2018版高中数学选修2-2学案:1习题课 导数的应用 精品
- 格式:docx
- 大小:272.56 KB
- 文档页数:9
1.2.1 常见函数的导数学习目标 1.能根据定义求函数y =C ,y =x ,y =x 2,y =1x ,y =x 的导数.2.掌握基本初等函数的导数公式.3.能利用给出的基本初等函数的导数公式求简单函数的导数.知识点一 几个常见函数的导数 1.(kx +b )′=k (k ,b 为常数); 2.C ′=0(C 为常数); 3.(x )′=1; 4.(x 2)′=2x ; 5.(x 3)′=3x 2; 6.(1x )′=-1x 2; 7.(x )′=12x.知识点二 基本初等函数的导数公式 1.(x α)′=αx α-1(α为常数);2.(a x )′=a x ln a (a >0,且a ≠1);3.(log a x )′=1x log a e =1x ln a (a >0,且a ≠1);4.(e x )′=e x ;5.(ln x )′=1x ;6.(sin x )′=cos x ;7.(cos x )′=-sin x .类型一 利用导数公式求函数的导数 例1 求下列函数的导数. (1)y =cos π6;(2)y =1x 5;(3)y =x 2x ;(4)y =lg x ;(5)y =5x ;(6)y =cos(π2-x ).解 (1)y ′=0. (2)∵y =1x5=x -5,∴y ′=(x -5)′=-5x -6=-5x 6.(3)∵y =x 2x=32x ,∴y ′=(32x )′=1232x =32x .(4)y ′=1x ln10.(5)y ′=5x ln5.(6)∵y =cos(π2-x )=sin x ,∴y ′=(sin x )′=cos x .反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 跟踪训练1 (1)下列结论: ①(sin x )′=cos x ; ②(53x )′=23x ; ③(log 3x )′=13ln x; ④(ln x )′=1x.其中正确结论的序号是________. 答案 ①④解析 ∵②(53x )′=2353x ;③(log 3x )′=1x ln3,∴②③错误,①④正确.(2)求下列函数的导数. ①y =(1-x )(1+1x)+x ; ②y =2cos 2x2-1.解 ①∵y =(1-x )(1+1x )+x =1-x x +x =1x,∴y ′=3212x --.②∵y =2cos 2x2-1=cos x ,∴y ′=(cos x )′=-sin x .类型二 求函数在某一点处的导数 例2 求函数f (x )=16x5在x =1处的导数.解 ∵f (x )=16x5=56x-,∴f ′(x )=(56x -)′=11656x --,∴f ′(1)=-56.反思与感悟 求函数在某点处的导数需要先对原函数进行化简,然后求导,最后将变量的值代入导函数便可求解.跟踪训练2 函数f (x )=x ,则f ′(3)=________. 答案36解析 ∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.类型三 利用导数研究切线问题 命题角度1 已知切点解决切线问题例3 (1)已知P ,Q 为抛物线y =12x 2上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的坐标为________.答案 (1,-4) 解析 y ′=x ,k P A =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴P A 的直线方程为y -8=4(x -4), 即y =4x -8.QA 的直线方程为y -2=-2(x +2),即y =-2x -2.联立方程组⎩⎪⎨⎪⎧ y =4x -8,y =-2x -2,得⎩⎪⎨⎪⎧x =1,y =-4,∴A (1,-4).(2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直?并说明理由.解 设存在一个公共点(x 0,y 0),使两曲线的切线垂直,则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0. 要使两切线垂直,必须有k 1k 2=cos x 0(-sin x 0)=-1, 即sin2x 0=2,这是不可能的.所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.反思与感悟 解决切线问题,关键是确定切点,要充分利用:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上,这三个条件联立方程即可解决. 跟踪训练3 已知函数y =kx 是曲线y =ln x 的一条切线,则k =________. 答案 1e解析 设切点坐标为(x 0,y 0), 由题意,得y ′|0x x ==1x 0=k ,① 又y 0=kx 0, ② 而且y 0=ln x 0,③由①②③可得x 0=e ,y 0=1,则k =1e .命题角度2 已知斜率解决切线问题例4 求抛物线y =x 2上的点到直线x -y -2=0的最短距离.解 设切点坐标为(x 0,x 20),依题意知,与直线x -y -2=0平行的抛物线y =x 2的切线的切点到直线x -y -2=0的距离最短. ∵y ′=(x 2)′=2x ,∴2x 0=1,∴x 0=12,∴切点坐标为(12,14),∴所求的最短距离d =|12-14-2|2=728.反思与感悟 利用基本初等函数的求导公式,可求其图象在某一点P (x 0,y 0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关.解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算.跟踪训练4 已知直线l: 2x -y +4=0与抛物线y =x 2相交于A 、B 两点,O 是坐标原点,试求与直线l 平行的抛物线的切线方程,并在弧AOB 上求一点P ,使△ABP 的面积最大. 解 设P (x 0,y 0)为切点,过点P 与AB 平行的直线斜率k =y ′=2x 0,∴k =2x 0=2, ∴x 0=1,y 0=1. 故可得P (1,1),∴切线方程为2x -y -1=0.由于直线l: 2x -y +4=0与抛物线y =x 2相交于A 、B 两点,∴|AB |为定值,要使△ABP 的面积最大,只要点P 到AB 的距离最大,故点P (1,1)即为所求弧AOB 上的点,使△ABP 的面积最大.1.下列函数中的求导运算正确的个数为________.①(3x )′=3x log 3e ;②(log 2x )′=1x ln2;③1(ln x )′=x ;④若y =1x 2,则y ′|x =3=-227.答案 3解析 ①中(3x )′=3x ln3,②③④均正确. 2.函数f (x )=x 3的切线斜率等于1的有________条. 答案 2解析 设切点为(x 0,y 0),∵f ′(x 0)=3x 20=1,∴x 0=±33.故斜率等于1的切线有2条.3.设函数f (x )=log a x ,f ′(1)=-1,则a =________. 答案 1e解析 f ′(x )=1x ln a ,则f ′(1)=1ln a =-1,∴a =1e.4.求过曲线y =sin x 上一点P (π6,12)且与在这一点处的切线垂直的直线方程.解 曲线y =sin x 在点P (π6,12)处切线的斜率k=6x y π'==cos π6=32,则与切线垂直的直线的斜率为-233,∴所求直线方程为y -12=-233(x -π6),即123x +18y -23π-9=0. 5.求下列函数的导数. (1)y =(32x +1)(32x -1)+1; (2)y =(cos x 2+sin x2)2-1;(3)y =3log 23x .解 (1)∵y =x 3,∴y ′=3x 2.(2)∵y =cos 2x 2+sin 2x 2+2sin x 2cos x2-1=sin x ,∴y ′=cos x .(3)∵y =log 2x ,∴y ′=1x ln2.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x ,所以y ′=(cos x )′=-sin x .3.对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.课时作业一、填空题1.下列各式中正确式子的序号是________.①(x 7)′=7x 6;②(x -1)′=x -2;③(1x)′=-1232x -;④(5x 2)′=2535x -;⑤(cos x )′=-sin x ;⑥(cos2)′=-sin2. 答案 ①③④⑤解析 ∵②(x -1)′=-x -2;⑥(cos2)′=0. ∴②⑥不正确.2.正弦曲线y =sin x 的切线的斜率等于12的点为________.答案 (2k π+π3,32)或(2k π-π3,-32)(k ∈Z )解析 设斜率等于12的切线与曲线的切点为P (x 0,y 0),∵y ′|x =x 0=cos x 0=12,∴x 0=2k π+π3或2k π-π3,∴y 0=32或y 0=-32. 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于________. 答案 4解析 ∵f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,∴a =4.4.已知曲线y =x 3在点(2,8)处的切线方程为y =kx +b ,则k -b =________. 答案 28解析 ∵点(2,8)在切线上,∴2k +b =8. ① 又y ′|x =2=3×22=12=k ,②由①②可得k =12,b =-16,∴k -b =28.5.已知f (x )=x 2,g (x )=x 3,则适合方程f ′(x )+1=g ′(x )的x 的值为________. 答案 1或-13解析 由导数公式可知,f ′(x )=2x ,g ′(x )=3x 2, 所以2x +1=3x 2,即3x 2-2x -1=0. 解得x =1或x =-13.6.已知f (x )=1x ,g (x )=mx ,且g ′(2)=1f ′(2),则m =________.答案 -4解析 f ′(x )=-1x 2,g ′(x )=m .∵g ′(2)=1f ′(2),∴m =-4.7.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为________. 答案 (1,1)解析 y =e x 的导数为y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率为 k 1=e 0=1.设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2 (x >0),曲线y =1x (x >0)在点P 处的切线的斜率为k 2=-1m 2 (m >0).因为两切线垂直,所以k 1k 2=-1, 所以m =1,n =1,则点P 的坐标为(1,1).8.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围的三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2;当y =0时,x =1. ∴S =12×1×|-e 2|=12e 2.9.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =________. 答案 3解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得,在点(0,0)处的切线的斜率为f ′(0)=a -1. 又切线方程为y =2x ,则有a -1=2,∴a =3.10.已知直线y =kx 是曲线y =ln x 的切线,则k 的值等于________. 答案 1e解析 ∵y ′=(ln x )′=1x ,设切点坐标为(x 0,y 0),则切线方程为y -y 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.由ln x 0-1=0知,x 0=e.∴k =1e .11.设曲线y =x n +1 (n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2x 1+log 2x 2+log 2x 3=________. 答案 -2解析 y ′|x =1=n +1, ∴y =x n+1在点(1,1)处的切线方程为y -1=(n +1)(x -1), 则x n =nn +1.∴log 2x 1+log 2x 2+log 2x 3 =log 2(x 1·x 2·x 3) =log 2⎝⎛⎭⎫12×23×34=log 214 =-2. 二、解答题12.求下列函数的导数. (1) y =5x 3; (2)y =1x4;(3)y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4; (4)y =log 2x 2-log 2x .解 (1)y ′=⎝⎛⎭⎫5x 3′=⎝⎛⎭⎫x 35′=35x 315-=35x 25-=355x 2. (2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5. (3)∵y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4 =2sin x 2⎝⎛⎭⎫2cos 2x 4-1=2sin x 2cos x2=sin x , ∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ln2.13.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,试求f 2018(x ). 解 f 1(x )=(sin x )′=cos x , f 2(x )=(cos x )′=-sin x , f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x , f 5(x )=(sin x )′=f 1(x ), f 6(x )=f 2(x ),…, f n +4(x )=f n (x ),可知周期为4,∴f 2018(x )=f 2(x )=-sin x . 三、探究与拓展14.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的取值范围是________. 答案 [0,π4]∪[3π4,π)解析 ∵(sin x )′=cos x ,∴k l =cos x , ∴-1≤k l ≤1,∴α∈[0,π4]∪[3π4,π).15.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.解 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , 所以e x 0=1,得x 0=0, 代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22.。
1.1.2 瞬时变化率——导数学习目标 1.理解切线的含义.2.理解瞬时速度与瞬时加速度.3.掌握瞬时变化率——导数的概念,会根据定义求一些简单函数在某点处的导数.知识点一 曲线上某一点处的切线如图,P n 的坐标为(x n ,f (x n ))(n =1,2,3,4,…),点P 的坐标为(x 0,y 0).思考1 当点P n →点P 时,试想割线PP n 如何变化?答案 当点P n 趋近于点P 时,割线PP n 趋近于确定的位置,即曲线上点P 处的切线位置. 思考2 割线PP n 的斜率是什么?它与切线PT 的斜率有何关系. 答案 割线PP n 的斜率k n =f (x n )-f (x 0)x n -x 0;当P n 无限趋近于P 时,k n 无限趋近于点P 处切线的斜率k .梳理 (1)设Q 为曲线C 上的不同于P 的一点,这时,直线PQ 称为曲线的割线.随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C .当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线. (2)若P (x ,f (x )),过点P 的一条割线交曲线C 于另一点Q (x +Δx ,f (x +Δx )),则割线PQ 的斜率为k PQ =f (x +Δx )-f (x )Δx ,当Δx →0时,f (x +Δx )-f (x )Δx无限趋近于点P (x ,f (x ))处的切线的斜率.知识点二 瞬时速度与瞬时加速度——瞬时变化率 1.平均速度在物理学中,运动物体的位移与所用时间的比称为平均速度. 2.瞬时速度一般地,如果当Δt 无限趋近于0时,运动物体位移S (t )的平均变化率S (t 0+Δt )-S (t 0)Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,也就是位移对于时间的瞬时变化率. 3.瞬时加速度一般地,如果当Δt 无限趋近于0时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,也就是速度对于时间的瞬时变化率. 知识点三 导数 1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0). 2.导数的几何意义导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 3.导函数(1)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).在不引起混淆时,导函数f ′(x )也简称为f (x )的导数.(2)f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.类型一 求曲线上某一点处的切线例1 已知曲线y =x +1x 上的一点A (2,52),用切线斜率定义求:(1)点A 处的切线的斜率; (2)点A 处的切线方程. 解 (1)∵Δy =f (2+Δx )-f (2)=2+Δx +12+Δx -(2+12)=-Δx 2(2+Δx )+Δx ,∴Δy Δx =-Δx 2Δx (2+Δx )+ΔxΔx =-12(2+Δx )+1. 当Δx 无限趋近于零时,Δy Δx 无限趋近于34,即点A 处的切线的斜率是34.(2)切线方程为y -52=34(x -2),即3x -4y +4=0.反思与感悟 根据曲线上一点处的切线的定义,要求曲线过某点的切线方程,只需求出切线的斜率,即在该点处,Δx 无限趋近于0时,ΔyΔx无限趋近的常数.跟踪训练1 (1)已知曲线y =2x 2+4x 在点P 处的切线的斜率为16,则点P 坐标为________. 答案 (3,30)解析 设点P 坐标为(x 0,y 0), 则f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=2(Δx )2+4x 0Δx +4Δx Δx=4x 0+4+2Δx .当Δx 无限趋近于0时,4x 0+4+2Δx 无限趋近于4x 0+4, 因此4x 0+4=16,即x 0=3, 所以y 0=2×32+4×3=18+12=30. 即点P 坐标为(3,30).(2)已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程. 解 设A (1,2),B (1+Δx,3(1+Δx )2-(1+Δx )), 则k AB =3(1+Δx )2-(1+Δx )-(3×12-1)Δx =5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5, 所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5. 切线方程为y -2=5(x -1),即5x -y -3=0. 类型二 求瞬时速度例2 某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 2+t +1表示,求物体在t =1s 时的瞬时速度.