 、T 104.25-? 4、载流直导线和闭合线圈在同⼀平⾯内,如图所⽰,当导线以速度v 向左匀速运动时,在线圈中 A 、有顺时针⽅向的感应电流B 、有逆时针⽅向的感应电C 、没有感应电流D 、条件不⾜,⽆法判断 5、两个平⾏的⽆限⼤均匀带电平⾯,其⾯电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσ B 、0εσ C 、02εσ D 、0 6、⼀束α粒⼦、质⼦、电⼦的混合粒⼦流以同样的速度垂直进⼊磁场,其运动轨迹如图所⽰,则其中质⼦的轨迹是 A 、曲线1 B 、曲线2C 、曲线3D 、⽆法判断7、⼀个电偶极⼦以如图所⽰的⽅式放置在匀强电场E中,则在电场⼒作⽤下,该电偶极⼦将A 、保持静⽌B 、顺时针转动C 、逆时针转动D 、条件不⾜,⽆法判断 8、点电荷q 位于边长为a 的正⽅体的中⼼,则通过该正⽅体⼀个⾯的电通量为 A 、0 B 、εqC 、04εq D 、06εq 9、长直导线通有电流A 3=I ,另有⼀个矩形线圈与其共⾯,如图所⽰,则在下列哪种情况下,线圈中会出现逆时针⽅向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动10、下列说法中正确的是A 、场强越⼤处,电势也⼀定越⾼σ+ σ-P3IB 、电势均匀的空间,电场强度⼀定为零C 、场强为零处,电势也⼀定为零D 、电势为零处,场强⼀定为零11、关于真空中静电场的⾼斯定理0εi Sq S d E ∑=??,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成⽴;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E⼀定是电荷i q ∑激发的;D. 积分式中的E是由⾼斯⾯内外所有电荷激发的。
一、选择题1、在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]2、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流为I ,.若载流长直导线1、2以及圆环中的电流在圆心O 点所产生的磁感强度分别用1B 、2B , 3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B ) B = 0,因为021=+B B ,B 3 = 0. (C ) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0.(D ) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(E ) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ D ]3、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ]4、无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有(A) B i 、B e 均与r 成正比.(B) B i 、B e 均与r 成反比.(C) B i 与r 成反比,B e 与r 成正比.(D) B i 与r 成正比,B e 与r 成反比. [ D ]5、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) ⎰=⋅0l d B ,且环路上任意一点B = 0.(B) ⎰=⋅0l d B ,且环路上任意一点B ≠0.(C) ⎰≠⋅0l d B ,且环路上任意一点B ≠0.(D) ⎰≠⋅0l d B ,且环路上任意一点B =常量. [ B ]6、按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:(A) 增加. (B) 减小.(C) 不变. (D) 改变方向. [ A ]7、如图所示,一根长为ab 的导线用软线悬挂在磁感强度为的匀强磁场中,电流由a 向b 流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab 导线与软线连接处张力为零则必须:(A) 改变电流方向,并适当增大电流.(B) 不改变电流方向,而适当增大电流.(C) 改变磁场方向,并适当增大磁感强度的大小. (D) 不改变磁场方向,适当减小磁感强度的大小. [ B ]8、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]9、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ B ]10、半径为a 的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ A ]11、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a –U c 为(A) =0,221l B U U b a ω=-. (B) =0,221l B U U b a ω-=-. (C) =2l B ω,221l B U U b a ω=- (D) =2l B ω,221l B U U b a ω-=-. [ B ]12、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ C ]13、用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向?[ B ]二、填空题 14、如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B 的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度射入磁场.在图面内与界面P 成某一角度.那么粒子在从磁场中射出前是做半径为______________的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成的平面区域的面积是_________________.