1 1 x( t ) (sin 0t sin 30t sin 50t ) 3 5 2 0 T0
4A
式中ω0=2π/T0。ω0称为基波频率,简称基频。 上式可改写为:
x( t ) 4A
(
n0
1 sin t ) n 1 n n 1,3,5
•
例如某大型水电站在某一发电工况下,其厂 房产生强烈振动。按理论分析和经验估计,振源 可能来自水轮机或发电机的机械振动,或来自流 道某一部份(如引水管、涡壳、导叶、尾水管) 的水体振动。为查找振源及振源向厂房传递的路 径,在水轮发电机组和厂房的多处安置拾振器, 在流道多处安置压力传感器。试验时,用多台磁 带记录仪同步记录近百个测点的振动及压力波动。 试验完后,对记录的信号进行频谱分析,查找出 强振振源来自导叶与尾水管间的局部水体共振。
为什么要对信号进行频域描述:
信号的时域描述反映了信号瞬时值随时间变化的情况, 频域描述反映了信号的频率组成及其幅值、相角的大 小。 为解决不同问题,需掌握信号不同方面的特征,因而 可采用不同的描述方式。例如:评定机器振动烈度 (时域描述)和寻找振源(频域描述)。 两种描述方法能互相转换,而且包含同样的信息量。
X( f )
x (t )
x ( t ) e j 2 ft dt
(1-28) (1-29)
X ( f ) e j 2 ft df
这样就避免了傅里叶变换中出现1/2π,简化了公式,且有
X ( f ) 2X ( )
非周期函数x(t)存在傅里叶变换的充 分条件是x(t)在区间(-∞, ∞)上绝对 可积,即
则
x ( t ) C 0 C n e