解 在1到1+Δt 的时间内,物体的平均速度v =Δs Δt =s (1+Δt )-s (1)Δt=(1+Δt )2+(1+Δt )+1-(12+1+1)Δt=3+Δt ,∴当Δt 无限趋近于0时,v 无限趋近于3, ∴物体在t =1处的瞬时变化率为3. 即物体在t =1s 时的瞬时速度为3m/s. 引申探究1.若本例中的条件不变,试求物体的初速度.解 求物体的初速度,即求物体在t =0时的瞬时速度. ∵Δs Δt =s (0+Δt )-s (0)Δt =(0+Δt )2+(0+Δt )+1-1Δt=1+Δt ,∴当Δt →0时,1+Δt →1,∴物体在t =0时的瞬时变化率为1, 即物体的初速度为1m/s.2.若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9m/s. 解 设物体在t 0时刻的速度为9m/s. 又Δs Δt =s (t 0+Δt )-s (t 0)Δt =(2t 0+1)+Δt .∴当Δt →0时,ΔsΔt →2t 0+1.则2t 0+1=9,∴t 0=4.则物体在4s 时的瞬时速度为9m/s.反思与感悟 (1)求瞬时速度的题目的常见错误是不能将物体的瞬时速度转化为函数的瞬时变化率.(2)求运动物体瞬时速度的三个步骤①求时间改变量Δt 和位移改变量Δs =s (t 0+Δt )-s (t 0). ②求平均速度v =Δs Δt. ③求瞬时速度,当Δt 无限趋近于0时,ΔsΔt无限趋近于的常数v 即为瞬时速度.跟踪训练2 一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2s 时的瞬时速度为8m/s ,求常数a 的值.解 质点M 在t =2s 时的瞬时速度即为函数在t =2s 处的瞬时变化率. ∵质点M 在t =2s 附近的平均变化率为Δs Δt =s (2+Δt )-s (2)Δt =a (2+Δt )2-4a Δt=4a +a Δt , ∴当Δt →0时,ΔsΔt →4a =8,即a =2.类型三 求函数在某点处的导数 例3 已知f (x )=x 2-3. (1)求f (x )在x =2处的导数;(2)求f (x )在x =a 处的导数. 解 (1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4. (2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2-3-(a 2-3)Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .反思与感悟 求一个函数y =f (x )在x =x 0处的导数的步骤 (1)求函数值的改变量Δy =f (x 0+Δx )-f (x 0). (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)令Δx 无限趋近于0,求得导数.跟踪训练3 (1)设f (x )=ax +4,若f ′(1)=2,则a =________. 答案 2解析 ∵f (1+Δx )-f (1)Δx =a (1+Δx )+4-a -4Δx =a ,∴f ′(1)=a ,即a =2.(2)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第x h ,原油的温度(单位:℃)为f (x )=x 2-7x +15(0≤x ≤8).求函数y =f (x )在x =6处的导数f ′(6),并解释它的实际意义.解 当x 从6变到6+Δx 时,函数值从f (6)变到f (6+Δx ),函数值y 关于x 的平均变化率为 f (6+Δx )-f (6)Δx=(6+Δx )2-7(6+Δx )+15-(62-7×6+15)Δx=5Δx +(Δx )2Δx=5+Δx .当Δx →0时,平均变化率趋近于5,所以f ′(6)=5,导数f ′(6)=5表示当x =6时原油温度的瞬时变化率即原油温度的瞬时变化速度.也就是说,如果保持6h 时温度的变化速度,每经过1h 时间,原油温度将升高5℃.1.一个做直线运动的物体,其位移S 与时间t 的关系是S =3t -t 2,则此物体在t =2时的瞬时速度为________. 答案 -1解析 由于ΔS =3(2+Δt )-(2+Δt )2-(3×2-22) =3Δt -4Δt -(Δt )2=-Δt -(Δt )2, 所以ΔS Δt =-Δt -(Δt )2Δt=-1-Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于常数-1.故物体在t =2时的瞬时速度为-1.2.已知曲线y =f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为________. 答案 8解析 因为Δy Δx =f (2+Δx )-f (2)Δx=2(2+Δx )2-8Δx=8+2Δx ,当Δx →0时,8+2Δx 趋近于8.即k =8. 3.函数y =x +1x 在x =1处的导数是________.答案 0解析 ∵函数y =f (x )=x +1x ,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx ,∴Δy Δx =Δx 1+Δx ,当Δx →0时,ΔyΔx →0, 即y =x +1x在x =1处的导数为0.4.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则f ′(x 0)的值为________. 答案 a解析 由导数定义,得f (x 0+Δx )-f (x 0)Δx=a Δx +b (Δx )2Δx=a +b Δx ,故当Δx →0时,其值趋近于a ,故f ′(x 0)=a .5.如果一个物体的运动方程S (t )=⎩⎪⎨⎪⎧t 2+2,0≤t <3,29+3(t -3)2,t ≥3, 试求该物体在t =1和t =4时的瞬时速度. 解 当t =1时,S (t )=t 2+2,则ΔS Δt =S (1+Δt )-S (1)Δt =(1+Δt )2+2-3Δt=2+Δt , 当Δt 无限趋近于0时,2+Δt 无限趋近于2, 所以v (1)=2; ∵t =4∈[3,+∞),∴S (t )=29+3(t -3)2=3t 2-18t +56,∴ΔS Δt =3(4+Δt )2-18(4+Δt )+56-3×42+18×4-56Δt=3(Δt )2+6Δt Δt=3Δt +6,∴当Δt 无限趋近于0时,3Δt +6→6,即ΔSΔt →6,所以v (4)=6.1.平均变化率和瞬时变化率的关系平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ,当Δx 无限趋近于0时,它所趋近于的一个常数就是函数在x =x 0处的瞬时变化率.即有:Δx 无限趋近于0是指自变量间隔Δx 越来越小,能达到任意小的间隔,但始终不能为0.即对于瞬时变化率,我们通过减小自变量的改变量以致无限趋近于零的方式,实现用割线斜率“逼近”切线斜率,用平均速度“逼近”瞬时速度.一般地,可以用平均变化率“逼近”瞬时变化率.2.求切线的斜率、瞬时速度和瞬时加速度的解题步骤(1)计算Δy .(2)求Δy Δx .(3)当Δx →0时,ΔyΔx 无限趋近于哪个常数.课时作业一、填空题1.函数f (x )=x 2在x =3处的导数等于________. 答案 6解析 Δy Δx =(3+Δx )2-32Δx=6+Δx ,当Δx →0时,得f ′(3)=6.2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则a =________,b =________. 答案 1 1解析 Δy Δx =(0+Δx )2+a (0+Δx )+b -b Δx=a +Δx ,当Δx →0时,Δy Δx→a .∵切线x -y +1=0的斜率为1, ∴a =1.∵点(0,b )在直线x -y +1=0上,∴b =1.3.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为________. 答案 45°解析 ∵y =12x 2-2,∴Δy Δx =12(x +Δx )2-2-⎝⎛⎭⎫12x 2-2Δx =12(Δx )2+x ·Δx Δx=x +12Δx .故当Δx →0时,其值无限趋近于x ,∴y ′|x =1=1.∴点P ⎝⎛⎭⎫1,-32处切线的斜率为1,则切线的倾斜角为45°. 4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 答案 1解析 Δy Δx =a (1+Δx )2-a Δx=2a +a Δx ,当Δx →0时,Δy→2a ,∴可令2a =2,∴a =1.5.已知曲线y =13x 3上一点P (2,83),则该曲线在点P 处切线的斜率为________.答案 4解析 由y =13x 3,得Δy Δx =13(x +Δx )3-13x 3Δx=13[3x 2+3x ·Δx +(Δx )2], 当Δx →0时,其值无限趋近于x 2. 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在点P 处切线的斜率为4. 6.在曲线y =x 2上切线倾斜角为π4的点的坐标为________.答案 (12,14)解析 ∵Δy Δx =(x +Δx )2-x2Δx=2x +Δx ,当Δx →0时,其值趋近于2x . ∴令2x =tan π4=1,得x =12,∴y =⎝⎛⎭⎫122=14,所求点的坐标为⎝⎛⎭⎫12,14. 7.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 答案 (3,30)解析 设点P (x 0,2x 20+4x 0), 则Δy Δx =f (x 0+Δx )-f (x 0)Δx =2(Δx )2+4x 0·Δx +4Δx Δx=2Δx +4x 0+4,当Δx →0时,其值无限趋近于4+4x 0. 令4x 0+4=16,得x 0=3,∴P (3,30).8.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.答案 2解析 ∵点P 在切线上,∴f (5)=-5+8=3,f ′(5)=k =-1, ∴f (5)+f ′(5)=3-1=2.9.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.答案 3解析 由在点M 处的切线方程是y =12x +2,得f (1)=12×1+2=52,f ′(1)=12.∴f (1)+f ′(1)=52+12=3.10.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________. 答案 4解析 设在点P 处切线的斜率为k ,∵Δy Δx =(-2+Δx )2-(-2+Δx )+c -(6+c )Δx=-5+Δx , ∴当Δx →0时,ΔyΔx →-5,∴k =-5,∴切线方程为y =-5x .∴点P 的纵坐标为y =-5×(-2)=10, 将P (-2,10)代入y =x 2-x +c ,得c =4. 二、解答题11.已知质点运动方程是s (t )=12gt 2+2t -1(g 是重力加速度,常量),求质点在t =4s 时的瞬时速度(其中s 的单位是m ,t 的单位是s). 解Δs Δt =s (4+Δt )-s (4)Δt=[12g (4+Δt )2+2(4+Δt )-1]-(12g ·42+2×4-1)Δt=12g (Δt )2+4g ·Δt +2Δt Δt=12g Δt +4g +2. ∵当Δt →0时,ΔsΔt→4g +2,∴S ′(4)=4g +2,即v (4)=4g +2,∴质点在t =4s 时的瞬时速度为(4g +2) m/s.12.求曲线y =f (x )=x 3-x +3在点(1,3)处的切线方程.解 因为点(1,3)在曲线上,且f (x )在x =1处可导,Δy Δx =(1+Δx )3-(1+Δx )+3-(1-1+3)Δx=(Δx )3+3(Δx )2+2Δx Δx=(Δx )2+3Δx +2,当Δx →0时,(Δx )2+3Δx +2→2,故f ′(1)=2.故所求切线方程为y -3=2(x -1),即2x -y +1=0.13.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求直线l 1,l 2与x 轴所围成的三角形的面积.解 (1)Δy Δx =(1+Δx )2+(1+Δx )-2-(12+1-2)Δx=Δx +3,当Δx →0时,Δy Δx→3, ∴直线l 1的斜率k 1=3,∴直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).∵l 1⊥l 2,∴3(2x 0+1)=-1,解得x 0=-23. ∴直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎨⎧ x =16,y =-52.又∵直线l 1,l 2与x 轴的交点坐标分别为(1,0),(-223,0), ∴所求三角形的面积为S =12×|-52|×(1+223)=12512.三、探究与拓展14.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________.答案 ⎣⎡⎦⎤-1,-12 解析 ∵Δy =(x +Δx )2+2(x +Δx )+3-(x 2+2x +3) =(2x +2)·Δx +(Δx )2Δx=Δx +2x +2. 故当Δx →0时,其值无限趋近于2x +2.∴可设点P 横坐标为x 0,则曲线C 在点P 处的切线斜率为2x 0+2.由已知,得0≤2x 0+2≤1,∴-1≤x 0≤-12,∴点P 横坐标的取值范围为⎣⎡⎦⎤-1,-12. 15.已知抛物线y =2x 2+1分别满足下列条件,求出切点的坐标.(1)切线的倾斜角为45°;(2)切线平行于直线4x -y -2=0.解 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2,∴Δy Δx=4x 0+2Δx , 当Δx →0时,Δy →4x 0,即f ′(x 0)=4x 0. (1)∵抛物线的切线的倾斜角为45°,∴斜率为tan45°=1,即f ′(x 0)=4x 0=1,解得x 0=14, ∴切点坐标为(14,98). (2)∵抛物线的切线平行于直线4x -y -2=0,∴k =4,即f ′(x 0)=4x 0=4,解得x 0=1,∴切点坐标为(1,3).。
1.2.2 基本初等函数的导数公式及导数的运算法则(二)学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点一 和、差的导数 已知f (x )=x ,g (x )=1x.思考1 f (x ),g (x )的导数分别是什么? 答案 f ′(x )=1,g ′(x )=-1x2.思考2 试求y =Q (x )=x +1x ,H (x )=x -1x 的导数.答案 ∵Δy =(x +Δx )+1x +Δx -(x +1x )=Δx +-Δxx (x +Δx ),∴Δy Δx =1-1x (x +Δx ). ∴Q ′(x )=lim Δx→0ΔyΔx=lim Δx →0[1-1x (x +Δx )]=1-1x 2.同理,H ′(x )=1+1x2.思考3 Q (x ),H (x )的导数与f (x ),g (x )的导数有何关系?答案 Q (x )的导数等于f (x ),g (x )的导数的和.H (x )的导数等于f (x ),g (x )的导数的差. 梳理 和、差的导数 [f (x )±g (x )]′=f ′(x )±g ′(x ).知识点二 积、商的导数已知f (x )=x 2,g (x )=sin x ,φ(x )=3. 思考1 试求f ′(x ),g ′(x ),φ′(x ). 答案 f ′(x )=2x ,g ′(x )=cos x ,φ′(x )=0.思考2 求H (x )=x 2sin x ,M (x )=sin xx 2,Q (x )=3sin x 的导数. 答案 H ′(x )=2x sin x +x 2cos x , M ′(x )=(sin x )′x 2-sin x (x 2)′(x 2)2=x 2cos x -2x sin x x 4=x cos x -2sin x x 3,Q ′(x )=3cos x . 梳理 (1)积的导数①[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ). ②[cf (x )]′=cf ′(x ). (2)商的导数[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). (3)注意[f (x )g (x )]′≠f ′(x )g ′(x ), [f (x )g (x )]′≠f ′(x )g ′(x ).类型一 导数运算法则的应用 例1 求下列函数的导数. (1)y =2x 3-3x +x +1x x ;(2)y =x 2+1x 2+3;(3)y =(x +1)(x +3)(x +5); (4)y =x sin x -2cos x. 解 (1)∵y =322x -123x-+x -1+32x-,∴y ′=123x +3232x --x -2-5232x -.(2)方法一 y ′=(x 2+1)′(x 2+3)-(x 2+1)(x 2+3)′(x 2+3)2=2x (x 2+3)-2x (x 2+1)(x 2+3)2=4x (x 2+3)2.方法二 ∵y =x 2+1x 2+3=x 2+3-2x 2+3=1-2x 2+3,∴y ′=(1-2x 2+3)′=(-2x 2+3)′=(-2)′(x 2+3)-(-2)(x 2+3)′(x 2+3)2=4x(x 2+3)2.(3)方法一 y ′=[(x +1)(x +3)]′(x +5)+(x +1)(x +3)(x +5)′=[(x +1)′(x +3)+(x +1)(x +3)′](x +5)+(x +1)(x +3)=(2x +4)(x +5)+(x +1)(x +3)=3x 2+18x +23. 方法二 ∵y =(x +1)(x +3)(x +5)=(x 2+4x +3)(x +5) =x 3+9x 2+23x +15,∴y ′=(x 3+9x 2+23x +15)′=3x 2+18x +23. (4)y ′=(x sin x )′-(2cos x)′=x ′sin x +x (sin x )′-2′cos x -2(cos x )′(cos x )2=sin x +x cos x -2sin xcos 2x.反思与感悟 (1)解答此类问题时常因导数的四则运算法则不熟而失分.(2)对一个函数求导时,要紧扣导数运算法则,联系基本初等函数的导数公式,当不易直接应用导数公式时,应先对函数进行化简(恒等变形),然后求导.这样可以减少运算量,优化解题过程.(3)利用求导法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.跟踪训练1 (1)已知f (x )=(x -a )(x -b )(x -c ),则a f ′(a )+b f ′(b )+cf ′(c )=.答案 0解析 ∵f ′(x )=(x -a )′(x -b )(x -c )+(x -a )(x -b )′·(x -c )+(x -a )(x -b )(x -c )′ =(x -b )(x -c )+(x -a )(x -c )+(x -a )(x -b ), ∴f ′(a )=(a -b )(a -c ),f ′(b )=(b -a )(b -c )=-(a -b )(b -c ), f ′(c )=(c -a )(c -b )=(a -c )(b -c ). ∴a f ′(a )+b f ′(b )+cf ′(c )=a (a -b )(a -c )-b (a -b )(b -c )+c(a -c )(b -c )=a (b -c )-b (a -c )+c (a -b )(a -b )(b -c )(a -c )=0.(2)求下列函数的导数. ①y =x 2-sin x 2cos x2;②y =e x -1e x +1;③y =x tan x .解 ①∵y =x 2-12sin x ,∴y ′=2x -12cos x .