2017年数与形同步试题
- 格式:doc
- 大小:386.41 KB
- 文档页数:11
六年级数学《数学广角──数与形》同步试题及答案解析一、填空1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
考查目的:数与形结合的规律;通过特例分析归纳出一般结论的方法。
答案:30。
解析:第(1)个图有1+2+3=6个点,第(2)个图有2+3+4=9个点,第(3)个图有3+4+5=12个点……第个图就有个点。
对于找规律的题目,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
2.先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
考查目的:数与形结合的规律;利用规律解决问题。
答案:,1+4×4;37,201。
解析:分析图形,可得出第个图中共有个点,则第10个图共有1+4×(10-1)=37个点,第51个图共有1+4×(51-1)=201个点。
3.按下面用小棒摆正六边形。
摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
考查目的:根据已知图形的排列特点及数量关系,推理得出一般的结论进行解答。
答案:21;51;。
解析:摆1个六边形需要6根小棒,可以写作5×1+1;摆2个六边形需要11根小棒,可以写作5×2+1;摆3个六边形需要16根小棒,可以写作5×3+1……由此可以推理得出一般规律,即摆个六边形需要根小棒。
4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:考查目的:分析图形的变化规律并列出代数式。
答案:10;。
解析:一张方桌坐4人,每多一张方桌就多2个人,那么有4张方桌时就多坐了6人,总人数为4+6=10。
如果是张方桌,则所坐人数是。
5.数形结合是一种重要的数学思想,认真观察图形,然后完成下列问题。
;;;;。
考查目的:利用数形结合的思想探索规律。
【名师点睛】2017年七年级数学下册同步讲义-相交线平⾏线第04课平移同步练习题及答案(培优)第04课平移【例1】如图,已知AB∥CD,直线l分别截AB、CD于E、C两点,M是线段EC上⼀动点(不与E、C重合),过M点作MN⊥CD于点N,连结EN.(1)如图①,当∠ECD=30°时,直接写出∠MEN+∠MNE的度数;(2)如图②,当∠ECD=α°时,猜想∠MEN+∠MNE的度数与α的关系,并证明你的结论.【例2】如图所⽰,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE.(1)若∠AEF=50°,求∠EFG的度数;(2)判断EG与FG的位置关系,并说明理由.【例3】如图1,长⽅形OABC的边OA在数轴上,O为原点,长⽅形OABC的⾯积为12,OC边长为3. (1)数轴上点A表⽰的数为.(2)将长⽅形OABC沿数轴⽔平移动,移动后的长⽅形记为O'A'B'C',移动后的长⽅形O'A'B'C'与原长⽅形OABC重叠部分(如图2中阴影部分)的⾯积记为S.①当S恰好等于原长⽅形OABC⾯积的⼀半时,数轴上点A'表⽰的数为.②设点A的移动距离AA'=x.ⅰ. 当S=4时,x= ;ⅱ. D为线段AA'的中点,点E在线段OO'上,且OE=OO',当点D,E所表⽰的数互为相反数时,求x的值.【例4】如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有⼀点P,如果P点在C、D 之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发⽣变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系⼜是如何?【例5】如图①所⽰,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:⑴试说明:OB∥AC;⑵如图②,若点E、F在BC上,且∠FOC=∠AOC ,OE平分∠BOF.试求∠EOC的度数;⑶在⑵的条件下,若左右平⾏移动AC,如图③,那么∠OCB:∠OFB的⽐值是否随之发⽣变化?若变化,试说明理由;若不变,求出这个⽐值;⑷在⑶的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.课堂同步练习题⼀、选择题:1、如图所⽰,将图中阴影三⾓形由甲处平移⾄⼄处,下⾯平移⽅法中正确的是()A.先向上移动1格,再向右移动1格B.先向上移动3格,再向右移动1格C.先向上移动1格,再向右移动3格D.先向上移动3格,再向右移动3格第1题图第2题图2、如图,在10×6的⽹格中,每个⼩⽅格的边长都是1个单位,将△ABC平移到△DEF的位置,下⾯正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位3、如图所给的图形中只⽤平移可以得到的有()A.1个B.2个 C.3个D.4个4、如图,△ABC⾯积为2,将△ABC沿AC⽅向平移⾄△DFE,且AC=CD,则四边形AEFB⾯积为( )A.6 B.8 C.10 D.12第4题图第5题图第6题图5、如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同⼀条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.36、如图,有a、b、c三户家⽤电路接⼊电表,相邻电路的电线等距排列,则三户所⽤电线()A.a户最长B.b户最长C.c户最长D.三户⼀样长7、如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的⽅向平移到△DEF的位置,若CF=3,则下列结论中错误的是 ( ) A.DF=5 B.