答案:)(qB mv15、若在磁感强度B =0.0200T 的均匀磁场中,一电子沿着半径R = 1.00 cm 的圆周运动,则该电子的动能E K =________________________eV .(e =1.6 ×10-19 C, m e = 9.11×10-31 kg)答案: 3.51×103参考解: mR B q mv E K 2212222== =5.62×10-16 J=3.51×103 eV16、氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m ________________. 答案:me 217、载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________.答案:ba b a Iv -+ln 20πμ 18、如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ______________________.答案:al a Igt +-ln 20πμ 19、位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符 合________和____________________的条件时,其自感系数可表成V I N L 20)/(μ=,其中V 是螺线管的体积.20、一线圈中通过的电流I 随时间t 变化的曲线如图所示.试定性画出自感电动势 L 随时间变化的曲线.(以I 的正向作为 的正向)答案:21、真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O 点的磁场能量密度w m o =___________,P 点的磁场能量密度w mr =__________________.答案: 022、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.答案:dt dE R /20πε三、计算题23、如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角θ =60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(μ0 =4π×10-7 H ·m -1)解:P 处的可以看作是两载流直导线所产生的,与的方向相同.)]60sin(90[sin 4)]90sin(60[sin 400 --+--=rI r I πμπμ ]90sin 60[sin 420 +=rI πμ=3.73×10-3 T 方向垂直纸面向上.24、一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m /A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与dx x +处,作一个单位长窄条,其面积为dx dS ⋅=1.窄条处的磁感强度所以通过d S 的磁通量为 dx R Ix BdS d r 202πμμ==Φ 通过1m 长的一段S 平面的磁通量为Wb I dx R Ix r R r 600201042-===Φ⎰πμμπμμ 25、 一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23 (如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为方向向右,从x = a 到x = 2a 磁场所作的功为26、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.解: 200===l NI nI H A/mH H B r μμμ0===1.06 T27、如图所示,有一矩形回路,边长分别为a 和b ,它在xy 平面内以匀速沿x 轴方向移动,空间磁场的磁感强度与回路平面垂直,且为位置的x 坐标和时间t 的函数,即kx t B t x B sin sin ),(0ω =,其中0B ,ω,k 均为已知常数.设在t =0时,回路在x =0处.求回路中感应电动势对时间的关系.解:选沿回路顺时针方向为电动势正方向,电动势是由动生电动势 1和感生电动势 2组成的.设回路在x 位置:∴ kkx a x k t bB cos )(cos cos 02-+=ωωε 设总感应电动势为 ,且 x =v t ,则有∴。
静止电荷的电场一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .[ ] 2. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]3. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]4. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A)06εq . (B) 012εq. (C) 024εq . (D) 048εq . [ ]5. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.02εP+q 0(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]6. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. [ ]7. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]8. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.则A 、B 两平面上的电荷面密度分别 为σA =_______________, σB =____________________.10. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强 度分别为:E A =_________________,E B =_____________, E C =_________,E D =___________ (设方向向右为正).qABE 0E 0/3E 0/3+σ+σ+σABCD11. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所 示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.12. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强 度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题13. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.14. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.15. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.16. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2)答 案一、1-8 CBACADDC 二、9. -2ε0E 0 / 3; 4ε0E 0 / 310. -3σ / (2ε0); -σ / (2ε0); σ / (2ε0); 3σ / (2ε0) 11.()30220824R qdd R R qd εεπ≈-ππ; 从O 点指向缺口中心点.12. Q / ε0;a E =0,()20018/5R r Q E b επ=三、13. 解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R Rq E 00204d sin 4d d εφφλεπ=π= 3分 在x 、y 轴上的二个分量 d E x =-d E cos φy Rxφ d φd E xd E yφO d Ed qaa aaxzyOd E y =-d E sin φ对各分量分别求和 ⎰ππ=00d cos sin 4φφφελR E x =0 RR E y 0002008d sin 4ελφφελ-=π=⎰π ∴ j Rj E i E E y x008ελ-=+= 14. 解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为 θελελd 22d d 020RR E π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x =d E sin θ , d E y =-d E cos θ对各分量分别积分 R R E x 02002d sin 2ελθθελππ=π=⎰ 0d cos 2002=π-=⎰πθθελRE y 场强 i Rj E i E E y x02ελπ=+= 15. 解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ 在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里. 在球体外作一半径为r 的同心高斯球面,按高斯定理有0422/4εAR r E π=π⋅得到 ()20424/r AR E ε=, (r >R )方向沿径向,A >0时向外,A <0时向里.16. 解:设闭合面内包含净电荷为Q.因场强只有x分量不为零,故只是二个垂直于x轴的平面上电场强度通量不为零.由高斯定理得:-E1S1+ E2S2=Q / ε0( S1 = S2 =S ) 3分则Q = ε0S(E2- E1) = ε0Sb(x2- x1)= ε0ba2(2a-a) =ε0ba3 = 8.85×10-12 C电势班级:_____________ 姓名:_____________ 学号:_____________一、选择题1.(1019) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A)a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) aq08επ-. [ ]2. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π21114R R Qε.(C) E =204r Q επ,U =r Q04επ (D) E =204r Q επ,U =104R Q επ.[ ] 3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取. (D) 电势值的正负取决于产生电场的电荷的正负. [ ]4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ] 5. 如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功A7.(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ] 6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为: (A)⎪⎭⎫⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε .(C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D)rq04επ . [ ] 7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为(A)d S q q 0212ε+. (B) d Sq q 0214ε+. (C)d S q q 0212ε-. (D) d Sq q 0214ε-. [ ] 8. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ] 二、填空题9. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.10. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________.11. 