②y ′=(e x -1)′(e x +1)-(e x -1)(e x +1)′(e x +1)2=e x (e x +1)-e x (e x -1)(e x +1)2=2e x(e x +1)2. ③f ′(x )=(x tan x )′=(x sin xcos x )′=(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +x cos 2x=12sin2x +x cos 2x=sin2x +2x 2cos 2x .类型二 导数运算法则的综合应用 命题角度1 利用导数求函数解析式例2 (1)已知函数f (x )=ln xx+2xf ′(1),试比较f (e)与f (1)的大小关系;(2)设f (x )=(ax +b )sin x +(cx +d )cos x ,试确定常数a ,b ,c ,d ,使得f ′(x )=x cos x . 解 (1)由题意得f ′(x )=1-ln xx2+2f ′(1),令x =1,得f ′(1)=1-ln11+2f ′(1),即f ′(1)=-1.∴f (x )=ln xx-2x .∴f (e)=lne e -2e =1e -2e ,f (1)=-2,由f (e)-f (1)=1e -2e +2<0,得f (e)<f (1).(2)由已知得f ′(x )=[(ax +b )sin x +(cx +d )cos x ]′ =[(ax +b )sin x ]′+[(cx +d )cos x ]′=(ax +b )′sin x +(ax +b )(sin x )′+(cx +d )′cos x +(cx +d )(cos x )′ =a sin x +(ax +b )cos x +c cos x -(cx +d )sin x =(a -cx -d )sin x +(ax +b +c )cos x . 又∵f ′(x )=x cos x ,∴⎩⎪⎨⎪⎧a -d -cx =0,ax +b +c =x ,即⎩⎪⎨⎪⎧a -d =0,-c =0,a =1,b +c =0,解得a =d =1,b =c =0.反思与感悟 (1)中确定函数f (x )的解析式,需要求出f ′(1),注意f ′(1)是常数. (2)中利用待定系数法可确定a ,b ,c ,d 的值. 完成(1)(2)问的前提是熟练应用导数的运算法则. 跟踪训练2 函数f (x )=x 2x -1+f ′(1),则f ′(1)=.答案 -1解析 对f (x )求导,得f ′(x )=2x -1-2x (2x -1)2=-1(2x -1)2,则f ′(1)=-1.命题角度2 与切线有关的问题例3 (1)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是. 答案 (e ,e)解析 设P (x 0,y 0).∵y =x ln x , ∴y ′=ln x +x ·1x =1+ln x ,∴k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e.∴y 0=elne =e. ∴点P 的坐标是(e ,e).(2)已知函数f (x )=ax 2+bx +3(a ≠0),其导函数为f ′(x )=2x -8. ①求a ,b 的值;②设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程. 解 ①因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又知f ′(x )=2x -8,所以a =1,b =-8. ②由①可知g (x )=e x sin x +x 2-8x +3, 所以g ′(x )=e x sin x +e x cos x +2x -8, 所以g ′(0)=e 0sin0+e 0cos0+2×0-8=-7. 又知g (0)=3,所以g (x )在x =0处的切线方程为y -3=-7(x -0), 即7x +y -3=0.反思与感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练3 (1)设曲线y =2-cos x sin x 在点(π2,2)处的切线与直线x +ay +1=0垂直,则a =.(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为. 答案 (1)1 (2)4解析 (1)∵y ′=sin 2x -(2-cos x )cos x sin 2x =1-2cos xsin 2x ,当x =π2时,y ′=1-2cosπ2sin2π2=1.又直线x +ay +1=0的斜率是-1a ,∴-1a=-1,即a =1.(2)因为曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,由导数的几何意义知g ′(1)=2.又因为f (x )=g (x )+x 2,所以f ′(x )=g ′(x )+2x ⇒f ′(1)=g ′(1)+2=4, 所以y =f (x )在点(1,f (1))处切线的斜率为4.1.设y =-2e x sin x ,则y ′等于( ) A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ). 2.函数y =cos x1-x 的导数是( )A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x答案 C解析 y ′=⎝⎛⎭⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.对于函数f (x )=e x x 2+ln x -2kx ,若f ′(1)=1,则k 等于( )A.e2 B.e3 C .-e 2D .-e 3答案 A解析 ∵f ′(x )=e x (x -2)x 3+1x +2kx 2,∴f ′(1)=-e +1+2k =1,解得k =e2,故选A.4.在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是. 答案 -3解析 y =ax 2+b x 的导数为y ′=2ax -bx 2,直线7x +2y +3=0的斜率为-72.由题意得⎩⎨⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.5.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线的方程为.答案 3x -y -11=0解析 ∵y ′=3x 2+6x +6=3(x 2+2x +2) =3(x +1)2+3≥3,∴当x =-1时,斜率最小,切点坐标为(-1,-14), ∴切线方程为y +14=3(x +1),即3x -y -11=0.1.导数的求法对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.首先,在化简时,要注意化简的等价性,避免不必要的运算失误;其次,利用导数公式求函数的导数时,一定要将函数化为基本初等函数中的某一个,再套用公式求导数. 2.和与差的运算法则可以推广[f (x 1)±f (x 2)±…±f (x n )]′=f ′(x 1)±f ′(x 2)±…±f ′(x n ). 3.积、商的求导法则(1)若c 为常数,则[c ·f (x )]′=c ·f ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ), [f (x )g (x )]′=f ′(x )·g (x )-f (x )·g ′(x )[g (x )]2; (3)当f (x )=1时,有[1g (x )]′=-g ′(x )[g (x )]2.课时作业一、选择题1.下列求导运算正确的是( ) A .(x +3x )′=1+3x 2B .(log 2x )′=1x ln2C .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x 答案 B解析 选项A ,(x +3x )′=1-3x2,故错误;选项B ,(log 2x )′=1x ln2,故正确;选项C ,(3x )′=3x ln3,故错误;选项D ,(x 2cos x )′=2x cos x -x 2sin x ,故错误. 故选B.2.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2B .0C .钝角D .锐角 答案 C解析 ∵f ′(x )=e x sin x +e x cos x , ∴f ′(4)=e 4(sin4+cos4).∵π<4<32π,∴sin4<0,cos4<0,∴f ′(4)<0.由导数的几何意义得,切线的倾斜角为钝角.3.若函数f (x )=(x -1)(x -2)(x -3)(x -4)(x -5),且f ′(x )是函数f (x )的导函数,则f ′(1)等于( )A .24B .-24C .10D .-10 答案 A解析 ∵f ′(x )=(x -1)′[(x -2)(x -3)(x -4)(x -5)]+(x -1)[(x -2)(x -3)(x -4)(x -5)]′ =(x -2)(x -3)(x -4)(x -5)+(x -1)[(x -2)(x -3)(x -4)(x -5)]′, ∴f ′(1)=(1-2)·(1-3)·(1-4)·(1-5)+0=24. 4.函数f (x )=x cos x -sin x 的导函数是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数,又不是偶函数 答案 B解析 f ′(x )=(x cos x )′-(sin x )′ =cos x -x sin x -cos x =-x sin x .令F (x )=-x sin x ,x ∈R ,则F (-x )=x sin(-x )=-x sin x =F (x ), ∴f ′(x )是偶函数.5.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B.12C .-12D .-2答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2,∴y ′|x =3=-12. ∴-a =2,即a =-2.6.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N*,则f 1(x )+f 2(x )+…+f 2015(x )等于( )A .-sin x +cos xB .sin x -cos xC .-sin x -cos xD .sin x +cos x答案 A解析 因为f 1(x )=sin x +cos x , f n +1(x )是f n (x )的导函数, 所以f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=f 2′(x )=-sin x -cos x , f 4(x )=f 3′(x )=-cos x +sin x , f 5(x )=f 4′(x )=sin x +cos x ,…,由此发现f n +1(x )是f n (x )的导函数,并且周期为4,每个周期的和为0, 所以f 1(x )+f 2(x )+…+f 2015(x )=f 1(x )+f 2(x )+f 3(x )=cos x -sin x .故选A.7.在下面的四个图象中,其中一个图象是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( )A.13 B .-13C.73 D .-13或53答案 B解析 ∵f ′(x )=x 2+2ax +(a 2-1),∴导函数f ′(x )的图象开口向上,故其图象必为第三个图.由图象特征知f ′(0)=0,且对称轴-a >0,∴a =-1,则f (-1)=-13-1+1=-13,故选B. 二、填空题8.设f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,若h (x )=f (x )+2g (x ),则h ′(5)=. 答案 516解析 由题意知f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,∵h ′(x )=f ′(x )g (x )-[f (x )+2]g ′(x )[g (x )]2, ∴h ′(5)=f ′(5)g (5)-[f (5)+2]g ′(5)[g (5)]2=3×4-(5+2)×142=516. 9.已知f (x )=13x 3+3xf ′(0),则f ′(1)=. 答案 1解析 ∵f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0,∴f ′(1)=12+3f ′(0)=1.10.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln1=1.∴直线l 的方程为y =x -1,即x -y -1=0.11.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =. 答案 8解析 由y =x +ln x ,得y ′=1+1x,得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1.此切线与曲线y =ax 2+(a +2)x +1相切,消去y ,得ax 2+ax +2=0,所以a ≠0且Δ=a 2-8a =0,解得a =8.三、解答题12.若函数f (x )=e x x在x =c 处的导数值与函数值互为相反数,求c 的值. 解 ∵f ′(x )=e x x -e x x 2=e x (x -1)x 2, ∴f ′(c )=e c (c -1)c 2. 依题意知f (c )+f ′(c )=0,即e c c +e c (c -1)c 2=0, ∴2c -1=0,得c =12. 13.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解 ∵曲线y =ax 2+bx +c 过点P (1,1),∴a +b +c =1. ①∵y ′=2ax +b ,当x =2时,y ′=4a +b .∴4a +b =1. ②又曲线过点Q (2,-1),∴4a +2b +c =-1. ③联立①②③,解得a =3,b =-11,c =9.四、探究与拓展14.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)…(x -a 8),则f ′(0)=. 答案 4096解析 ∵f ′(x )=x ′(x -a 1)(x -a 2)…(x -a 8)+x (x -a 1)′(x -a 2)…(x -a 8)+…+x (x -a 1)(x -a 2)…(x -a 8)′=(x -a 1)(x -a 2)…(x -a 8)+x (x -a 2)…(x -a 8)+…+x (x -a 1)(x -a 2)…(x -a 7),∴f ′(0)=a 1·a 2·…·a 8=(a 1a 8)4=84=4096.15.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0,得y =74x -3. 当x =2时,y =12,∴f (2)=12, ① 又f ′(x )=a +b x 2,∴f ′(2)=74, ②由①②得⎩⎨⎧ 2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3. 故f (x )=x -3x . (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知,曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0), 即y -(x 0-3x 0)=(1+3x 20)(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0). 令y =x ,得y =x =2x 0,从而切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6x 0||2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。
1.1.3 导数的几何意义学习目标 1.了解导函数的概念,理解导数的几何意义.2.会求简单函数的导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.4.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程.知识点一 导数的几何意义如图,P n 的坐标为(x n ,f (x n ))(n =1,2,3,4,…),P 的坐标为(x 0,y 0),直线PT 为在点P 处的切线.思考1 割线PP n 的斜率k n 是多少? 答案 割线PP n 的斜率k n =f (x n )-f (x 0)x n -x 0.思考2 当点P n 无限趋近于点P 时,割线PP n 的斜率k n 与切线PT 的斜率k 有什么关系? 答案 k n 无限趋近于切线PT 的斜率k .梳理 (1)切线的定义:设PP n 是曲线y =f (x )的割线,当P n 趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为曲线y =f (x )在点P 处的切线.(2)导数f ′(x 0)的几何意义:导数f ′(x 0)表示曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0)=lim Δx→f (x 0+Δx )-f (x 0)Δx .(3)切线方程:曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).知识点二 导函数对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数), 即f ′(x )=y ′=lim Δx→f (x +Δx )-f (x )Δx .特别提醒类型一 求切线方程命题角度1 曲线在某点处的切线方程例1 已知曲线C :y =13x 3+43.求曲线C 在横坐标为2的点处的切线方程.解 将x =2代入曲线C 的方程得y =4, ∴切点P (2,4).y ′|x =2=lim Δx→0ΔyΔx=lim Δx →013(2+Δx )3+43-13×23-43Δx=lim Δx →0[4+2Δx +13(Δx )2]=4, ∴k =y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为 y -4=4(x -2),即4x -y -4=0.反思与感悟 求曲线在某点处的切线方程的步骤跟踪训练1 曲线y =x 2+1在点P (2,5)处的切线与y 轴交点的纵坐标是________. 答案 -3解析 ∵y ′|x =2=lim Δx→0ΔyΔx=lim Δx →0(2+Δx )2+1-22-1Δx=lim Δx →(4+Δx )=4,∴k =y ′|x =2=4.∴曲线y =x 2+1在点(2,5)处的切线方程为 y -5=4(x -2),即y =4x -3. ∴切线与y 轴交点的纵坐标是-3. 命题角度2 曲线过某点的切线方程例2 求过点(-1,0)与曲线y =x 2+x +1相切的直线方程.解 设切点为(x 0,x 20+x 0+1),则切线的斜率为k =lim Δx →0(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)=2x 0+1.又k =(x 20+x 0+1)-0x 0-(-1)=x 20+x 0+1x 0+1,∴2x 0+1=x 20+x 0+1x 0+1.解得x 0=0或x 0=-2.当x 0=0时,切线斜率k =1,过(-1,0)的切线方程为 y -0=x +1,即x -y +1=0.当x 0=-2时,切线斜率k =-3,过(-1,0)的切线方程为y -0=-3(x +1),即3x +y +3=0.故所求切线方程为x -y +1=0或3x +y +3=0.反思与感悟 过点(x 1,y 1)的曲线y =f (x )的切线方程的求法步骤 (1)设切点(x 0,f (x 0)). (2)建立方程f ′(x 0)=y 1-f (x 0)x 1-x 0.(3)解方程得k =f ′(x 0),x 0,y 0,从而写出切线方程.跟踪训练2 求函数y =f (x )=x 3-3x 2+x 的图象上过原点的切线方程.