∠F=35°C.BE=3 D.AB∥DE8、如图,将周长为10个单位的△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD周长为()A.12B.14C.16D.18第8题图第9题图第10题图9、如图是⼀块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处⼊⼝中的路宽都为1m,两⼩路汇合处路宽为2m,其余部分种植草坪,则草坪的⾯积为()A.5050m2B.4900m2C.5000m2D.4998m210、如图,O是正六边形ABCDEF的中⼼,下列图形:△OCD,△ODE,△OEF,△OAF,△OAB,其中可由△OBC平移得到的有()A、1个B、2个C、3个D、4个11、如图,多边形的相邻两边均互相垂直,则这个多边形的周长为()A.a+b B.2a+b C.2(a+b) D.a+2b第11题图第12题图12、如图,把直⾓梯形ABCD沿AD⽅向平移到梯形EFGH,HG=24m,MG=8m,MC=6m,则阴影部分地的⾯积是()m2.A.168 B.128 C.98 D.156⼆、填空题:13、如图,将△ABC沿BC⽅向平移2cm得到△DEF,若△ABC周长为16cm,则四边形ABFD周长为.第13题图第14题图第15题图14、如图,矩形ABCD对⾓线AC=10,BC=6,则图中四个⼩矩形的周长和为。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<I I{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<U U ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p满足1142p<<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.3.设有下面四个命题1p:若复数z满足1z∈R,则z∈R;2p:若复数z满足2z∈R,则z∈R;3p:若复数12,z z满足12z z∈R,则12z z=;4p:若复数z∈R,则z∈R.其中的真命题为A.13,p p B.14,p p C.23,p p D.24,p p 【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b=+∈R的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记nS为等差数列{}na的前n项和.若4524a a+=,648S=,则{}na的公差为A.1 B.2 C.4 D.8【答案】C【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,学优高考网C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭L L ,要使(1)100 2k k+>,有14k≥,此时122kk++<,所以2k+是第1k+组等比数列1,2,,2kL的部分和,设1212221t tk-+=+++=-L,所以2314tk=-≥,则5t≥,此时52329k=-=,所以对应满足条件的最小整数293054402N⨯=+=,故选A.【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2b |= .【答案】23【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b,所以|2|1223+==a b.秒杀解析:利用如下图形,可以判断出2+a b的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y=-的最小值为.【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by xa=上的点,且(,0)A a,||||AM AN b==,而AP MN⊥,所以30PAN∠=o,点(,0)A a到直线by xa=的距离22||||1bAPba=+,在Rt PAN△中,||cos||PAPANNA∠=,代入计算得223a b=,即3a b=,由222c a b=+得2c b=,所以22333c bea b===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O 上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【答案】415【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =--u u u r ,(2,0,0)CB =u u u r ,22(,0,)22PA =-u u u r ,(0,1,0)AB =u u u r . 设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分) 已知函数2()e(2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1). 试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e(2)e 1(e 1)(2e 1)xx x x f x a a a '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。
2017年五年级数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数字是偶数?A. 3B. 4C. 5D. 62. 1千米等于多少米?A. 100B. 1000C. 10000D. 1000003. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 三角形D. 圆形4. 下列哪个数是质数?A. 12B. 17C. 20D. 215. 下列哪个数是100的因数?A. 10B. 20C. 30D. 40二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
()2. 1千米等于1000米。
()3. 三角形有三个角和三条边。
()4. 0是最小的自然数。
()5. 100的因数有10个。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 1米等于______分米。