把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电 势U 由 __________________________变为________________(选无穷远处为电势零点).12. 静电场的环路定理的数学表示式为:______________________.该式的物理意义是:____________________________________________________________.该定理表明,静电场是______ _________场.BAS q 1q 2三、计算题13. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.15.两个带等量异号电荷的均匀带电同心球面,半径分别为R 1=0.03 m 和R 2=0.10 m .已知两者的电势差为450 V ,求内球面上所带的电荷.16. 有两根半径都是R 的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d ≥2R ),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.答案一、1-8 DBCDDACB 二、9. 10cm 10.⎪⎭⎫⎝⎛π∆-π20414R SR Q ε 11. Q / (4πε0R 2); 0 ; Q / (4πε0R ); Q / (4πε0r 2)12. 0d =⋅⎰Ll E单位正电荷在静电场中沿任意闭合路径绕行一周,电场力作功等于零 有势(或保守力) 三、13. 解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i x R xE E E 220212+=+=εσ该点电势为 ()22002202d 2x R R x R x x U x +-=+=⎰εσεσ 14. 解: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U .在球层内取半径为r →r +d r 的薄球层.其电荷为 d q = ρ 4πr 2d r该薄层电荷在球心处产生的电势为 ()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()212200002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 若根据电势定义⎰⋅=l E Ud 计算同样给分.15.解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ= (R 1<r <R 2)两球的电势差⎰⎰π==212120124d R R R R r dr Qr E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 CO x P16. 解:设原点O 在左边导线的轴线上,x 轴通过两导线轴线并与之垂直.在两轴线组成的平面上,在R <x <(d -R )区域内,离原点距离x 处的P 点场强为()x d x E E E -π+π=+=-+0022ελελ 则两导线间的电势差 ⎰-=R d Rx E U d ⎰-⎪⎭⎫ ⎝⎛-+π=Rd Rx x d x d 1120ελ()[]R d Rx d x ---π=ln ln 20ελ⎪⎭⎫ ⎝⎛---π=R d R R R d ln ln 20ελ RR d -π=ln 0ελ+λ导体和电介质一、选择题1. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ](A) S Q 012ε .(B) SQ Q 0212ε-.(C)SQ 01ε. (D) S Q Q 0212ε+.2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地(地面负电荷进入导体). (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ] 3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ ] (A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E .4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则 [ ](A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=.5. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S面内必定 [ ](A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.+Q 2B6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 [ ](A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ ](A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. 8. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ] 二、填空题9. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________.10. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的_________倍.11. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场 能量是原来的___________ 倍.12. 分子的正负电荷中心重合的电介质叫做_______________ 电介质 .在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.三、计算题13. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势.