解 设切点坐标为(x 0,y 0),则y 0=x 30-3x 20+x 0,∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3-3(x 0+Δx )2+(x 0+Δx )-(x 30-3x 20+x 0) =3x 20Δx +3x 0(Δx )2-6x 0Δx +(Δx )3-3(Δx )2+Δx ,∴Δy Δx=3x 20+3x 0Δx -6x 0+1+(Δx )2-3Δx , ∴f ′(x 0)=lim Δx→0ΔyΔx=3x 20-6x 0+1. ∴切线方程为y -(x 30-3x 20+x 0)=(3x 20-6x 0+1)·(x -x 0).∵切线过原点,∴x 30-3x 20+x 0=3x 30-6x 20+x 0,即2x 30-3x 20=0,∴x 0=0或x 0=32, 故所求切线方程为x -y =0或5x +4y =0. 类型二 求切点坐标例3 已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,求x 0的值.解 对于曲线y =x 2-1, k 1=lim Δx→0ΔyΔx=2x 0. 对于曲线y =1-x 3, k 2=lim Δx→0ΔyΔx=lim Δx →01-(x 0+Δx )3-(1-x 30)Δx =-3x 20. 由题意得2x 0=-3x 20, 解得x 0=0或-23.引申探究1.若本例3条件中的“平行”改为“垂直”,求x 0的值.解 ∵k 1=2x 0,k 2=3x 20.根据曲线y =x 2-1与y =1-x 3在x =x 0处的切线互相垂直,知2x 0·(-3x 20)=-1,解得x 0=3366. 2.若本例3条件不变,试求出两条平行的切线方程. 解 由例3知x 0=0或-23.当x 0=0时,两平行切线方程为y =-1或y =1.当x 0=-23时,曲线y =x 2-1的切线方程为12x +9y +13=0.曲线y =1-x 3的切线方程为36x +27y -11=0.∴所求两平行切线方程为y =-1与y =1或12x +9y +13=0与36x +27y -11=0. 反思与感悟 根据切线斜率求切点坐标的步骤 (1)设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0,得切点坐标.跟踪训练3 已知直线l :y =4x +a 与曲线C :y =f (x )=x 3-2x 2+3相切,求a 的值及切点坐标.解 设直线l 与曲线C 相切于点P (x 0,y 0). ∵f ′(x )=lim Δx→f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x ,由题意可知k =4,即3x 20-4x 0=4, 解得x 0=-23或x 0=2,∴切点坐标为(-23,4927)或(2,3).当切点坐标为(-23,4927)时,有4927=4×(-23)+a ,∴a =12127.当切点坐标为(2,3)时,有3=4×2+a ,∴a =-5.∴当a =12127时,切点坐标为(-23,4927);当a =-5时,切点坐标为(2,3).类型三 导数几何意义的应用例4 (1)已知函数f (x )在区间[0,3]上的图象如图所示,记k 1=f ′(1),k 2=f ′(2),k 3=f (2)-f (1),则k 1,k 2,k 3之间的大小关系为________.(请用“>”连接)(2)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为________.答案 (1)k 1>k 3>k 2 (2)⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,π 解析 (1)由导数的几何意义,可得k 1>k 2. ∵k 3=f (2)-f (1)2-1表示割线AB 的斜率,∴k 1>k 3>k 2. (2)设P (x 0,y 0).∵f ′(x )=lim Δx →0(x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx=3x 2-3,∴切线的斜率k =3x 20-3,∴tan α=3x 20-3≥-3,∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,π. 反思与感悟 导数几何意义的综合应用问题的解题关键还是对函数进行求导,利用题目所提供的诸如直线的位置关系、斜率最值范围等关系求解相关问题时常与函数、方程、不等式等知识相结合.跟踪训练4 (1)若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是()(2)已知曲线y =f (x )=2x 2+a 在点P 处的切线方程为8x -y -15=0,则实数a 的值为________. 答案 (1)A (2)-7解析 (1)依题意,y =f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项的图象,只有A 满足. (2)设点P (x 0,2x 20+a ). 由导数的几何意义可得 f ′(x 0)=lim Δx→0ΔyΔx=lim Δx →02(x 0+Δx )2+a -(2x 20+a )Δx=4x 0=8.∴x 0=2,∴P (2,8+a ).将x =2,y =8+a ,代入8x -y -15=0, 得a =-7.1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1答案 A解析 由题意,知k =y ′|x =0 =lim Δx →0(0+Δx )2+a (0+Δx )+b -b Δx =1,∴a =1.又(0,b )在切线上,∴b =1,故选A.2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定 答案 B解析 由导数的几何意义,f ′(x A ),f ′(x B )分别是切线在点A ,B 处切线的斜率,由图象可知f ′(x A )<f ′(x B ).3.如图,函数y =f (x )的图象在点P (2,y )处的切线是l ,则f (2)+f ′(2)等于( )A .-4B .3C .-2D .1答案 D解析 由图象可得函数y =f (x )的图象在点P 处的切线是l ,与x 轴交于(4,0),与y 轴交于(0,4),则可知l :x +y =4,∴f (2)=2,f ′(2)=-1,∴代入可得f (2)+f ′(2)=1,故选D. 4.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________.答案 (3,30)解析 设点P (x 0,2x 20+4x 0). 则f ′(x 0)=lim Δx→f (x 0+Δx )-f (x 0)Δx=lim Δx →02(Δx )2+4x 0·Δx +4ΔxΔx =4x 0+4,令4x 0+4=16,得x 0=3,∴P (3,30).5.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a )(a +1)-a ,C =f ′(a +1),则由导数的几何意义和斜率公式可得A ,B ,C 的大小关系是________. 答案 A >B >C解析 记M (a ,f (a )),N (a +1,f (a +1)), 则由于B =f (a +1)-f (a )(a +1)-a ,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率,C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以A >B >C .1.导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0f (x 0+Δx )-f (x 0)=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值. 3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.课时作业一、选择题1.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x +y +1=0,则( ) A .f ′(x 0)>0 B .f ′(x 0)=0 C .f ′(x 0)<0 D .f ′(x 0)不存在答案 C解析 由导数的几何意义,可得f ′(x 0)=-2<0.2.曲线y =12x 2-2在点(1,-32)处切线的倾斜角为( )A .1 B.π4 C.54π D .-π4答案 B解析 ∵y ′|x =1=lim Δx →012(1+Δx )2-2-(12-2)Δx=lim Δx →0(1+12Δx )=1,∴倾斜角为π4.3.曲线y =x 3-3x 2+1在点P 处的切线平行于直线y =9x -1,则切线方程为( ) A .y =9x B .y =9x -26C .y =9x +26D .y =9x +6或y =9x -26答案 D解析 设P (x 0,x 30-3x 20+1),k =y ′|0x x ==lim Δx→0ΔyΔx=lim Δx →0(x 0+Δx )3-3(x 0+Δx )2+1-(x 30-3x 20+1)Δx=3x 20-6x 0=9,即x 20-2x 0-3=0,解得x 0=-1或3. ∴点P 的坐标为(-1,-3)或(3,1).∴切线方程为y +3=9(x +1)或y -1=9(x -3), 即y =9x +6或y =9x -26.4.已知函数y =f (x )的图象如图所示,则函数y =f ′(x )的图象可能是()答案 B解析 由y =f (x )的图象及导数的几何意义可知,当x <0时,f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故选B.5.设f (x )为可导函数,且满足lim x →0f (1)-f (1-x )2x =-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2 答案 D解析 ∵lim x →012·f (1)-f (1-x )x=12lim x →0f (1)-f (1-x )x =12f ′(1)=-1, ∴f ′(1)=-2.由导数的几何意义,知曲线y =f (x )在点(1,f (1))处的切线斜率为-2.6.设P 为曲线C :y =f (x )=x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[π4,π2],则点P 的横坐标的取值范围为( ) A .(-∞,12]B .[-1,0]C .[0,1]D .[-12,+∞)答案 D解析 设点P 的横坐标为x 0,则点P 处的切线倾斜角α与x 0的关系为 tan α=f ′(x 0)=lim Δx→f (x 0+Δx )-f (x 0)Δx =2x 0+2.∵α∈[π4,π2],∴tan α∈[1,+∞),∴2x 0+2≥1,即x 0≥-12.∴x 0的取值范围为[-12,+∞).二、填空题7.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba =________.答案 2解析 由题意知a +b =3,又y ′|x =1=lim Δx →0a (1+Δx )2+b -(a +b )Δx =2a =2,∴a =1,b =2,故ba=2.8.已知曲线y =f (x )=2x 2+1在点M 处的瞬时变化率为-4,则点M 的坐标为________. 答案 (-1,3)解析 设点M (x 0,y 0),f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx =4x 0=-4, ∴x 0=-1,则y 0=3,∴M (-1,3).9.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 答案 3解析 由在M 点处的切线方程是y =12x +2, 得f (1)=12×1+2=52, f ′(1)=lim Δx →012(1+Δx )+2-12-2Δx =lim Δx →012Δx Δx=12. ∴f (1)+f ′(1)=52+12=3. 10.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.答案 4解析 设在P 点处切线的斜率为k ,则k =y ′|x =-2=lim Δx →0(-2+Δx )2-(-2+Δx )+c -(6+c )Δx =-5, ∴切线方程为y =-5x .∴点P 的纵坐标为y =-5×(-2)=10,将P (-2,10)代入y =x 2-x +c ,得c =4.三、解答题11.若曲线y =f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 所围成的三角形的面积为16,求a 的值. 解 ∵f ′(a )=lim Δx →0(a +Δx )3-a 3Δx =3a 2, ∴曲线在(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ),切线与x 轴的交点为(23a,0). ∴三角形的面积为12|a -23a |·|a 3|=16,得a =±1.12.已知抛物线y =f (x )=2x 2+1分别满足下列条件,求出切点的坐标.(1)切线的倾斜角为45°;(2)切线平行于直线4x -y -2=0;(3)切线垂直于直线x +8y -3=0.解 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2,∴y ′|0x x =lim Δx →0Δy Δx=4x 0,即f ′(x 0)=4x 0. (1)∵抛物线的切线的倾斜角为45°,∴斜率为tan45°=1,即f ′(x 0)=4x 0=1,解得x 0=14, ∴切点坐标为(14,98). (2)∵抛物线的切线平行于直线4x -y -2=0,∴k =4,即f ′(x 0)=4x 0=4,解得x 0=1,∴切点坐标为(1,3).(3)∵抛物线的切线与直线x +8y -3=0垂直,∴k ·(-18)=-1,即k =8, ∴f ′(x 0)=4x 0=8,解得x 0=2,∴切点坐标为(2,9).13.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.解 ∵f ′(x 0)=lim Δx→0Δy Δx =lim Δx →0[3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2] =3x 20+2ax 0-9,即f ′(x )=3(x 0+a 3)2-9-a 23, 当x 0=-a 3时,f ′(x 0)取到最小值,为-9-a 23. ∵斜率最小的切线与12x +y =6平行,∴该切线斜率为-12.∴-9-a 23=-12,解得a =±3,又a <0,∴a =-3.四、探究与拓展14.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=________;lim Δx →0f (1+Δx )-f (1)Δx =______.(用数字作答) 答案 2 -2解析 ∵f (0)=4,∴f (f (0))=f (4)=2,f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx =0-42-0=-2. 15.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求直线l 1,l 2和x 轴所围成的三角形的面积.解 (1)∵y ′=lim Δx →0Δy Δx=lim Δx →0(x +Δx )2+(x +Δx )-2-(x 2+x -2)Δx =2x +1,∴y ′|x =1=3,∴直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).∵l 1⊥l 2,∴3(2x 0+1)=-1,解得x 0=-23. ∴直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎨⎧ x =16,y =-52.又∵直线l 1,l 2与x 轴的交点坐标分别为(1,0),(-223,0),12×|-52|×(1+223)=12512.∴所求三角形的面积为S=。
1.5.1曲边梯形的面积1.5.2汽车行驶的路程学习目标 1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.知识点一曲边梯形的面积思考1如何计算下列两图形的面积?答案①直接利用梯形面积公式求解.②转化为三角形和梯形求解.思考2如图,为求由抛物线y=x2与直线x=1,y=0所围成的平面图形的面积S,图形与我们熟悉的“直边图形”有什么区别?答案已知图形是由直线x=1,y=0和曲线y=x2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段.思考3能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤)答案 (1)曲边梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图①所示). (2)求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形.对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).(3)求曲边梯形面积的步骤:①分割;②近似代替;③求和;④取极限.知识点二 求变速直线运动的(位移)路程一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s .类型一 求曲边梯形的面积例1 求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积.解 (1)分割将曲边梯形分割成n 个小曲边梯形,用分点1n ,2n ,…,n -1n 把区间[0,1]等分成n 个小区间:[0,1n ],[1n ,2n ],…,[i -1n ,i n ],…,[n -1n ,n n ],简写作[i -1n ,i n ](i =1,2,…,n ).每个小区间的长度为Δx =i n -i -1n =1n .过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作:ΔS 1,ΔS 2,…,ΔS i ,…,ΔS n .(2)近似代替用小矩形面积近似代替小曲边梯形面积,在小区间[i -1n ,in ]上任取一点ξi (i =1,2,…,n ),为了计算方便,取ξi 为小区间的左端点,用f (ξi )的相反数-f (ξi )=-(i -1n )·(i -1n -1)为其一边长,以小区间长度Δx =1n 为另一边长的小矩形对应的面积近似代替第i 个小曲边梯形面积.(3)求和ΔS i ≈-f (ξi )Δx =-(i -1n )(i -1n -1)·1n (i =1,2,…,n ).即S =∑i =1nΔS i ≈-∑i =1nf (ξi )Δx=∑i =1n[-(i -1n )(i -1n -1)]·1n=-1n 3[02+12+22+…+(n -1)2]+1n 2[0+1+2+…+(n -1)]=-1n 3·16n (n -1)(2n -1)+1n 2·n (n -1)2=--n 2+16n 2=-16(1n 2-1). (4)取极限当分割无限变细,即Δx 趋向于0时,n 趋向于∞,此时-16(1n 2-1)趋向于S ,从而有S =lim n →∞[-16(1n 2-1)]=16. 所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积为16.反思与感悟 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用到一些常见的求和公式,如 1+2+3+…+n =n (n +1)2,12+22+32+…+n 2=n (n +1)(2n +1)6,13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.跟踪训练1 求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.