3. 三角形的内角和等于______度。
4. 12的因数有______、______、______、______。
5. 0除以任何不为0的数都得______。
四、简答题(每题2分,共10分)1. 请写出1-10的偶数。
2. 请写出1-10的质数。
3. 请写出100以内的所有立方数。
4. 请写出100的因数。
5. 请解释什么是平行四边形。
五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个?2. 一个长方形的长是10厘米,宽是5厘米,求它的面积。
3. 一个正方形的边长是4厘米,求它的周长。
4. 两个质数相乘,积一定是合数吗?为什么?5. 请找出100以内所有既是3的倍数又是4的倍数的数。
六、分析题(每题5分,共10分)1. 请分析一下100的因数有哪些,并说明原因。
2. 请分析一下平行四边形和矩形的区别和联系。
七、实践操作题(每题5分,共10分)1. 请用硬纸片制作一个长方形,然后剪去一个角,看看剩下的是什么形状。
2. 请用硬纸片制作一个正方形,然后剪去一个角,看看剩下的是什么形状。
2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5B.4C.3D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
2017年福建省中考数学试卷含答案福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是()3.用科学计数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.不等式组x2≤0。
的解集是()x3>A.3<x≤2B.3≤x<2C.x≥2D.x<-37.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,158.如图,AB是O的直径,C,D是O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADCBB.∠ABDC.∠BACD.∠BAD删除无效段落)福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.求3的相反数。
A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是哪个?图片无法显示,无法改写)3.用科学计数法表示136 000.A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2.A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是哪个?A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.求不等式组的解集。
2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(4分)椭圆A.+=1的离心率是()B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+34.(4分)若x、y满足约束条件A.[0,6]B.[0,4],则z=x+2y的取值范围是()C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关C.与a无关,且与b无关B.与a有关,但与b无关D.与a无关,但与b有关6.(4分)已知等差数列{a}的公差为d,前n项和为S,则“d>0”是“S+Sn n4>2S”的()56A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)1的图象可能是()A.B.C.D.8.(4分)已知随机变量ξ满足P(ξ=1)=p,P(ξ=0)=1﹣p,i=1,2.若i i i i i0<p<p<,则()12A.E(ξ)<E(ξ),D(ξ)<D(ξ)B.E(ξ)<E(ξ),D(ξ)1212121>D(ξ)2C.E(ξ)>E(ξ),D(ξ)<D(ξ)D.E(ξ)>E(ξ),D(ξ)1212121>D(ξ)29.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I=•,I=•,I=•,则()1232( 3 2A .I <I <I 123B .I <I <I 1 32C .I <I <I 3 12D .I <I <I 2 13二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分11.(4 分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率 π,理论上能把 π 的值计算到任意精度,祖冲之继承并发展了“割圆术”,将 π 的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积 S ,S =.6612.(6 分)已知 a 、b∈R ,(a+bi )2=3+4i (i 是虚数单位),则 a 2+b 2=,ab=.13. 6 分)已知多项式(x+1)(x+2) =x 5+a x 4+a x 3+a x 2+a x+a ,则 a = ,12 3 4 5 4a =.514.(6 分)已知△ABC,AB=AC=4,BC=2,点 D 为 AB 延长线上一点,BD=2,连结△C D ,则 BDC 的面积是 ,cos∠BDC= .15 .( 6 分)已知向量、 满足 | |=1 , | |=2 ,则 | + |+| ﹣ | 的最小值是,最大值是.16.(4 分)从 6 男 2 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2人组成 4 人服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)17.(4 分)已知 a∈R,函数 f (x )=|x+ ﹣a|+a 在区间[1,4]上的最大值是 5,则 a 的取值范围是.三、解答题(共 5 小题,满分 74 分)18.