+Q14. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球相联后导体球所带电荷q.15. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电. (1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?16. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.参考答案一、1-8 CBBBDBCB 二、9. λ/(2πr );λ/(2π ε0 εr r ) 10. ,1,r r εε 11.1r ε;1rε12. 无极分子;电偶极子 三、13. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+ 14. 解:设导体球带电q ,取无穷远处为电势零点,则导体球电势:r qU 004επ=内球壳电势: 10114R q Q U επ-=2024R Q επ+二者等电势,即 r q04επ1014R q Q επ-=2024R Q επ+ 解得 )()(122112r R R Q R Q R r q ++=15. 解:(1) 令无限远处电势为零,则带电荷为q 的导体球,其电势为R qU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能 q RqW A d 4d d 0επ== (2) 带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR q q A A 004d d πεR Q 028επ=16. 解:设内外圆筒沿轴向单位长度上分别带有电荷+λ和-λ, 根据高斯定理可求得两圆筒间任一点的电场强度为 rE r εελ02π=则两圆筒的电势差为 1200ln 22d d 2121R R r r r E U r R R r R R εελεελπ=π==⎰⎰⋅解得 120ln 2R R Ur εελπ=于是可求得A点的电场强度为 A E )/ln(12R R R U== 998 V/m 方向沿径向向外A 点与外筒间的电势差: ⎰⎰=='22d )/ln(d 12RR R Rr rR R U r E U RR R R U212ln )/ln(== 12.5 V。
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
初中物理单元作业设计电磁学
初中物理单元作业设计:电磁学
作业一:电磁感应
1. 请解释什么是电磁感应。
2. 什么是法拉第电磁感应定律?请列举一个应用实例。
3. 请解释什么是电磁感应现象。
4. 请描述一个实验,用于验证电磁感应现象。
作业二:电磁铁
1. 请解释什么是电磁铁。
2. 请列举三个电磁铁的应用场景,并解释其原理。
3. 请描述一个实验,用于制作一个简单的电磁铁。
作业三:电磁波
1. 请解释什么是电磁波。
2. 请列举三个常见的电磁波,并解释其应用。
3. 请解释电磁波的传播特性。
作业四:电磁辐射
1. 请解释什么是电磁辐射。
2. 请列举三个常见的电磁辐射源,并解释其对人体的影响。
3. 请解释如何减少电磁辐射对人体的影响。
作业五:电磁感应与发电
1. 请解释电磁感应与发电的关系。
2. 请解释什么是发电机。
3. 请描述一个实验,用于展示电磁感应产生电流。
作业六:电磁感应与变压器
1. 请解释电磁感应与变压器的关系。
2. 请解释什么是变压器。
3. 请描述一个实验,用于展示变压器的工作原理。
以上是一个初中物理单元作业设计的电磁学部分,可以根据学生的学习进度和能力进行适当调整和增减题目数量。
初三物理电磁学练习题及答案一、选择题1. 电流通过一根电线,会产生什么样的磁场?A. 强磁场B. 弱磁场C. 无磁场答案:A2. 距离电流较远的地方,磁场的强度会如何变化?A. 增大B. 减小C. 保持不变答案:B3. 下列哪个物质不是磁性材料?A. 铁B. 镍C. 铜答案:C4. 电磁铁的磁性来源于什么?A. 电流B. 铁材料C. 温度变化答案:A5. 电磁感应现象最早由谁发现?A. 培根B. 爱迪生C. 法拉第答案:C二、填空题1. 电流的单位是______。
答案:安培(A)2. 在电磁铁中,使铁芯磁化的是_____。
答案:电流3. 电磁感应现象是指导体中的__________变化时,会在导体两端产生感应电流。
答案:磁通量4. 在一个闭合电路中,若磁通量减小,则通过电路的感应电流的方向为______。
答案:逆时针方向5. 电磁波是一种______波。
答案:横波三、解答题1. 描述电磁铁的工作原理及应用。
答案:电磁铁是利用通电线圈产生的磁力,使铁芯具有磁性的装置。
当通过电流时,电磁铁会产生磁场,这使得铁芯磁化,成为一个强磁体。
电磁铁广泛应用于电动机、电磁阀、电磁吸盘等设备中,在工业生产和生活中起到很大的作用。
2. 解释电磁感应现象,并举例说明。
答案:电磁感应现象是指导体中的磁通量发生变化时,会在导体两端产生感应电流的现象。
当导体与磁场相互运动或磁场发生变化时,导体中的自由电子会受到磁场的作用,发生运动产生感应电流。
例如,当将一根导体放入磁场中并快速移动时,导体中会产生感应电流,从而使灯泡发光。
3. 简述电磁波的特点及应用领域。
答案:电磁波是一种横波,具有能量传播速度快、可以穿透空气、真空等介质,且具有多种波长和频率的特点。
电磁波的应用领域非常广泛,包括电视、无线电通信、雷达、医疗技术、卫星通信等。
通过对电磁波的利用,人们可以进行远距离通信、进行遥感探测、进行医学诊断和治疗等。
这些题目和答案旨在帮助初三学生巩固和理解物理电磁学的相关知识点。
《电磁学》作业答案二1.33如附图所示,在半径为R1和R2的两个同心球面上,分别均匀地分布着电荷Q1和Q2, 求:(1)Ⅰ、Ⅱ、Ⅲ三个区域内的场强分布;(2)若Q1=-Q2,情况如何?画出此情形的E-r 曲线。
解:(1)应用高斯定理可求得三个区域内的场强为E -r 曲线 0 1 = E r (r<R 1); re rQ E ˆ 4 2 0 1 2 pe = r (R 1<r<R 2) re r Q Q E ˆ 4 20 2 1 3 pe + = r ( r> R 2) ( 2 ) 若Q1=-Q2,E 1=E 3=0, re r Q E ˆ 4 2 0 1 2 pe =r E -r 曲线如图所示。