解 ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S 阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =x 2(x ≥0),y =4, 得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2]n 等分, 则Δx =2n ,取ξi =2(i -1)n .(2)近似代替求和 S n =∑i =1n[2(i -1)n ]2·2n =8n 3[12+22+32+…+(n -1)2] =83(1-1n )(1-12n ). (3)取极限S =lim n →∞S n=lim n →∞83(1-1n )(1-12n )=83. ∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323.类型二 求变速运动的路程例2 当汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =v t .如果汽车做变速直线运动,在时刻t 的速度为v (t )=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少?解 将区间[1,2]等分成n 个小区间,第i 个小区间为[1+i -1n ,1+in ].所以Δs i =v (1+i -1n )·1n .s n =∑ni =1v (1+i -1n )1n=1n ∑ni =1[(1+i -1n)2+2] =1n ∑n i =1[(i -1)2n 2+2(i -1)n+3] =1n {3n +1n 2[02+12+22+…+(n -1)2]+1n [0+2+4+6+…+2(n -1)]} =3+(n -1)(2n -1)6n 2+n -1n .s =lim n→∞s n =lim n→∞[3+(n -1)(2n -1)6n 2+n -1n ]=133.所以这段时间行驶的路程为133km. 引申探究本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?解 将区间[1,2]等分成n 个小区间,第i 个小区间为[1+i -1n ,1+in]. 所以Δs i =v (1+i n )·1n .s n =∑ni =1v (1+i n )1n=3+1n 3[12+22+…+(n -1)2+n 2]+1n 2[2+4+6+…+2(n -1)+2n ]=3+(n +1)(2n +1)6n 2+n +1n .s =lim n→∞s n =lim n→∞[3+(n +1)(2n +1)6n 2+(n +1)n ]=133.所以这段时间行驶的路程为133km. 所以分别用小区间的两个端点求出的行驶路程是相同的.反思与感悟 求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.跟踪训练2 一辆汽车在笔直的公路上变速行驶,设汽车在时刻t 的速度为v (t )=-t 2+5(t 的单位:h ,v 的单位:km/h),试计算这辆汽车在0≤t ≤2这段时间内汽车行驶的路程s (单位:km). 解 ①分割在时间区间[0,2]上等间隔地插入(n -1)个分点,将区间分成n 个小区间,记第i 个小区间为[2(i -1)n ,2i n ](i =1,2,…,n ),Δt =2i n -2(i -1)n =2n ,把汽车在时间段[0,2n ],[2n ,4n ],…,[2(n -1)n ,2]上行驶的路程分别记为Δs 1,Δs 2,…,Δs n ,则有s n =∑i =1nΔs i .②近似代替取ξi =2in (i =1,2,…,n ),Δs i ≈v (2i n )·Δt =[-(2i n )2+5]·2n=-4i 2n 2·2n +10n (i =1,2,…,n ).③求和s n =∑i =1nΔs i ≈∑i =1n[-4i 2n 2·2n +10n ]=-4×12n 2·2n -4×22n 2·2n -…-4×n 2n 2·2n +10=-8n 3[12+22+…+n 2]+10=-8n 3·n (n +1)(2n +1)6+10=-8·13(1+1n )(1+12n )+10.④取极限 s =lim n →∞s n=223. 因此,行驶的路程为223km.1.把区间[1,3]n 等分,所得n 个小区间的长度均为( ) A.1nB.2nC.3nD.12n答案 B解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n .2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确 答案 C3.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( ) A.13 B.12 C .1 D.32答案 B4.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是________. 答案 1.02解析 将区间5等分所得的小区间为[1,65],[65,75],[75,85],[85,95],[95,2],于是所求平面图形的面积近似等于110(1+3625+4925+6425+8125)=110×25525=1.02.5.求由直线x =0,x =1,y =0及曲线f (x )=12x 2所围成的图形的面积.解 (1)分割将区间[0,1]等分成n 个小区间:[0,1n ],[1n ,2n ],…,[i -1n ,i n ],…,[n -1n ,1],每个小区间的长度为Δx =1n.过各分点作x 轴的垂线,将曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替在区间[i -1n ,i n ]上,用i -1n 处的函数值12(i -1n )2作为高,以小区间的长度Δx =1n 作为底边长的小矩形的面积近似代替第i 个小曲边梯形的面积,即ΔS i ≈12(i -1n )2·1n .(3)求和曲边梯形的面积为 S n =∑ni =1ΔS i ≈12∑n i =1 (i -1n )2·1n=0·1n +12·(1n )2·1n +12·(2n )2·1n +…+12·(n -1n )2·1n =12n 3[12+22+…+(n -1)2]=16(1-1n )(1-12n ). (4)取极限 曲边梯形的面积为 S =lim n →∞16(1-1n )(1-12n )=16.求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n 等分区间[a ,b ]; (2)近似代替:取点ξi ∈[x i -1,x i ];(3)求和:∑i =1n f (ξi )·b -an ;(4)取极限:s =lim n →∞∑i =1nf (ξi)·b -an . “近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).课时作业一、选择题1.当n 很大时,函数f (x )=x 2在区间[i -1n ,in ]上的值,可以近似代替为( )A .f (1n )B .f (2n )C .f (in ) D .f (0)答案 C2.在求由曲线y =1x 与直线x =1,x =3,y =0所围成图形的面积时,若将区间n 等分,并用每个区间的右端点的函数值近似代替每个小曲边梯形的高,则第i 个小曲边梯形的面积ΔS i约等于( ) A.2n +2i B.2n +2i -2 C.2n (n +2i ) D.1n +2i答案 A解析 每个区间的长度为2n ,第i 个小曲边梯形的高为11+2i n,∴第i 个小曲边梯形的面积为2n ×11+2i n=2n +2i.3.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( ) A.19 B.125 C.127 D.130答案 A4.在等分区间的情况下f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( ) A.lim n →∞∑ni =1[11+(i n )2·2n ]B.lim n →∞∑n i =1[11+(2i n )2·2n ]C.lim n →∞∑n i =1 (11+i 2·1n ) D.lim n →∞∑n i =1[11+(i n )2·n ]答案 B解析 ∵Δx =2-0n =2n ,∴和式为∑n i =1[11+(2i n)2·2n ]. 故选B.5.把区间[a ,b ](a <b )n 等分之后,第i 个小区间是( ) A .[i -1n ,i n]B .[i -1n (b -a ),i n (b -a )]C .[a +i -1n ,a +i n]D .[a +i -1n (b -a ),a +in (b -a )]答案 D解析 区间[a ,b ](a <b )长度为(b -a ),n 等分之后, 每个小区间长度均为b -an,所以第i 个小区间是[a +i -1n (b -a ),a +in(b -a )](i =1,2,…,n ).6.在求由x =a ,x =b (a <b ),y =f (x ) (f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入(n -1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定. A .1 B .2 C .3 D .4答案 A解析 只有④正确.7.若做变速直线运动的物体v (t )=t 2,在0≤t ≤a 内经过的路程为9,则a 的值为( ) A .1B .2C .3D .4 答案 C解析 将区间[0,a ]n 等分,记第i 个区间为[a (i -1)n ,ai n ](i =1,2,…,n ),此区间长为an,用小矩形面积(ai n )2·a n 近似代替相应的小曲边梯形的面积,则∑ni =1 (ai n)2·a n =a 3n 3·(12+22+…+n 2)=a 33(1+1n )(1+12n )近似地等于速度曲线v (t )=t 2与直线t =0,t =a ,t 轴围成的曲边梯形的面积.依题意得lim n →∞[a 33(1+1n )(1+12n )]=9,∴a 33=9,解得a =3. 二、填空题8.∑n i =1i n=________. 答案 n +12解析 ∑n i =1i n =1n(1+2+…+n )=1n ·n (n +1)2=n +12. 9.已知某物体运动的速度v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.答案 55解析 ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.10.当n 很大时,可以代替函数f (x )=x 2在区间[i -1n ,i n]上的值有________个. ①f (1n );②f (i n );③f (i -1n );④f (i n -12n). 答案 3解析 因为当n 很大时,区间[i -1n ,i n ]上的任意的取值都可以代替,又因为1n ∉[i -1n ,i n ],i -1n∈[i -1n ,i n ],i n ∈[i -1n ,i n ],i n -12n ∈[i -1n ,i n],故能代替的有②③④. 11.直线x =0,x =2,y =0与曲线y =x 2+1围成曲边梯形,将区间[0,2]五等分,按照区间左端点和右端点估计曲边梯形面积分别为________、________.答案 3.92 5.52解析 分别以小区间左、右端点的纵坐标为高,求所有小矩形面积之和.S 1=(02+1+0.42+1+0.82+1+1.22+1+1.62+1)×0.4=3.92;S 2=(0.42+1+0.82+1+1.22+1+1.62+1+22+1)×0.4=5.52.三、解答题12.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?解 (1)分割在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,记第i 个小区间为[2(i -1)n ,2i n ](i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2n.每个时间段上行驶的路程记为Δs i (i=1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ),用小矩形的面积Δs ′i 近似地代替Δs i ,于是 Δs i ≈Δs ′i =v (2i n )·Δt =[3(2i n )2+2]·2n=24i 2n 3+4n(i =1,2,…,n ). (3)求和s n =∑i =1nΔs ′i =i =1n (24i 2n 3+4n )=24n 3(12+22+…+n 2)+4 =24n 3·n (n +1)(2n +1)6+4=8(1+1n )(1+12n)+4. (4)取极限s =lim n →∞s n =lim n →∞[8(1+1n )(1+12n )+4]=8+4=12. 所以这段时间内行驶的路程为12km.13.如图所示,求直线x =0,x =3,y =0与二次函数f (x )=-x 2+2x +3所围成的曲边梯形的面积.解 (1)分割如图,将区间[0,3]n 等分,则每个小区间[3(i -1)n ,3i n](i =1,2,…,n )的长度为Δx =3n.分别过各分点作x 轴的垂线,把原曲边梯形分成n 个小曲边梯形.(2)近似代替以每个小区间的左端点函数值为高作n 个小矩形.则当n 很大时,用n 个小矩形面积之和S n 近似代替曲边梯形的面积S .(3)求和S n =∑ni =1f (3(i -1)n )Δx =∑n i =1[-9(i -1)2n 2+2×3(i -1)n +3]×3n =-27n 3[12+22+…+(n -1)2]+18n 2[1+2+3+…+(n -1)]+9 =-27n 3×16(n -1)n (2n -1)+18n 2×n (n -1)2+9 =-9(1-1n )(1-12n )+9(1-1n)+9. (4)取极限S =lim n→∞S n =lim n →∞[-9(1-1n )(1-12n )+9(1-1n )+9] =9.即所求曲边梯形面积为9.。
1.3.2 极大值与极小值(二)学习目标 1.进一步理解极值的概念.2.会应用极值解决相关问题.1.极大值与导数之间的关系2.极小值与导数之间的关系类型一 求函数的极值例1 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值; (2)求函数f (x )的极值. 解 (1)f ′(x )=a x -12x 2+32.由题意,曲线在x =1处的切线斜率为0,即f ′(1)=0, 从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数.故f (x )在x =1处取得极小值,极小值为f (1)=3. 反思与感悟 (1)研究函数首先要研究其定义域. (2)令导函数等于零,求出使导函数等于零的自变量的值. (3)正确列出表格,使区间不重不漏,界点清楚. 跟踪训练1 设函数f (x )=ax 3+32(2a -1)x 2-6x (a ∈R ).(1)当a =1时,求曲线y =f (x )在点(-1,f (-1))处的切线方程; (2)当a =13时,求f (x )的极大值和极小值.解 (1)当a =1时,f (x )=x 3+32x 2-6x ,f ′(x )=3x 2+3x -6,k =f ′(-1)=3-3-6=-6,f (-1)=132,所以y -132=-6(x +1),即12x +2y -1=0为所求切线的方程. (2)当a =13时,f (x )=13x 3-12x 2-6x ,f ′(x )=x 2-x -6.令f ′(x )=0,得x =-2或x =3.当x 变化时,f ′(x ),f (x )的变化状态如下表:所以f (x )在(-∞,-2)上是增函数,在(-2,3)上是减函数,在(3,+∞)上是增函数, 所以f (x )的极大值为f (-2)=223,f (x )的极小值为f (3)=-272. 类型二 极值的综合应用例2 已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围. 解 由f (x )=x 3-6x 2+9x +3, 可得f ′(x )=3x 2-12x +9,13f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点, ∵g ′(x )=3x 2-14x +8=(3x -2)(x -4), ∴令g ′(x )=0得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:则函数g (x )的极大值为g (23)=6827-m ,极小值为g (4)=-16-m .∴由g (x )的图象与x 轴有三个不同交点, 得⎩⎪⎨⎪⎧g (23)=6827-m >0,g (4)=-16-m <0,解得-16<m <6827.反思与感悟 极值问题的综合应用主要涉及极值的正用和逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用,在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键.跟踪训练2 已知a 为实数,函数f (x )=-x 3+3x +a . (1)求函数f (x )的极值,并画出其图象(草图); (2)当a 为何值时,方程f (x )=0恰好有两个实数根? 解 (1)由f (x )=-x 3+3x +a , 得f ′(x )=-3x 2+3,令f ′(x )=0,得x =-1或x =1. 当x ∈(-∞,-1)时,f ′(x )<0; 当x ∈(-1,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.所以函数f (x )的极小值为f (-1)=a -2; 极大值为f (1)=a +2.由单调性、极值可画出函数f (x )的大致图象,如图所示.这里,极大值a+2大于极小值a-2.(2)结合图象,当极大值a+2=0或极小值a-2=0时,曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰有两个实数根.综上,当a=±2时,方程恰有两个实数根.1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有________个极小值.答案 1解析由图可知,在区间(a,x1),(x2,0),(0,x3)内f′(x)>0;在区间(x1,x2),(x3,b)内f′(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减.所以,函数f(x)在开区间(a,b)内只有一个极小值,极小值为f(x2).2.关于函数f(x)=x3-3x2有下列命题,其中正确命题的序号是________.①f(x)是增函数;②f(x)是减函数,无极值;③f(x)的增区间是(-∞,0)和(2,+∞),减区间是(0,2);④f(0)=0是极大值,f(2)=-4是极小值.答案③④解析f′(x)=3x2-6x,令f′(x)=0,则x=0或x=2.易知当x∈(-∞,0)时,f′(x)>0;当x∈(0,2)时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)的增区间是(-∞,0)和(2,+∞),减区间是(0,2),极大值是f(0),极小值是f(2).3.若函数f (x )=x ·2x 在x 0处有极小值,则x 0=________. 答案 -1ln2解析 f ′(x )=2x +x ·2x ln2,令f ′(x )=0,得x =-1ln2.4.设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a 的值为________. 答案 9解析 f ′(x )=18x 2+6(a +2)x +2a .由已知f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a18=1,所以a =9.5.设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是________.