(14 分)已知函数 f (x )=sin 2x ﹣cos 2x ﹣2(Ⅰ)求 f ()的值.(Ⅱ)求 f (x )的最小正周期及单调递增区间.sinx cosx (x∈R ).319.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.421.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA||PQ|的最大值.22.(15分)已知数列{x}满足:x=1,x=x+ln(1+x)(n∈N*),证明:当nn1n n+1n+1∈N*时,(Ⅰ)0<x<x;n+1n(Ⅱ)2x﹣x≤n+1n (Ⅲ)≤x≤n;.52017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆A.+=1的离心率是()B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.63.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,××3=+1,故该几何体的体积为××π×12×3+××故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.74.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关C.与a无关,且与b无关B.与a有关,但与b无关D.与a无关,但与b有关8【考点】3V:二次函数的性质与图象.【专题】32:分类讨论;4C:分类法;51:函数的性质及应用.【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b 的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{a}的公差为d,前n项和为S,则“d>0”是“S+S6n n4>2S”的()59A.充分不必要条件C.充分必要条件B.必要不充分条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;35:转化思想;4R:转化法;54:等差数列与等比数列;5L:简易逻辑.【分析】根据等差数列的求和公式和S+S>2S,可以得到d>0,根据充分必要465条件的定义即可判断.【解答】解:∵S+S>2S,465∴4a+6d+6a+15d>2(5a+10d),111∴21d>20d,∴d>0,故“d>0”是“S+S>2S”充分必要条件,465故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.10E【考点】3A :函数的图象与图象的变换.【专题】31:数形结合;44:数形结合法;52:导数的概念及应用.【分析】根据导数与函数单调性的关系,当 f′(x )<0 时,函数 f (x )单调递减,当 f′(x )>0 时,函数 f (x )单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数 y=f (x )的图象可能【解答】解:由当 f′(x )<0 时,函数 f (x )单调递减,当 f′(x )>0 时,函数 f (x )单调递增,则由导函数 y=f′(x )的图象可知:f (x )先单调递减,再单调递增,然后单调递减,最后单调递增,排除 A ,C ,且第二个拐点(即函数的极大值点)在 x 轴上的右侧,排除 B ,故选:D .【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4 分)已知随机变量 ξ 满足 P (ξ =1)=p ,P (ξ =0)=1﹣p ,i=1,2.若iiiii0<p <p < ,则()12A .E (ξ )<E (ξ ),D (ξ )<D (ξ )B .E (ξ )<E (ξ ),D (ξ )1212121>D (ξ )2C .E (ξ )>E (ξ ),D (ξ )<D (ξ ) D .E (ξ )>E (ξ ),D (ξ )12 1 2 1 2 1>D (ξ )2【考点】CH :离散型随机变量的期望与方差.【专题】11:计算题;34:方程思想;49:综合法;5I :概率与统计.【分析】由已知得 0<p <p < , <1﹣p <1﹣p <1,求出 E (ξ )=p ,(ξ )1221112=p ,从而求出 D (ξ ),D (ξ ),由此能求出结果.21 2【解答】解:∵随机变量 ξ 满足 P (ξ =1)=p ,P (ξ =0)=1﹣p ,i=1,2,…,iiiii0<p <p < ,1211∴<1﹣p<1﹣p<1,21E(ξ)=1×p+0×(1﹣p)=p,1111E(ξ)=1×p+0×(1﹣p)=p,2222D(ξ)=(1﹣p)2p+(0﹣p)2(1﹣p)= 11111D(ξ)=(1﹣p)2p+(0﹣p)2(1﹣p)= 22222,,D(ξ)﹣D(ξ)=p﹣p2﹣(1211)=(p﹣p)(p+p﹣1)<0,2112∴E(ξ)<E(ξ),D(ξ)<D(ξ).1212故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【考点】MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,12OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3 ==,﹣3,0).Q,=(0,3,6.,R),=(,,6,0),=,设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.13【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD 交于点O,记I=•,I=•,I=•,则()123A.I<I<I123B.I<I<I132C.I<I<I312D.I<I<I213【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;48:分析法;5A:平面向量及应用.