1.35实验表明:在靠近地面处有相当强的电场,E垂直于地面向下,大小约为100N/C;在离地面 1.5千米高的地方,E也是垂直地面向下的,大小约为25N/C。
(1) 试计算从地面到此高度大气中电荷的平均密度;(2) 如果地球上的电荷全部均匀分布在表面,求地面上电荷的面密度。
解:(1)以地心为圆心作球形高斯面,恰好包住地面,由对称性和高斯定理得[]) / ( 10 4 . 4 ) ( 4 ) ( 4 / ) ( ) 2 ( ) ( 4 ) ( ) ( 4 cos ) ( 4 cos 3 13 2 1 0 21 2 2 1 2 0 1 2 0 1 2 2 2 1 2 2 2 02 2 2 2 2 1 1 012 1 11 m C hE E h R Q Q E E R Q Q Q Q E h R h E E R S Q Q h R E dS E S d E h R S Q Q R E dS E S d E SSSS- ´ = - = - »Þ - » - - = + - - = + × - = = × + = × - = = × òòòò òò òòe p r pe e p e p q e p q 相减 包围电荷代数和 是 为半径作同心球面 再以 包围电荷代数和 是 r r r r (2) 以地球表面作高斯面210 0 2 021 1 1 / 10 85 . 8 4 1 1 4 cos m C E R dS R E dS E S d E SSS- ´ - = = = = × - = = × òòòò òò e s p s e s e p q r r 1.37一对无限长的共轴直圆筒,半径分别为R1和R2,筒面上都均匀带电。
0ε-答案:《大学物理电磁学》作业 第一章 电场强度班级 ________________ 学号 ______________ 姓名 ____________一、选择题:(注意:题目中可能有一个或几个正确答案) 1.真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负)(A ) (B )(C )(D )2.两个同心均匀带电球面,半径分别为R a 和R b ( R a <R b ) ,所带电量分别为Q a 和Q b ,设某点与球心相距r , 当R a < r < R b 时, 该点的电场强度的大小为:( A )2041r Q Q b a +⋅πε ( B ) 2041r Q Q b a -⋅πε ( C ) )(41220bb a R Q r Q +⋅πε ( D ) 2041rQ a ⋅πε3. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,轴线方向单位长度上的带电量分别为λ 1 和λ 2 , 则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小( A )r0212πελλ+ ( B )20210122R R πελπελ+( C )1014R πελ( D ) 04.有两个点电荷电量都是 +q , 相距为2a , 今以左边的点电荷所在处为球心, 以a 为半径作一球形高斯面,在球面上取两块相等的小面积S 1 和S 2, 其位置如图所示 , 设通过S 1 和S 2 的电场强度分别为 Φ1 和Φ2 ,通过整个球面的电场强度通量为Φs ,则( A ) Φ1 > Φ2 , Φs = q /ε0 ( B ) Φ1 < Φ2 , Φs = 2q /ε0( C ) Φ1 = Φ2 , Φs = q /ε0 ( D ) Φ1 < Φ2 , Φs = q /ε05.图示为一具有球对称性分布的静电场的 E ~ r 关系曲线 , 请指出该静电 E 场是由下列那种带电体产生的。
x( A ) 半径为R 的均匀带电球面。
( B ) 半径为R 的均匀带电球体。
( C ) 半径为R 的、电荷体密度为ρ=A r (A 为常数)的非均匀带电球体。
( D ) 半径为R 的、电荷体密度为ρ=A/r (A 为常数)的非均匀带电球体。
二、填空题:1.两块“无限大”的带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示,试写出各区域的电场强度E。
Ⅰ区E 的大小 02/εσ , 方向 向右 。
Ⅱ区E的大小 02/3εσ , 方向 向右 。
Ⅲ区E 的大小 02/εσ , 方向 向左 。
解:两个无限大带电平板单独在两侧都产生匀强电场,场强大小和方向如图所示。
由场强叠加原理,可得各区域场强大小和方向为:(设向右为正)Ⅰ区:0002222εσεσεσ=-=E ,方向向右。
Ⅱ区:00023222εσεσεσ==+E ,方向向右。
Ⅲ区:0002222εσεσεσ-==+-E ,方向向左。
2.A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小都为E 0 , 两平面外侧电场强度大小都为 E 0 / 3 ,方向如图。
则A 、B 两平面上的电荷面密度分别为A δ= 3/E 200ε- ,B δ = 3/E 400ε 。
解:设A 、B 两板的电荷面密度分别为A δ、B δ(均匀为正),各自在两侧产生的场强大小和方向如图所示。
由场强叠加原理及题设条件可知:(设向右为正))2(22)1(3122000000E E AB B A =-=+εσεσεσεσ σ/σ02/ε由上两式联解可得:A δ=3/E 200ε-,(负号说明与题设相反,即0<A δ)B δ=3/E 400ε3.真空中一半径为R 的均匀带电球面,总电量为Q (Q > 0)。
今在球面上挖去非常小块的面积ΔS (连同电荷),且假设不影响原来的电荷分布,则挖去ΔS 后球心处电场强度的大小E =)16/(402R S Q επ∆ 。
其方向为 由球心O 点指向 S∆ 。
解:由场强叠加原理,挖去S ∆后的电场可以看作由均匀带电球面和带负电的S∆(面密度与球面相同)叠加而成,在球心处,均匀带电球面产生的场强为零,S ∆(视为点电荷)产生的场强大小为:40220164RS R S E επσπεσ∆=∆=, 方向由球心指向ΔS 。