(填序号)①∀x ∈R ,f (x )≤f (x 0); ②-x 0是f (-x )的极小值点; ③-x 0是-f (x )的极小值点; ④-x 0是-f (-x )的极小值点. 答案 ④解析 不妨取函数f (x )=x 3-x ,则x =-33为f (x )的极大值点,但f (3)>f (-33),∴排除①; 取函数f (x )=-x (x -1)2,则x =1是f (x )的极大值点,但-1不是f (-x )的极小值点,∴排除②;-f (x )=x (x -1)2,-1不是-f (x )的极小值点, ∴排除③,∵-f (-x )的图象与f (x )的图象关于原点对称,由函数图象的对称性可得-x 0应为函数-f (-x )的极小值点,∴填④.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,需注意 (1)常根据取极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点取极值的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.运用极值研究曲线交点问题时要注意运用数形结合、等价转化等数学思想方法.课时作业一、填空题1.已知函数f (x )=13x 3+x 2-2ax +1.若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________. 答案 (32,4)2.已知函数y =3x -x 3+m 的极大值为10,则m 的值为________. 答案 8解析 y ′=3-3x 2=3(1+x )(1-x ), 令y ′=0得x 1=-1,x 2=1,经判断知极大值为f (1)=2+m =10,m =8.3.函数f (x )=13x 3-4x +4的图象与直线y =a 恰有三个不同的交点,则实数a 的取值范围是________. 答案 (-43,283)解析 ∵f (x )=13x 3-4x +4,∴f ′(x )=x 2-4=(x +2)(x -2). 令f ′(x )=0,得x =2或x =-2.当x 变化时,f ′(x ),f (x )的变化情况如下表:∴当x =-2时,函数取得极大值f (-2)=283;当x =2时,函数取得极小值f (2)=-43.且f (x )在(-∞,-2)上递增,在(-2,2)上递减,在(2,+∞)上递增. 根据函数单调性、极值情况,它的图象大致如图所示,结合图象知-43<a <283.4.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________. 答案 (0,12)解析 f ′(x )=(ln x -ax )+x (1x -a )=ln x +1-2ax (x >0), 令f ′(x )=0,得2a =ln x +1x ,设φ(x )=ln x +1x ,则φ′(x )=-ln xx2.易知φ(x )在(0,1)上递增,在(1,+∞)上递减, 大致图象如下图.若f (x )有两个极值点,则y =2a 和y =φ(x )图象有两个交点, ∴0<2a <1,∴0<a <12.5.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为________. 答案 [1,5)解析 ∵f ′(x )=3x 2+2x -a ,函数f (x )在区间(-1,1)上恰有一个极值点, 即f ′(x )=0在(-1,1)内恰有一个根. 又函数f ′(x )=3x 2+2x -a 的对称轴为x =-13.∴应满足⎩⎪⎨⎪⎧ f ′(-1)≤0,f ′(1)>0,∴⎩⎪⎨⎪⎧3-2-a ≤0,3+2-a >0,∴1≤a <5.6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值为________. 答案 9解析 f ′(x )=12x 2-2ax -2b , ∵f (x )在x =1处有极值,∴f ′(1)=12-2a -2b =0,∴a +b =6. 又a >0,b >0,∴a +b ≥2ab ,∴2ab ≤6, ∴ab ≤9,当且仅当a =b =3时等号成立, ∴ab 的最大值为9.7.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断正确的是________.(填序号) 答案 ③解析 函数的单调性由导数的符号确定,当x ∈(-∞,-2)时,f ′(x )<0,所以f (x )在(-∞,-2)内单调递减,同理f (x )在(2,4)内单调递减,在(-2,2)内单调递增,在(4,+∞)内单调递增,所以可排除①和②,可填③.由于函数在x =2的左侧递增,右侧递减,所以当x =2时,函数有极大值;而在x =-12的左右两侧,函数的导数都是正数,故函数在x =-12的左右两侧均单调递增,所以x =-12不是函数的极值点.排除④和⑤.8.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为________. 答案 (-∞,-3)∪(6,+∞) 解析 ∵f ′(x )=3x 2+2ax +a +6,∴f ′(x )的图象是开口向上的抛物线,只有当Δ=4a 2-12(a +6)>0时,图象与x 轴的左交点的左、右两侧f ′(x )的值分别大于零、小于零,右交点左、右两侧f ′(x )的值分别小于零、大于零,所以才会有极大值和极小值. 由4a 2-12(a +6)>0得a >6或a <-3.9.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,由题意得f ′(1)=0,即1+2-a4=0,解得a=3.10.函数f (x )=x 3-3a 2x +a (a >0)的极大值为正数,极小值为负数,则a 的取值范围是________. 答案 (22,+∞) 解析 ∵f ′(x )=3x 2-3a 2(a >0),∴当x =a 时,f (x )有极小值,当x =-a 时,f (x )有极大值. 由题意得⎩⎪⎨⎪⎧a 3-3a 3+a <0,-a 3+3a 3+a >0,a >0,解得a >22. 二、解答题11.已知函数f (x )=13x 3-12(m +3)x 2+(m +6)x (x ∈R ,m 为常数)在区间(1,+∞)内有两个极值点,求实数m 的取值范围. 解 f ′(x )=x 2-(m +3)x +m +6.因为函数f (x )在(1,+∞)内有两个极值点,所以导数f ′(x )=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点,如图所示.所以⎩⎪⎨⎪⎧Δ=(m +3)2-4(m +6)>0,f ′(1)=1-(m +3)+m +6>0,m +32>1,解得m >3.故实数m 的取值范围是(3,+∞). 12.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 解 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值是f ⎝⎛⎭⎫-13=527+a ,极小值是f (1)=a -1. (2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知,x 取足够大的正数时,有f (x )>0, x 取足够小的负数时,有f (x )<0, ∴曲线y =f (x )与x 轴至少有一个交点. 由(1)知f (x )极大值=f ⎝⎛⎭⎫-13=527+a , f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点, ∴(527+a )(a -1)>0, ∴a <-527或a >1,∴当a ∈⎝⎛⎭⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点. 13.已知x =3是函数f (x )=a ln(1+x )+x 2-10x 的一个极值点. (1)求a ;(2)求函数f (x )的单调区间;(3)若直线y =b 与函数y =f (x )的图象有3个交点,求b 的取值范围. 解 (1)因为f ′(x )=a1+x +2x -10,所以f ′(3)=a4+6-10=0,因此a =16. (2)由(1)知,f (x )=16ln(1+x )+x 2-10x ,x ∈(-1,+∞). f ′(x )=2(x 2-4x +3)1+x,当x ∈(-1,1)∪(3,+∞)时,f ′(x )>0; 当x ∈(1,3)时,f ′(x )<0,所以f (x )的单调增区间是(-1,1)和(3,+∞),f (x )的单调减区间是(1,3).(3)由(2)知,f (x )在(-1,1)内单调递增,在(1,3)内单调递减,在(3,+∞)内单调递增, 且当x =1或x =3时,f ′(x )=0,所以f (x )的极大值为f (1)=16ln2-9,极小值为f (3)=32ln2-21,所以要使直线y =b 与y =f (x )的图象有3个交点,当且仅当f (3)<b <f (1).因此b 的取值范围为(32ln2-21,16ln2-9).三、探究与拓展14.已知函数f (x )=(x +1)ln x -x +1.(1)若xf ′(x )≤x 2+ax +1,求a 的取值范围;(2)求证:(x -1)f (x )≥0.(1)解 f ′(x )=x +1x +ln x -1=ln x +1x,xf ′(x )=x ln x +1,而xf ′(x )≤x 2+ax +1等价于ln x -x ≤a .令g (x )=ln x -x ,则g ′(x )=1x-1,当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.x =1是g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-1.综上可知,a 的取值范围是[-1,+∞).(2)证明 由(1)知,g (x )≤g (1)=-1,即ln x -x +1≤0.当0<x <1时,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)≤0;当x ≥1时,f (x )=ln x +(x ln x -x +1)=ln x +x ⎝⎛⎭⎫ln x +1x -1=ln x -x ⎝⎛⎭⎫ln 1x -1x +1≥0.∴(x -1)f (x )≥0. 15.若2ln(x +2)-x 2-x +b =0在区间[-1,1]上恰有两个不同的实数根,求实数b 的取值范围. 解 令g (x )=2ln(x +2)-x 2-x +b ,则g ′(x )=2x +2-2x -1=-2x (x +52)x +2(x >-2). g (x )与g ′(x )在(-2,+∞)的变化情况如下表:由上表可知函数在x =0处取得极大值,极大值为2ln2+b .结合图象(图略)可知,要使g (x )=0在区间[-1,1]上恰有两个不同的实数根,只需⎩⎪⎨⎪⎧ g (-1)≤0,g (0)>0,g (1)≤0,即⎩⎪⎨⎪⎧ b ≤0,2ln2+b >0,2ln3-2+b ≤0,所以-2ln2<b ≤2-2ln3.故实数b 的取值范围是(-2ln2,2-2ln3].。
1.1导数与函数的单调性学习目标 1.理解导数与函数的单调性的关系.2.掌握利用导数判断函数单调性的方法.3.能利用导数求不超过三次多项式函数的单调区间.知识点函数的单调性与导数思考1已知函数(1)y=2x-1,(2)y=-3x,(3)y=2x,请判断它们的导数的正负与它们的单调性之间的关系.答案(1)y′=2>0,y=2x-1是增函数;(2)y′=-3<0,y=-3x是减函数;(3)y′=2x ln x>0,y=2x是增函数.思考2观察图中函数f(x),填写下表.梳理函数的单调性与导数符号的关系类型一 判断或证明函数的单调性例1 证明函数f (x )=ln xx 在区间(0,2)上是增加的.证明 由于f (x )=ln xx ,所以f ′(x )=1x ·x -ln x x 2=1-ln xx 2, 由于0<x <2,所以ln x <ln2<1, 故f ′(x )=1-ln xx2>0,即函数在区间(0,2)上是增加的.反思与感悟 利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式f ′(x )>0(f ′(x )<0)在给定区间上恒成立.一般步骤为 (1)求导f ′(x ). (2)判断f ′(x )的符号. (3)给出单调性结论.跟踪训练1 判断y =ax 3-1(a ∈R )在R 上的单调性. 解 ∵y ′=3ax 2, ∴①当a >0时,y ′>0, ∴y =ax 3-1在R 上是增函数. ②当a =0时,y ′=0, ∴y =ax 3-1在R 上是常函数.③当a <0时,y =ax 3-1在R 上是减函数. 类型二 利用导数求函数的单调区间 命题角度1 不含参数的函数求单调区间 例2 求f (x )=3x 2-2ln x 的单调区间. 解 f (x )=3x 2-2ln x 的定义域为(0,+∞).f ′(x )=6x -2x =2(3x 2-1)x =2(3x -1)(3x +1)x,由x >0,解f ′(x )>0,得x >33.由x >0,解f ′(x )<0,得0<x <33. ∴函数f (x )=3x 2-2ln x 的递增区间为(33,+∞),递减区间为(0,33). 反思与感悟 求函数y =f (x )的单调区间的步骤 (1)确定函数y =f (x )的定义域. (2)求导数y ′=f ′(x ).(3)解不等式f ′(x )>0,函数在解集所表示的定义域内为增函数. (4)解不等式f ′(x )<0,函数在解集所表示的定义域内为减函数. 跟踪训练2 函数f (x )=(x 2+2x )e x (x ∈R )的递减区间为____________. 答案 (-2-2,-2+2) 解析 由f ′(x )=(x 2+4x +2)e x <0, 即x 2+4x +2<0, 解得-2-2<x <-2+ 2.所以f (x )=(x 2+2x )e x 的递减区间为(-2-2,-2+2). 命题角度2 含参数的函数求单调区间例3 讨论函数f (x )=12ax 2+x -(a +1)ln x (a ≥0)的单调性.解 函数f (x )的定义域为(0,+∞),f ′(x )=ax +1-a +1x =ax 2+x -(a +1)x .(1)当a =0时,f ′(x )=x -1x,由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1. ∴f (x )在(0,1)内为减函数,在(1,+∞)内为增函数. (2)当a >0时,f ′(x )=a (x +a +1a)(x -1)x ,∵a >0,∴-a +1a<0.由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1. ∴f (x )在(0,1)内为减函数,在(1,+∞)内为增函数.综上所述,当a ≥0时,f (x )在(0,1)内为减函数,在(1,+∞)内为增函数. 反思与感悟 (1)讨论参数要全面,解题时易忽略a =0的情况而致错.(2)解不等式时若涉及分式不等式要注意结合定义域化简,也可转化为二次不等式求解. 跟踪训练3 设函数f (x )=e x -ax -2,求f (x )的单调区间. 解 f (x )的定义域为(-∞,+∞),f ′(x )=e x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上是增加的. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,ln a )上是减少的,在(ln a ,+∞)上是增加的. 综上所述,当a ≤0时,函数f (x )在(-∞,+∞)上是增加的; 当a >0时,f (x )在(-∞,ln a )上是减少的,在(ln a ,+∞)上是增加的. 类型三 已知函数的单调性求参数的范围例4 若函数f (x )=kx -ln x 在区间(1,+∞)上是增加的,则k 的取值范围是________. 答案 [1,+∞)解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上是增加的⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞). 引申探究1.若将本例中条件增加的改为减少的,求k 的取值范围. 解 ∵f ′(x )=k -1x,又f (x )在(1,+∞)上是减少的,∴f ′(x )=k -1x ≤0在(1,+∞)上恒成立,即k ≤1x ,∵0<1x <1,∴k ≤0.即k 的取值范围为(-∞,0].2.若将本例中条件是增加的改为不单调,求k 的取值范围. 解 f (x )=kx -ln x 的定义域为(0,+∞), f ′(x )=k -1x .当k ≤0时,f ′(x )<0.∴f (x )在(0,+∞)上是减少的,故不合题意. 当k >0时,令f ′(x )=0,得x =1k ,只需1k ∈(1,+∞),即1k >1,则0<k <1.∴k 的取值范围是(0,1).反思与感悟 (1)利用导数法解决取值范围问题的两个基本思路①将问题转化为不等式在某区间上的恒成立问题,即f ′(x )≥0(或f ′(x )≤0)恒成立,利用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意;②先令f ′(x )>0(或f ′(x )<0),求出参数的取值范围后,再验证参数取“=”时f (x )是否满足题意.(2)恒成立问题的重要思路 ①m ≥f (x )恒成立⇒m ≥f (x )max ; ②m ≤f (x )恒成立⇒m ≤f (x )min . 跟踪训练4 已知函数f (x )=ax +1x +2在(-2,+∞)内是减少的,则实数a 的取值范围为________. 答案 (-∞,12)解析 因为f (x )=ax +1x +2,所以f ′(x )=2a -1(x +2)2.由函数f (x )在(-2,+∞)内是减少的, 知f ′(x )≤0在(-2,+∞)内恒成立, 即2a -1(x +2)2≤0在(-2,+∞)内恒成立,因此a ≤12. 当a =12时,f (x )=12,此时函数f (x )为常数函数,故a =12不符合题意,舍去.故实数a 的取值范围为(-∞,12).1.设函数f (x )的图像如图所示,则导函数f ′(x )的图像可能为( )答案 C解析 由f (x )的图像可知,函数f (x )的递增区间为(1,4),递减区间为(-∞,1)和(4,+∞),因此,当x ∈(1,4)时,f ′(x )>0,当x ∈(-∞,1)或x ∈(4,+∞)时,f ′(x )<0,结合选项知选C.2.下列函数中,既是奇函数,又在(1,+∞)上递增的是( ) A .y =x 3-6x B .y =x 2-2x C .y =sin x D .y =x 3-3x答案 D解析 由于函数为奇函数,不可能为B. 对于A :y ′=3x 2-6,令y ′=3x 2-6>0,∴x >2或x <- 2. 对于D :y ′=3x 2-3,令y ′=3x 2-3>0,∴x >1或x <-1. ∴D 对.3.函数f (x )=3+x ·ln x 的递增区间是( ) A .(0,1e )B .(e ,+∞)C .(1e ,+∞)D .(1e,e)答案 C解析 f ′(x )=ln x +1,令f ′(x )>0, 即ln x +1>0,得x >1e.故函数f (x )的递增区间为(1e,+∞).4.已知f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是________. 答案 [-3,3]解析 f ′(x )=-3x 2+2ax -1, 由题意知在R 上f ′(x )≤0恒成立, 则Δ=(2a )2-4×(-3)×(-1)≤0, 得-3≤a ≤ 3.5.已知函数f (x )=x 2+ln x -ax 在(0,1)上是增函数,则实数a 的最大值是________. 答案 2 2解析 f ′(x )=2x +1x -a =2x 2-ax +1x ,由于y =f (x )在(0,1)上是增函数,∴f ′(x )≥0在(0,1)上恒成立, 即2x 2-ax +1≥0在(0,1)上恒成立. ∴a ≤2x +1x在(0,1)上恒成立,又2x +1x ≥22,当且仅当x =22等号成立.