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,14∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I<I<I,312故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S,S=.66【考点】CE:模拟方法估计概率.【专题】31:数形结合;4O:定义法;5B:直线与圆.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S=6××1×1×sin60°=.6故答案为:.15【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab= 2.【考点】A5:复数的运算.【专题】34:方程思想;35:转化思想;5N:数系的扩充和复数.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a x4+a x3+a x2+a x+a,则a=16,123454 a=4.5【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;5P:二项式定理.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x 16与常数乘积之和,a就是常数的乘积.5【解答】解:多项式(x+1)3(x+2)2=x5+a x4+a x3+a x2+a x+a,12345(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a=3×4+1×4=16;4a=1×4=4.5故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结△C D,则BDC的面积是,cos∠BDC=.【考点】HT:三角形中的几何计算.【专题】11:计算题;35:转化思想;44:数形结合法;58:解三角形.【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出△SABC,再根据△SBDC =△SABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴△SABC=BC AE=×2×=,∵BD=2,∴△SBDC =△SABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC 在△R t ABE中,∵cos∠ABE==,17( |∴cos∠ABE=2cos 2∠BDC﹣1= ,∴cos∠BDC=故答案为:,,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15. 6 分)已知向量 、 满足| |=1,|=2,则| + |+| ﹣ |的最小值是 4 ,最大值是.【考点】3H :函数的最值及其几何意义;91:向量的概念与向量的模.【专题】11:计算题;31:数形结合;44:数形结合法;51:函数的性质及应用.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知| + |=| ﹣ |=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则 0≤α≤π,如图,由余弦定理可得:、| + |=| ﹣ |=令 x=,,,y= ,则 x 2+y 2=10(x 、y≥1),其图象为一段圆弧 MN ,如图,令 z=x+y ,则 y=﹣x+z ,则直线 y=﹣x+z 过 M 、N 时 z 最小为 z =1+3=3+1=4,min18当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z即为原点到切线的距离的倍,max倍,也就是圆弧MN所在圆的半径的所以z=×=.max.综上所述,|+|+|﹣|的最小值是4,最大值是故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;32:分类讨论;4O:定义法;5O:排列组合.【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C3C1=40种,这4人选2人作为队长和6219副队有A2=12种,故有40×12=480种,4第二类,先选2女2男,有C2C2=15种,这4人选2人作为队长和副队有A2=12624种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,].【考点】3H:函数的最值及其几何意义.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).20f f(Ⅰ)求 f ()的值.(Ⅱ)求 f (x )的最小正周期及单调递增区间.【考点】3G :复合函数的单调性;GF :三角函数的恒等变换及化简求值;H1:三角函数的周期性;H5:正弦函数的单调性.【专题】35:转化思想;4R :转化法;57:三角函数的图像与性质.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f ()的值.(Ⅱ)根据正弦型函数的图象和性质,可得 f (x )的最小正周期及单调递增区间【解答】解:∵函数 (x )=sin 2x ﹣cos 2x ﹣2 sinx cosx=﹣ sin2x ﹣cos2x=2sin(2x+(Ⅰ)f ())=2sin (2× + )=2sin =2,(Ⅱ)∵ω=2,故 T=π,即 f (x )的最小正周期为 π,由 2x+x∈[﹣∈[﹣ +2kπ, +2kπ],k∈Z 得:+kπ,﹣ +kπ],k∈Z,故 (x )的单调递增区间为[﹣ +kπ,﹣ +kπ]或写成[kπ+ ,kπ+ ],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15 分)如图,已知四棱锥 P ﹣ABCD ,△PAD 是以 AD 为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB ,E 为 PD 的中点.