4.有一个球形的橡皮膜气球,电荷q 均匀地分布在球面上,在此气球被吹大的过程中, 被气球表面掠过的点(该点与球中心距离为r ),其电场强度的大小将由 )4/(20r q πε 变为 0 。
解:由高斯定理可知,均匀带电球面内部场强为零,外部任意一点场强)4/(20r q πε 。
在气球被吹大的过程中,被气球掠过的点都从球外变为球内,因此其场强大小由 )4/(20r q πε 变为零。
三、计算题:1.一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷 q ,如图所示,试以a , q , θ0表示出圆心O 处的电场强度。
S2.一半径为R、长度为L的均匀带电圆柱面,总电量为Q,试求端面处轴线上P 点的电场强度。
密度为ρ,试求板内外的场强分布,并画出场强在x轴的投影值随坐标变化的图线,即E x-x图线(设原点在带电平板的中央平面上,Ox轴垂直于平板)。
《大学物理电磁学》作业 第三章 电势班级 ________________ 学号 ______________ 姓名 ____________一、选择题:(注意:题目中可能有一个或几个正确答案) 1.关于静电场中某点电势值的正负,下列说法中正确的是:(A )电势值的正负取决于置于该点的试验电荷的正负 (B )电势值的正负取决于电场力对试验电荷作功的正负 (C )电势值的正负取决于产生电场的电荷的正负 (D )电势值的正负取决于电势零点的选取2.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为 :(A )r q 04πε (B))(410R Qr q +πε(C )rQ q 04πε+ (D ))(410R q Q r q -+πε3.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移到b 点, a 、b 两点距离点电荷A 的距离分别为r 1 和r 2 ,如图所示,则移动过程中电场力做的功为(A ))11(4210r r Q --πε (B ))11(4210r r qQ -πε(C ))11(4210r r qQ --πε (D ))(4120r r qQ --πε4.某电场的电力线分布情况如图所示,一负电荷从M 点移到N 点。
有人根据这个图做出下列几点结论,其中哪点是正确的? (A )电场强度E M <E N (B ) 电势U M <U N (C )电势能W M <W N (D ) 电场力的功A >05.在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电量q +和q 3-。
现将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子达到外球面时的动能为:(A) R qQ 04πε (B) RqQ 02πε(C)R qQ 08πε (D) RqQ083πε (-[二、填空题:1.AC 为一根长为2l 的带电细棒,左半部均匀带有负电荷,右半部均匀带有正电荷。
电荷线密度分别为-λ和+λ,如图所示。
O 点在棒的延长线上,距A 端的距离为l ,P 点在棒的垂直平分线上,到棒的垂直距离为l 。
以棒的中点B 为电势的零点。
则O 点电势U o =43ln 40πελ ;P 点电势 U P= 0 。
解:U B =0与0=∞U 等效。
细棒上取一线电荷元,则由电势叠加原理有2302000d d '3ln 44'44ll ll x x U x x λλλπεπεπε-+=+=⎰⎰ 由对称性可知 0=p U2.图示为一边长均为a 的等边三角形,其三个顶点分别放置着电量为q 、2q 、3q 的三个正点电荷,若将一电量为Q 的正点电荷从无穷远处移至三角形的中心O 处,则外力需做功A =)2/()33(0a qQ πε 。
解:以无限远处为零电势点,则由电势叠加原理,中心O 处电势为:a Q a q q q U o 002333432πεπε=++=将Q 从无限远处移到O 点,电场力的功为:000)(QU U U Q A -=-=∞∞外力的功为:==-∞00QU A A =外 )2/()33(0a qQ πε3.图中所示为静电场的等势(位)线图,已知U 1 < U 2 < U 3 ,在图上画出 a 、b 两点的电场强度的方向 ,并比较它们的大小,E a = E b( 填 <、=、> )。
4.一质量为m 、电量为q 的小球,在电场力作用下,从电势为U 的a 点,移动qU U U到电势为零的b 点,若已知小球在b 点的速率为V b , 则小球在a 点的速率V a = 212)/2(m qU V b - 。
解:由质点的动能定理有:222121)0(ab Kmv mv U q E A -=-∆= 可得小球在a 点的速率为: mqUV V b a 22-= 三、计算题:1.真空中一均匀带电细直杆,长度为2a ,总电量为+Q ,沿Ox 轴固定放置(如图),一运动粒子质量m 、带有电量+q ,在经过x 轴上的C 点时,速率为V ,试求:(1)粒子经过x 轴上的C 点时,它与带电杆之间的相互作用电势能(设无穷远处为电势零点);(2)粒子在电场力的作用下运动到无穷远处的速率∞V (设∞V 远小于光速)。
2.图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1 ,外表面半径为 R 2 , 设无穷远处为电势零点,求空腔内任一点的电势。
3.图示为两个同轴带电长直金属圆筒,内,外筒半径分别为1R 和2R ,两筒间为空气,内外筒电势分别为0201,2U U U U ==,0U 为一已知常量。
求两金属圆筒之间的电势分布。
《大学物理电磁学》作业 第四章 导体第五章 电介质中的静电场班级 ________________ 学号 ______________ 姓名 ____________一、选择题:(注意:题目中可能有一个或几个正确答案)1.把A 、B处为电势零点,A 的电势为U A ,B 的电势为U B(A )U B >U A ≠0 (B) U B >U A =0 (C )U B = U A (D) U B <U A2.如图所示,一封闭的导体壳A 内有两个导体B 和C 。