∴a ≤22,即a 的最大值为2 2.1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f (x )的单调区间的一般步骤 (1)确定函数f (x )的定义域. (2)求导数f ′(x ).(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0. (4)根据(3)的结果确定函数f (x )的单调区间.课时作业一、选择题1.函数y =(3-x 2)e x 的递增区间是( ) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞)D .(-3,1) 答案 D解析 y ′=-2x ·e x +(3-x 2)e x =e x (-x 2-2x +3)令y ′>0,即x 2+2x -3<0, ∴-3<x <1.2.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(0,+∞)答案 C解析 f ′(x )=1+a x =x +ax(x >0),令f ′(x )=0,得x =-a , ∵f (x )在(0,+∞)上不单调, ∴-a >0,即a <0.3.函数f (x )=12x 2-ln x 的递减区间为( )A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)答案 A解析 ∵f (x )=12x 2-ln x 的定义域为(0,+∞),∴f ′(x )=x -1x ,令f ′(x )<0,即x -1x <0,解得0<x <1. 故选A.4.下列函数中,在(0,+∞)内为增函数的是( ) A .y =sin x B .y =x e x C .y =x 3-x D .y =ln x -x答案 B解析 B 项中,y =x e x ,y ′=e x +x e x =e x (1+x ), 当x ∈(0,+∞)时,y ′>0, ∴y =x e x 在(0,+∞)内为增函数.5.当x >0时,f (x )=x +2x 的递减区间是( )A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2)答案 D解析 f ′(x )=1-2x 2=x 2-2x 2=(x -2)(x +2)x 2由f ′(x )<0且x >0,得0<x < 2.6.若函数h (x )=2x -k x +k3在(1,+∞)上是增函数,则实数k 的取值范围是( )A .[-2,+∞)B .[2,+∞)C .(-∞,-2]D .(-∞,2]答案 A解析 根据条件得h ′(x )=2+k x 2=2x 2+kx2≥0在(1,+∞)上恒成立,即k ≥-2x 2在(1,+∞)上恒成立, 所以k ∈[-2,+∞). 二、填空题7.函数f (x )=x -2sin x 在(0,π)上的递增区间为________. 答案 (π3,π)解析 令f ′(x )=1-2cos x >0, 则cos x <12.又x ∈(0,π),解得π3<x <π,所以函数在(0,π)上的递增区间为(π3,π).8.函数f (x )=ln x -x 的递增区间为________. 答案 (0,1)解析 f (x )的定义域为(0,+∞). 令f ′(x )=1x-1>0,解不等式得0<x <1.9.已知函数f (x )=k e x -1-x +12x 2(k 为常数),曲线y =f (x )在点(0,f (0))处的切线与x 轴平行,则f (x )的递减区间为____________. 答案 (-∞,0)解析 f ′(x )=k e x -1-1+x .∵曲线y =f (x )在点(0,f (0))处的切线与x 轴平行, ∴f ′(0)=k ·e -1-1=0,解得k =e ,故f ′(x )=e x +x -1. 令f ′(x )<0,解得x <0, 故f (x )的递减区间为(-∞,0).10.已知函数f (x )=x 3-ax -1,若f (x )在(-1,1)上是减少的,则a 的取值范围为________. 答案 [3,+∞)解析 ∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a . 要使f (x )在(-1,1)上是减少的, 则f ′(x )≤0在x ∈(-1,1)上恒成立, 则3x 2-a ≤0,即a ≥3x 2在x ∈(-1,1)上恒成立, 在x ∈(-1,1)上,3x 2<3,即a ≥3, ∴a 的取值范围为[3,+∞).11.定义在R 上的函数f (x )满足f (1)=1,f ′(x )<2,则满足f (x )>2x -1的x 的取值范围是________. 答案 (-∞,1)解析 令g (x )=f (x )-2x +1, 则g ′(x )=f ′(x )-2<0, 又g (1)=f (1)-2×1+1=0,当g (x )>g (1)=0时,x <1,∴f (x )-2x +1>0, 即f (x )>2x -1的解集为(-∞,1). 三、解答题12.求下列函数的单调区间. (1)f (x )=x 2-ln x ; (2)f (x )=e xx -2.解 (1)函数f (x )的定义域为(0,+∞).f ′(x )=2x -1x =(2x -1)(2x +1)x .因为x >0,所以2x +1>0, 由f ′(x )>0,解得x >22, 所以函数f (x )的递增区间为(22,+∞); 由f ′(x )<0,解得x <22, 又x ∈(0,+∞),所以函数f (x )的递减区间为(0,22). (2)函数f (x )的定义域为(-∞,2)∪(2,+∞), f ′(x )=e x (x -2)-e x (x -2)2=e x (x -3)(x -2)2.因为x ∈(-∞,2)∪(2,+∞), 所以e x >0,(x -2)2>0. 由f ′(x )>0,解得x >3,所以函数f (x )的递增区间为(3,+∞); 由f ′(x )<0,解得x <3, 又x ∈(-∞,2)∪(2,+∞),所以函数f (x )的递减区间为(-∞,2)和(2,3).13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,求实数m 的取值范围. 解 f ′(x )=3x 2+2x +m ,由于f (x )是R 上的单调函数, 所以f ′(x )≥0或f ′(x )≤0恒成立. 由于导函数的二次项系数3>0, 所以只能有f ′(x )≥0恒成立.方法一 由上述讨论可知要使f ′(x )≥0恒成立, 只需使方程3x 2+2x +m =0的判别式Δ=4-12m ≤0, 故m ≥13.经检验,当m =13时,只有个别点使f ′(x )=0,符合题意.所以实数m 的取值范围是m ≥13.方法二 3x 2+2x +m ≥0恒成立, 即m ≥-3x 2-2x 恒成立.设g (x )=-3x 2-2x =-3(x +13)2+13,易知函数g (x )在R 上的最大值为13,所以m ≥13.经检验,当m =13时,只有个别点使f ′(x )=0,符合题意.所以实数m 的取值范围是m ≥13.四、探究与拓展14.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式f ′(x )x<0的解集为________.答案 (-3,-1)∪(0,1)解析 由图知,当x ∈(-∞,-3)∪(-1,1)时, f ′(x )<0,当x ∈(-3,-1)∪(1,+∞)时,f ′(x )>0, 故不等式f ′(x )x<0的解集为(-3,-1)∪(0,1).15.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图像如图,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间(1,m +12)上是单调函数,求实数m 的取值范围.解 (1)由已知,h ′(x )=2ax +b ,其图像为直线,且过(0,-8),(4,0)两点, 把两点坐标代入h ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧ 2a =2,b =-8, 解得⎩⎪⎨⎪⎧a =1,b =-8,∴h (x )=x 2-8x +2,h ′(x )=2x -8, ∴f (x )=6ln x +x 2-8x +2.(2)∵f ′(x )=6x +2x -8=2(x -1)(x -3)x (x >0).∴当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的递增区间为(0,1)和(3,+∞), f (x )的递减区间为(1,3).要使函数f (x )在区间(1,m +12)上是单调函数,则⎩⎨⎧1<m +12,m +12≤3,解得12<m ≤52.即实数m 的取值范围为(12,52].。
1.5.1曲边梯形的面积学习目标 1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.知识点曲边梯形的面积思考1如何计算下列两图形的面积?答案①直接利用梯形面积公式求解.②转化为三角形和梯形求解.思考2如图,为求由抛物线y=x2与直线x=1,y=0所围成的平面图形的面积S,图形与我们熟悉的“直边图形”有什么区别?答案已知图形是由直线x=1,y=0及y=x2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段.梳理(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①所示).(2)求曲边梯形面积的方法将已知区间[a,b]等分成n个小区间,当分点非常多(n很大)时,可以认为f(x)在小区间上几乎没有变化(或变化非常小),从而可以取小区间内任意一点x i对应的函数值f(x i)作为小矩形一边的长.于是,可用f (x i )Δx 来近似表示小曲边梯形的面积,这样,和式f (x 1)Δx +f (x 2)Δx +…+f (x n )Δx 表示了曲边梯形面积的近似值.(如图②所示)(3)求曲边梯形面积的步骤:①分割.②以直代曲.③作和.④逼近.类型一 求曲边梯形的面积例1 求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积.解 (1)分割把区间[0,1]等分成n 个小区间:[0,1n ],[1n ,2n ],…,[i -1n ,i n ],…,[n -1n ,n n ],简写作[i -1n ,in](i =1,2,…,n ). 每个小区间的长度为Δx =i n -i -1n =1n .过各区间端点作x 轴的垂线,从而得到n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS i ,…,ΔS n . (2)以直代曲用小矩形面积近似代替小曲边梯形面积,在小区间[i -1n ,in ]上任取一点ξi (i =1,2,…,n ),为了计算方便,取ξi 为小区间的左端点,用f (ξi )的相反数-f (ξi )=-(i -1n )·(i -1n -1)为其一边长,以小区间长度Δx =1n 为另一边长的小矩形对应的面积近似代替第i 个小曲边梯形面积.(3)作和ΔS i ≈-f (ξi )Δx =-(i -1n )(i -1n -1)·1n (i =1,2,…,n ).S =∑i =1nΔS i ≈-∑i =1nf (ξi )Δx=∑i =1n[-(i -1n )(i -1n -1)]·1n=-1n 3[02+12+22+…+(n -1)2]+1n 2[0+1+2+…+(n -1)]=-1n 3·16n (n -1)(2n -1)+1n 2·n (n -1)2=--n 2+16n 2=-16(1n 2-1). (4)逼近当分割无限变细,即Δx →0(亦即n →+∞)时,-16(1n 2-1)→S ,即当n →+∞时,有S =16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积为16.反思与感悟 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→以直代曲→作和→逼近. (3)关键:以直代曲.(4)结果:分割越细,面积越精确. (5)求和时可用到一些常见的求和公式,如 1+2+3+…+n =n (n +1)2;12+22+32+…+n 2=n (n +1)(2n +1)6;13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.跟踪训练1 求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.解 ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S 阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =x 2(x ≥0),y =4, 得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2]n 等分, 则Δx =2n ,取ξi =2(i -1)n .(2)以直代曲、作和 ΔS i ≈[2(i -1)n ]2·2n ,S ≈∑i =1n[2(i -1)n ]2·2n=8n 3[02+12+22+32+…+(n -1)2] =83(1-1n )(1-12n ). (3)逼近 当n →+∞时, 83(1-1n )(1-12n )→83. ∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的曲边梯形的面积为323.类型二 求变速运动的路程例2 当汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =v t .如果汽车做变速直线运动,在时刻t 的速度为v (t )=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少?解 将区间[1,2]等分成n 个小区间, 第i 个小区间为[1+i -1n ,1+in ].所以Δs i =v (1+i -1n )·1n .s n =∑ni =1Δs i≈∑ni =1v (1+i -1n )1n=1n ∑ni =1[(1+i -1n)2+2] =1n ∑n i =1[(i -1)2n 2+2(i -1)n+3] =1n {3n +1n 2[02+12+22+…+(n -1)2]+1n [0+2+4+6+…+2(n -1)]} =3+(n -1)(2n -1)6n 2+n -1n .当n →+∞时,3+(n -1)(2n -1)6n 2+n -1n →133.所以s =132,所以这段时间行驶的路程为133km. 引申探究本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?解 将区间[1,2]等分成n 个小区间,第i 个小区间为[1+i -1n ,1+i n ].所以Δs i ≈v (1+i n )·1n .s n =∑ni =1Δs i≈∑ni =1v (1+i n )1n =3+1n 3[12+22+…+(n -1)2+n 2]+1n 2[2+4+6+…+2(n -1)+2n ]=3+(n +1)(2n +1)6n 2+n +1n .当n →+∞时,3+(n +1)(2n +1)6n 2+(n +1)n →133.所以s =133,所以这段时间行驶的路程为133km. 所以分别用小区间的两个端点求出的行驶路程是相同的.反思与感悟 求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、以直代曲、作和、逼近.应特别注意变速直线运动的时间区间.跟踪训练2 一辆汽车在笔直的公路上变速行驶,设汽车在时刻t 的速度为v (t )=-t 2+5(t 的单位:h ,v 的单位:km/h),试计算这辆汽车在0≤t ≤2这段时间内汽车行驶的路程s (单位:km). 解 ①分割在时间区间[0,2]上等间隔地插入(n -1)个分点,将区间分成n 个小区间,记第i 个小区间为[2(i -1)n ,2i n ](i =1,2,…,n ),Δt =2i n -2(i -1)n =2n ,把汽车在时间段[0,2n ],[2n ,4n ],…,[2(n -1)n ,2]上行驶的路程分别记为Δs 1,Δs 2,…,Δs n ,则有s =∑i =1nΔs i .②以直代曲取ξi =2in (i =1,2,…,n ),Δs i ≈v (2i n )·Δt =[-(2i n )2+5]·2n=-4i 2n 2·2n +10n (i =1,2,…,n ).③作和s n =∑i =1nΔs i ≈∑i =1n[-4i 2n 2·2n +10n ]=-4×12n 2·2n -4×22n 2·2n -…-4×n 2n 2·2n +10=-8n 3[12+22+…+n 2]+10=-8n 3·n (n +1)(2n +1)6+10=-8·13(1+1n )(1+12n )+10.④逼近当n →+∞时,s =223.因此,行驶的路程为223km.1.把区间[1,3]n 等分,所得n 个小区间的长度均为________. 答案 2n解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n.2.若1N 的力能使弹簧伸长2cm ,则使弹簧伸长12cm 时,克服弹力所做的功为________. 答案 0.36J3.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为________. 答案 124.直线y =0,x =1,x =2,曲线y =x 2围成的曲边梯形的面积为________. 答案 735.求由直线x =0,x =1,y =0及曲线f (x )=12x 2所围成的图形的面积.解 (1)分割将区间[0,1]等分成n 个小区间:[0,1n ],[1n ,2n ],…,[i -1n ,i n ],…,[n -1n ,1],每个小区间的长度为Δx =1n.过各区间端点作x 轴的垂线,将曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)以直代曲在区间[i -1n ,i n ]上,用i -1n 处的函数值12(i -1n )2作为高,以小区间的长度Δx =1n 作为底边长的小矩形的面积近似代替第i 个小曲边梯形的面积,即ΔS i ≈12(i -1n )2·1n .(3)作和曲边梯形的面积为 S =∑ni =1ΔS i ≈12∑n i =1 (i -1n )2·1n=0·1n +12·(1n )2·1n +12·(2n )2·1n +…+12·(n -1n )2·1n =12n 3[12+22+…+(n -1)2]=16(1-1n )(1-12n ). (4)逼近 当n →+∞时, 16(1-1n )(1-12n )→16. 即曲边梯形的面积为16.1.求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n 等分区间[a ,b ]. (2)以直代曲:取点ξi ∈[x i -1,x i ]. (3)作和:∑i =1nf (ξi )·b -an .(4)逼近:当n →+∞时,∑i =1nf (ξi )·b -an →S .“以直代曲”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点). 2.变速运动的路程,变力做功等问题可转化为曲边梯形面积问题.课时作业一、填空题1.当n 很大时,函数f (x )=x 2在区间[i -1n ,in ]上的值,可以近似代替为________.答案 f (in)2.在求由曲线y =1x 与直线x =1,x =3,y =0所围成图形的面积时,若将区间n 等分,并用每个区间的右端点的函数值近似代替每个小曲边梯形的高,则第i 个小曲边梯形的面积ΔS i ≈________. 答案2n +2i解析 每个区间的长度为2n ,第i 个小曲边梯形的高为11+2i n,∴第i 个小曲边梯形的面积为2n ×11+2i n=2n +2i.3.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是________. 答案 194.把区间[a ,b ](a <b )n 等分之后,第i 个小区间是________. 