(Ⅰ)证明:CE∥平面 PAB ;(Ⅱ)求直线 CE 与平面 PBC 所成角的正弦值.21【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】14:证明题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,22∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,,在由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】35:转化思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),23即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.24【考点】KI:圆锥曲线的综合;KN:直线与抛物线的综合.【专题】11:计算题;33:函数思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA||PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k==x﹣∈(﹣1,1),AP故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则k==x﹣,即x=k+,则AP:y=kx+k+,BQ:y=﹣x+联立直线AP、BQ方程可知Q(+,,),25•=故=( ,),又因为=(﹣1﹣k ,﹣k 2﹣k ),故﹣|PA|• |PQ|=+ =(1+k )3(k ﹣1),所以|PA|• |PQ|=(1+k )3(1﹣k ),令 f (x )=(1+x )3(1﹣x ),﹣1<x <1,则 f′(x )=(1+x )2(2﹣4x )=﹣2(1+x )2(2x ﹣1),由于当﹣1<x < 时 f′(x )>0,当 <x <1 时 f′(x )<0,故 f (x ) =f ( )=,即|PA|• |PQ|的最大值为 .max【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15 分)已知数列{x }满足:x =1,x =x +ln (1+x )(n∈N *),证明:当 nn1 n n+1 n+1∈N *时,(Ⅰ)0<x <x ;n+1n(Ⅱ)2x ﹣x ≤n+1n;(Ⅲ) ≤x ≤n.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】15:综合题;33:函数思想;35:转化思想;49:综合法;4M :构造法;53:导数的综合应用; 54:等差数列与等比数列; 55:点列、递归数列与数学归纳法;5T :不等式.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由 ≥2x ﹣x 得﹣ ≥2( ﹣ )>0,继续放缩即可证明n+1n26【解答】解:(Ⅰ)用数学归纳法证明:x>0,n当n=1时,x=1>0,成立,1假设当n=k时成立,则x>0,k那么n=k+1时,若x<0,则0<x=x+ln(1+x)<0,矛盾,k+1k k+1k+1故x>0,n+1因此x>0,(n∈N*)n∴x=x+ln(1+x)>x,n n+1n+1n+1因此0<x<x(n∈N*),n+1n(Ⅱ)由x=x+ln(1+x)得x x﹣4x+2x=xn n+1n+1n n+1n+1n n+12﹣2x+(x+2)ln(1+x),n+1n+1n+1记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此xn+12﹣2x+(x+2)ln(1+x)≥0,n+1n+1n+1故2x﹣x≤;n+1n(Ⅲ)∵x=x+ln(1+x)≤x+x=2x,n n+1n+1n+1n+1n+1∴x≥n 由,≥2x﹣x得n+1n﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x≤n,综上所述≤x≤.n【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题27。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
《数学广角──数与形》同步试题浙江省诸暨市璜山镇化泉小学张垚杰(初稿)浙江省诸暨市实验小学教育集团陈菊娣(修改)浙江省诸暨市教育局教研室汤骥(统稿)一、填空1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
考查目的:数与形结合的规律;通过特例分析归纳出一般结论的方法。
答案:30。
解析:第(1)个图有1+2+3=6个点,第(2)个图有2+3+4=9个点,第(3)个图有3+4+5=12个点……第个图就有个点。
对于找规律的题目,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
2.先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
考查目的:数与形结合的规律;利用规律解决问题。
答案:,1+4×4;37,201。
解析:分析图形,可得出第个图中共有个点,则第10个图共有1+4×(10-1)=37个点,第51个图共有1+4×(51-1)=201个点。
3.按下面用小棒摆正六边形。
摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
考查目的:根据已知图形的排列特点及数量关系,推理得出一般的结论进行解答。
答案:21;51;。
解析:摆1个六边形需要6根小棒,可以写作5×1+1;摆2个六边形需要11根小棒,可以写作5×2+1;摆3个六边形需要16根小棒,可以写作5×3+1……由此可以推理得出一般规律,即摆个六边形需要根小棒。
4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:考查目的:分析图形的变化规律并列出代数式。
2017年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)若函数在处连续,则()【答案】A【解析】在处连续(2)二元函数的极值点()(A) (B) (C) (D)【答案】D【解析】(3)设函数可导,且则()(A)(B)(C) (D)【答案】C【解析】或,只有C选项满足且满足,所以选C。
(4)若级数收敛,则(A) 1 (B) 2 (C) -1 (D) -2【解析】(5) 设是维单位列向量,为阶单位矩阵,则()(A) 不可逆(B) 不可逆(C) 不可逆(D)不可逆【答案】A【解析】选项A,由得有非零解,故.即不可逆.选项B,由得的特征值为n-1个0,1.故的特征值为n-1个1,2.故可逆.其它选项类似理解.(6)已知矩阵,则(A) A与C相似,B与C相似(B) A与C相似,B与C不相似(C) A与C不相似,B与C相似(D) A与C不相似,B与C不相似【答案】B【解析】由可知A的特征值为2,2,1.因为,∴A可相似对角化,且.由可知B特征值为2,2,1.因为,∴B不可相似对角化,显然C可相似对角化,∴,且B不相似于C.(7)设为三个随机事件,且与相互独立,与相互独立,则与相互独立的充要条件是(A) 与相互独立(B) 与互不相容(C) 与相互独立(D) 与互不相容【答案】C【解析】(8)设来自总体的简单随机样本,记,则下列结论中不正确的是:(A) 服从分布(B) 服从分布(C) 服从分布(D) 服从分布【答案】B【解析】由于找不正确的结论,故B符合题意.二、填空题:9-14小题,每小题4分,共24分。
(9)_________.【解析】(10) 差分方程的通解【解析】代入原方程得.(11) 设生产某产品的平均成本,其中为产量,则边际成本为_________. 【解析】.(12)设函数具有一阶连续偏导数,且,则_________.【解析】(13) 设矩阵,为线性无关的3维列向量组,则向量组的秩为_________.【解析】由线性无关,可知矩阵可逆,故再由得(14) 设随机变量的概率分布为,,若则.【解析】三、解答题:15~23小题,共94分。
2017年数与形同步试题姓名:一、填空1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
2.先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
3.按下面用小棒摆正六边形。
摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:5.数形结合是一种重要的数学思想,认真观察图形,然后完成下列问题。
;;;;。
二、选择1.观察下图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色的三角形有()。
A.82个B.154个C.83个D.121个2.有一个从袋子中摸球的游戏,小红根据游戏规则,做出了如下图所示的树形图,则此次摸球的游戏规则是()。
A.随机摸出一个球后放回,再随机摸出一个球B.随机摸出一个球后不放回,再随机摸出一个球C.随机摸出一个球后放回,再随机摸出三个球D.随机摸出一个球后不放回,再随机摸出三个球3.搭建如图(1)的单顶帐篷需要17根钢管,若这样的帐篷按图(2)、图(3)的方式串起来搭建,则可节省结合处的钢管,那么串搭20顶这样的帐篷需要()根钢管。
A.340B.225C.226D.2274.一只兔子和一条小狗从同一地点出发,同时开始向东运动,兔子的运动距离与时间关系图象如图中实线部分ABCD所示,小狗的运动距离与时间关系图象如图中虚线部分AD所示。
则关于该图象下列说法正确的是()。
A.小狗的速度始终比兔子快B.整个过程中小狗和兔子的平均速度相同C.图中BC段表明兔子在做匀速直线运动D.在前4秒内,小狗比兔子跑得快5.如图,观察下列正三角形的三个顶点所标的数字规律,那么2008这个数在第个三角形的顶点处。
()A.669;上B.669;左下C.670;右下D.670;上三、解答1.把4个完全相同的乒乓球标上数字2、3、4、5,然后放到一个不透明的口袋中,第一次任意摸出一个球(不放回),第二次再任意摸出一个球。
(1)请补充完整下面的连线图:(2)根据上图计算,两次摸出的球所标数字之和是7的可能性是多少?2.找规律填空,要求写出思考的过程。
3.双休日期间,明明和爸爸开车去动物园,在去的路上,明明画出了汽车的速度随时间的变化情况。
如图所示:(1)汽车行驶了多长时间?它的最大速度是多少?(2)汽车在哪个范围内保持匀速行驶?速度是多少?(3)出发后8分钟到10分钟这段时间可能出现什么情况?(4)用自己的语言描述这辆车的行驶情况。
4.分别由红、白、黑、黄、绿、蓝、紫七种颜色排成一排,颜色下面是自然数,按下列方式依次排列:那么,自然数2010对应在哪种颜色下面?在第几行?5.用花、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用花瓷砖(如图所示)。
(1)填写下列表格。
想一想,这些数量之间有什么关系?(2)如果所拼的图形中,用了20块花瓷砖,那么,白瓷砖用了多少块?(3)如果所拼的图形中,用了块白瓷砖,那么花瓷砖用了多少块?数与形同步试题答案一、填空1.观察下面的点阵图规律,第(9)个点阵图中有()个点。
考查目的:数与形结合的规律;通过特例分析归纳出一般结论的方法。
答案:30。
解析:第(1)个图有1+2+3=6个点,第(2)个图有2+3+4=9个点,第(3)个图有3+4+5=12个点……第个图就有个点。
对于找规律的题目,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
2.先画出第五个图形并填空。
再想一想:后面的第10个方框里有()个点,第51个方框里有()个点。
考查目的:数与形结合的规律;利用规律解决问题。
答案:,1+4×4;37,201。
解析:分析图形,可得出第个图中共有个点,则第10个图共有1+4×(10-1)=37个点,第51个图共有1+4×(51-1)=201个点。
3.按下面用小棒摆正六边形。
摆4个正六边形需要()根小棒;摆10个正六边形需要()根小棒;摆个正六边形需要()根小棒。
考查目的:根据已知图形的排列特点及数量关系,推理得出一般的结论进行解答。
答案:21;51;。
解析:摆1个六边形需要6根小棒,可以写作5×1+1;摆2个六边形需要11根小棒,可以写作5×2+1;摆3个六边形需要16根小棒,可以写作5×3+1……由此可以推理得出一般规律,即摆个六边形需要根小棒。
4.学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示),请你结合这个规律,填写下表:考查目的:分析图形的变化规律并列出代数式。
答案:10;。
解析:一张方桌坐4人,每多一张方桌就多2个人,那么有4张方桌时就多坐了6人,总人数为4+6=10。
如果是张方桌,则所坐人数是。
5.数形结合是一种重要的数学思想,认真观察图形,然后完成下列问题。
;;;;。
考查目的:利用数形结合的思想探索规律。
答案:16,4;5;。
解析:通过启发引导,使学生明确可以把一个点看作边长是1的正方形,并由此类比正方形的面积公式计算出结果。
对于的解答,引导学生从已知的结果归纳出“从1开始连续奇数的和等于奇数个数的平方”这一结论即可。
二、选择1.观察下图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色的三角形有()。
A.82个B.154个C.83个 D.121个考查目的:数与形的变化规律。
答案:D 解析:分别数出第一个、第二个、第三个图中白色三角形的个数,总结出白色三角形的增长规律,以此推算出第5个大三角形中白色三角形的个数为1+3+9+27+81=121。
2.有一个从袋子中摸球的游戏,小红根据游戏规则,做出了如下图所示的树形图,则此次摸球的游戏规则是()。
A.随机摸出一个球后放回,再随机摸出一个球B.随机摸出一个球后不放回,再随机摸出一个球C.随机摸出一个球后放回,再随机摸出三个球D.随机摸出一个球后不放回,再随机摸出三个球考查目的:用画树状图的方法解决与“可能性”有关的问题。
答案:A 解析:观察树形图可知,袋中共有红、黄、蓝三个小球,此次摸球的游戏规则为:第一次随机摸出一个球后放回,第二次再随机摸出一个球。
3.搭建如图(1)的单顶帐篷需要17根钢管,若这样的帐篷按图(2)、图(3)的方式串起来搭建,则可节省结合处的钢管,那么串搭20顶这样的帐篷需要()根钢管。
A.340B.225C.226D.227考查目的:图形中的计数规律。
答案:C 解析:通过分析图形,搭建单顶帐篷需要17根钢管。
从串搭第2顶帐篷开始,每多串一顶帐篷需多用11根钢管,由此得出串搭顶帐篷需要根钢管。
则串搭20顶这样的帐篷需要11×20+6=226根钢管。
4.一只兔子和一条小狗从同一地点出发,同时开始向东运动,兔子的运动距离与时间关系图象如图中实线部分ABCD所示,小狗的运动距离与时间关系图象如图中虚线部分AD所示。
则关于该图象下列说法正确的是()。
A.小狗的速度始终比兔子快B.整个过程中小狗和兔子的平均速度相同C.图中BC段表明兔子在做匀速直线运动D.在前4秒内,小狗比兔子跑得快考查目的:关于行程问题的图象综合题。
答案:B 解析:由图象可以看出:在前4秒,兔子在相同时间内通过的路程比小狗的路程多,所以兔子的运动速度大于小狗的运动速度(由此判断选项D 错误);在第4秒,小狗和兔子在相同时间内通过相同的路程,所以它们的平均速度相同;在4到8秒的时间段,小狗在相同时间内通过的路程比兔子的路程多,所以小狗的运动速度大于兔子的运动速度。
整个过程中,小狗和兔子运动路程相同,运动时间相同,所以它们的平均速度相同,选项A 是错误的,B正确。
另,图中的BC段表示兔子处于静止状态。
5.如图,观察下列正三角形的三个顶点所标的数字规律,那么2008这个数在第个三角形的顶点处。
()A.669;上B.669;左下C.670;右下 D.670;上考查目的:数字和图形相结合的变化规律。
答案:D 解析:每个三角形有三个角,对应的三个数的顺序是上、左下、右下。
根据2008÷3=669……1,所以2008这个数在第670个三角形的上顶点处。
三、解答1.把4个完全相同的乒乓球标上数字2、3、4、5,然后放到一个不透明的口袋中,第一次任意摸出一个球(不放回),第二次再任意摸出一个球。
(1)请补充完整下面的连线图:(2)根据上图计算,两次摸出的球所标数字之和是7的可能性是多少?考查目的:连线和列表的方法;利用可能性的知识解决问题。
答案:(1)如下图所示:(2)共有12种情况,和为7的有4种情况,可能性为。
解析:利用连线和列表的方法列举出所有的情况,是一种常用的解决问题的方法。
教师应引导学生去经历和体会整个过程,注重对方法的理解和掌握。
2.找规律填空,要求写出思考的过程。
考查目的:探索数与形结合的规律。
答案:(1)2×4=8,8×2=16,8×8=64。
(2)8+2=10,12+3=15,16+4=20。
如下图所示:解析:第一个图形中,从上到下外围数字都是2,内部数字都是它的左上角与右上角两个数字的积;第二个图形中,从右上向左下看,每组数据都是一个等差数列:第一列公差是1,第二列公差是2,第三列公差是3,第四列公差是4……由此即可解答。
3.双休日期间,明明和爸爸开车去动物园,在去的路上,明明画出了汽车的速度随时间的变化情况。
如图所示:(1)汽车行驶了多长时间?它的最大速度是多少?(2)汽车在哪个范围内保持匀速行驶?速度是多少?(3)出发后8分钟到10分钟这段时间可能出现什么情况?(4)用自己的语言描述这辆车的行驶情况。
考查目的:联系生活实际,利用数形结合的知识解决问题。
答案:(1)汽车行驶了16分钟,最大速度为30千米/小时。
(2)汽车在2到6分钟、12到16分钟这两个时间段内保持匀速行驶,速度为30千米/小时。
(3)可能发生的情况:汽车加油。
(4)先加速行驶,速度达到30千米/小时,开始匀速行驶,然后减速行驶,直到停下加油。
加油后又开始加速,到30千米/小时的速度后匀速行驶,快到目的地时开始减速,最后到达目的地。
解析:通过读图,需要让学生明确:速度不为0就说明汽车在行驶;图象中点的纵坐标的最大值就是最大速度;匀速行驶时,汽车的速度不变;某段时间速度为0,说明汽车没有在行驶,说出一种可能的情况即可;最后一个问题需要结合实际进行描述。
4.分别由红、白、黑、黄、绿、蓝、紫七种颜色排成一排,颜色下面是自然数,按下列方式依次排列:那么,自然数2010对应在哪种颜色下面?在第几行?考查目的:利用数表中的规律解决问题。