答案 [a +i -1n (b -a ),a +in(b -a )]解析 区间[a ,b ](a <b )长度为(b -a ),n 等分之后, 每个小区间长度均为b -an,所以第i 个小区间是[a +i -1n (b -a ),a +in(b -a )](i =1,2,…,n ).5.在区间[0,8]上插入9个等分点之后,则所分的小区间长度Δx =________,第5个小区间是________. 答案 0.8 [3.2,4]6.在求由x =a ,x =b (a <b ),y =f (x ) (f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入(n -1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是________. ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定. 答案 1解析 只有④正确.7.若做变速直线运动的物体v (t )=t 2,在0≤t ≤a 内经过的路程为9,则a 的值为________. 答案 3解析 将区间[0,a ]n 等分,记第i 个区间为[a (i -1)n ,ai n ](i =1,2,…,n ),此区间长为an,用小矩形面积(ai n )2·a n 近似代替相应的小曲边梯形的面积,则∑ni =1 (ai n)2·a n =a 3n 3·(12+22+…+n 2)=a 33(1+1n )(1+12n )近似地等于速度曲线v (t )=t 2与直线t =0,t =a ,t 轴围成的曲边梯形的面积.当n →+∞时,a 33(1+1n )(1+12n )→9,∴a 33=9,解得a =3. 8.∑ni =1i n =________. 答案n +12解析 ∑ni =1i n =1n(1+2+…+n )=1n ·n (n +1)2=n +12.9.已知某物体运动的速度v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________. 答案 55解析 ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.10.当n 很大时,可以代替函数f (x )=x 2在区间[i -1n ,in ]上的值有________个.①f (1n );②f (i n );③f (i -1n );④f (i n -12n ).答案 3解析 因为当n 很大时,区间[i -1n ,i n ]上的任意的取值都可以代替,又1n ∉[i -1n ,i n ],i -1n ∈[i -1n ,i n ],i n ∈[i -1n ,i n ],i n -12n ∈[i -1n ,i n],故能代替的有②③④. 11.直线x =0,x =2,y =0与曲线y =x 2+1围成曲边梯形,将区间[0,2]五等分,按照区间左端点和右端点估计曲边梯形面积分别为________、________. 答案 3.92 5.52解析 分别以小区间左、右端点的纵坐标为高,求所有小矩形面积之和. S 1≈(02+1+0.42+1+0.82+1+1.22+1+1.62+1)×0.4=3.92; S 2≈(0.42+1+0.82+1+1.22+1+1.62+1+22+1)×0.4=5.52. 二、解答题12.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少? 解 (1)分割在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,记第i 个小区间为[2(i -1)n ,2i n ](i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2n .每个时间段上行驶的路程记为Δs i (i=1,2,…,n ). (2)以直代曲取ξi =2in (i =1,2,…,n ),显然有Δs i ≈v (2i n )·Δt =[3(2i n )2+2]·2n=24i 2n 3+4n (i =1,2,…,n ).(3)作和s n =∑i =1nΔs i ≈i =1n (24i 2n 3+4n )=24n 3(12+22+…+n 2)+4 =24n 3·n (n +1)(2n +1)6+4=8(1+1n )(1+12n)+4. (4)逼近当n →+∞时,8(1+1n )(1+12n)+4→12. 所以这段时间内行驶的路程为12km.13.如图所示,求直线x =0,x =3,y =0与二次函数f (x )=-x 2+2x +3所围成的曲边梯形的面积.解 (1)分割如图,将区间[0,3]n 等分,则每个小区间[3(i -1)n ,3i n ](i =1,2,…,n )的长度为Δx =3n.分别过各区间端点作x 轴的垂线,把原曲边梯形分成n 个小曲边梯形.(2)以直代曲以每个小区间的左端点函数值为高作n 个小矩形.则当n 很大时,用n 个小矩形面积之和近似代替曲边梯形的面积S .(3)作和S ≈∑ni =1f (3(i -1)n )Δx =∑n i =1[-9(i -1)2n 2+2×3(i -1)n +3]×3n =-27n 3[12+22+…+(n -1)2]+18n 2[1+2+3+…+(n -1)]+9 =-27n 3×(n -1)n (2n -1)6+18n 2×n (n -1)2+9=-9(1-1n )(1-12n )+9(1-1n)+9. (4)逼近当n →+∞时,-9(1-1n )(1-12n )+9(1-1n)+9→9. 即所求曲边梯形面积为9.。
第1章导数及其应用【学习目标】1•能利用导数定义,求几个常见函数的导数,领悟求导数算法的基本思想 2牢 记常见函数的导数公式, 并能应用公式求基本初等函数的导数 .3•掌握函数y = a x (a > 0, 1) 与y = log a x(a >0, 1)的求导公式及应用.问题导学L2导数的运算1. 2.1常见函数的导数新知探究点点落实牛亍击破题型探究类型二利用导数公式解决切线有关问题例2 ⑴已知P, Q为抛物线y = 1x2上两点,点P, Q横坐标分别为4,—2,过P, Q分别作抛物线的切线,两切线交于点A,则点A的坐标为__________ .(2) 已知两条曲线y= sin x, y= cos x,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直?并说明理由.反思与感悟(1)利用导数的几何意义解决切线问题的两种情况:①若已知点是切点,则在该点处的切线斜率就是该点处的导数.②若已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解.(2)求过点P与曲线相切的直线方程的三个步骤:跟踪训练2 已知函数y= kx是曲线y= In x的一条切线,则k= ______________类型三利用导数公式求最值问题例3求抛物线y= x2上的点到直线x—y—2= 0的最短距离.反思与感悟利用基本初等函数的求导公式,可求其图象在某一点P(X o, y o)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关. 解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算.跟踪训练3已知直线I: 2x —y+ 4= 0与抛物线y= x2相交于A、B两点,0是坐标原点,试求与直线I平行的抛物线的切线方程,并在弧AOB上求一点卩,使厶ABP的面积最大.达标检测 1 2其中正确的结论有_________ 个.2. ___________________________________ 已知函数f(x)=QX,贝U f (3)= .3. _______ 设正弦曲线y= sin x上一点P,以点P为切点的切线为直线I,则直线I的倾斜角的范围是__________ .4•曲线y= e x在点(2, e2)处的切线与坐标轴所围三角形的面积为_______________ .( -------- 规律与方法■■----------------- )1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式•解题时,能认真观察函数的结构特征,积极地进行联想化归.2•有些函数可先化简再应用公式求导.如求y= 1 —2sin%的导数.因为y= 1 —2sin%= cos x,所以y,= (cos x),= —sin x.3. 对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.提醒:完成作业 1.2.11下列结论: (1)若y= cos x,贝U y'=—sin x;⑵若y= x,则y'=2 2⑶若f(x)=子,则f‘⑶=—27;(4)若y= e,则y'= y.问题导学 知识点一 思考1由导数的几何意义可得:思考 2 f ' (x)= (x n )z = nx n 1.知识点二 思考1不正确•因为cos 許于为常数,其导数为0.In x , 1, 1 1 1 思考 2 (log a x)=(肩)=扃(In x)=扃厂 x -^xcos x — sin x a In a题型探究2例 1 解(1)y '=(缶)'=(x 5)'-1=i xn(2) ■/ y = sin(x + 2)= cos x ,y ' = (cos x) ' =— sin x.x x (3) ■/ y = 2sin ?cos ?= sin x ,y ' = (sin x) ' = cos x.2(4) ■/ y = log 1 x — log 丄 x = log 丄 x ,2 2 21 1•-y =(log i x )=「=—而.2 xln 23跟踪训练 1 解(1)y ' = (xx) ' = (x^)x 1 x⑵•/ y = 2- =(2),• y '=【(切'=($ • n 21 x=—(2)ln 2. 答案精析y '= (kx + b)' = k. 1 3 2 2x(3) ■/ y= cos2| —sin°2= cos x,• y' = (cos x)' =—sin x.例 2 (1)(1 , - 4) (2)解设存在一个公共点(x o, y o)使两曲线的切线垂直,则在点(x o, y o)处的切线斜率分别为k i = cos x o, k2 = - sin x o,要使两切线垂直, 必须k i k2 = cos x o(—sin x o)=- 1,即sin 2x o = 2,这是不可能的.•••两条曲线不存在公共点,使在这一点处的两条切线互相垂直.1跟踪训练2丄e例3解设切点坐标为(x o, x o),依题意知与直线x —y—2= 0平行的抛物线y= x2的切线的切点到直线x—y—2= 0的距离最短.,2 1 y' = (x )' = 2x, •- 2x o= 1, •- x o=孑,知识点一幕函数与一次函数的导数思考1由导数的几何意义能否确定 y = kx + b(k z 0)的导数.思考2根据x '= 1, (x 2),= 2x , (xjx 「2以及 扇+能归纳出幕函数f(x)= x n 的导数公式吗?1. (kx + b)'= k(k , b 为常数),特别地,C '= 0(C 为常数).2. (X ),= aX .知识点二基本初等函数的求导公式思考1计算过程(cos n ' =— sin n=— * 1正确吗?思考2如何利用(ln x)'推出(log a x) ' ?类型一基本初等函数求导公式的应用例1求下列函数的导数:(1) y =皈;(2)y = sin(x + 勺;X X /八 1 2 .(3)y = 2sin 2cos 2; (4)y = log 1 x — log 1 x.2 2•切点坐标为(1, 1),•••所求的最短距离1 1 c —-—2 2 4 2 7,2 8 .跟踪训练3解 设P(x o , y o )为切点,过点P 与AB 平行的直线斜率k = y ' = 2x o , • k = 2x o =2, - - x o = 1 , y o = 1.故可得P(1,1),•切线方程为2x — y — 1 = o. 由于直线I: 2x — y + 4= o 与抛物线y = x 2相交于A 、B 两点,为定值,要使 △ ABP 的面 积最大,只要 P 到AB 的距离最大,故 P(1,1)点即为所求弧 AOB 上的点,使△ ABP 的面积 最大.达标检测'■J 3 n 3 n121. 3 2肓 3.[0, 4] U [匸,n 4尹反思与感悟(1)基本初等函数的求导公式是解决求函数导数问题的基本工具,适当变形, 恰当选择公式,准确套用公式是解决此类问题的关键.(2) 不能直接求导的函数,应先对原函数变形化简,然后再求导运算.跟踪训练1求下列函数的导函数:(1) y= x G;(2)y= 2—x; (3)y= cos;—sin%。
学习目标 会利用导数讨论函数的单调性、极值、最值(多项式次数不超过三次).知识点一 函数的单调性与其导数的关系 定义在区间(a ,b )内的函数y =f (x )知识点二 求函数y =f (x )解方程f ′(x )=0,当f ′(x 0)=0时,(1)如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值. (2)如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. 知识点三 函数y =f (x )在[a ,b ]上最大值与最小值的求法 1.求函数y =f (x )在(a ,b )上的极值.2.将第(1)步中求得的极值与f (a ),f (b )比较,得到f (x )在区间[a ,b ]上的最大值与最小值.类型一 函数的单调性与导数例1 (1)f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )≤0,对任意正数a ,b ,若a <b ,则必有________(填序号). ①af (b )<bf (a );②bf (a )<af (b ); ③af (a )<bf (b );④bf (b )<af (a ).(2)已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.反思与感悟(1)关注函数的定义域,单调区间应为定义域的子区间.(2)已知函数在某个区间上的单调性时转化要等价.(3)分类讨论求函数的单调区间实质是讨论不等式的解集.(4)求参数的范围时常用到分离参数法.跟踪训练1(1)已知f(x)=x3+ax2-a2x+2.①若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;②若a≠0,求函数f(x)的单调区间.(2)已知f(x)=e x-ax-1.①求f(x)的单调增区间;②若f(x)在定义域R内单调递增,求a的取值范围.类型二利用导数求函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.反思与感悟 (1)已知极值点求参数的值后,要回代验证参数值是否满足极值的定义. (2)讨论极值点的实质是讨论函数的单调性,即f ′(x )的正负.跟踪训练2 若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________. 类型三 利用导数求函数的最值例3 已知函数f (x )=x 3+ax 2+b 的图象上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值.反思与感悟 求函数的最值的方法步骤: (1)求f (x )在(a ,b )上的极值.(2)将f (x )的各极值与f (a ),f (b )比较得出函数f (x )在[a ,b ]上的最值.跟踪训练3 已知函数f (x )=x 3-32ax 2+b ,且a ,b 为实数,1<a <2,若f (x )在区间[-1,1]上的最大值与最小值分别为1,-2,则a =________,b =________. 类型四 利用导数证明不等式例4 已知函数f (x )=12x 2-a ln x (a ∈R ).(1)求f (x )的单调区间;(2)当x >1时,12x 2+ln x <23x 3是否恒成立,并说明理由.反思与感悟 利用导数解决不等式问题(如:证明不等式,比较大小等),其实质就是利用求导数的方法研究函数的单调性,而证明不等式(或比较大小)常与函数最值问题有关.因此,解决该类问题通常是构造一个函数,然后考查这个函数的单调性,结合给定的区间和函数在该区间端点的函数值使问题得以求解.跟踪训练4 证明:当x ∈[-2,1]时,-113≤13x 3-4x ≤163.1.若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是________. 2.设f (x )、g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,下面关系正确的是________(填序号). ①f (x )g (x )>f (b )g (b ); ②f (x )g (a )>f (a )g (x ); ③f (x )g (b )>f (b )g (x ); ④f (x )g (x )>f (a )g (a ).3.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )<0的解集为________.4.已知函数f (x )=x 3-12x 2-2x +5,若对于任意x ∈[-1,2],都有f (x )<m ,则实数m 的取值范围是________________.导数作为一种重要的工具,在研究函数中具有重要的作用,例如函数的单调性、极值与最值等问题,都可以通过导数得以解决.不但如此,利用导数研究得到函数的性质后,还可以进一步研究方程、不等式等诸多代数问题,所以一定要熟练掌握利用导数来研究函数的各种方法.提醒:完成作业 习题课答案精析问题导学 知识点一 增 减 知识点二(1)f ′(x )>0 f ′(x )<0 (2)f ′(x )<0 f ′(x )>0 题型探究 例1 (1)①解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,∵xf ′(x )-f (x )≤0,∴g ′(x )≤0. 则g (x )在(0,+∞)上单调递减. 若a <b ,则g (a )>g (b ),即f (a )a >f (b )b ,得bf (a )>af (b ).(2)解 由题意知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0即0<a <22时,对一切x >0都有f ′(x )>0,此时f (x )是(0,+∞)上的单调递增函数. ②当Δ=0即a =22时,仅对x =2,有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )也是(0,+∞)上的单调递增函数.③当Δ>0即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x )、f (x )的变化情况如下表:此时+∞)上单调递增.综上所述,当0<a ≤22时,f (x )在(0,+∞)上单调递增区;当a >22时,f (x )在(0,a -a 2-82),(a +a 2-82,+∞)上单调递增,在(a -a 2-82,a +a 2-82)上单调递减.跟踪训练1 解 (1)①∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴k =f ′(1)=4, 又f (1)=3,∴切点坐标为(1,3), ∴所求切线方程为y -3=4(x -1), 即4x -y -1=0.②f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ), 由f ′(x )=0,得x =-a 或x =a3,当a >0时,由f ′(x )<0,得-a <x <a 3;由f ′(x )>0,得x <-a 或x >a3,此时f (x )的单调递减区间为(-a ,a 3),单调递增区间为(-∞,-a )和(a3,+∞).当a <0时,由f ′(x )<0,得a 3<x <-a ;由f ′(x )>0,得x <a3或x >-a ,此时f (x )的单调递减区间为(a 3,-a ),单调递增区间为(-∞,a3)和(-a ,+∞).综上,当a >0时,f (x )的单调递减区间为(-a ,a 3),单调递增区间为(-∞,-a ),(a3,+∞);当a <0时,f (x )的单调递减区间为(a 3,-a ),单调递增区间为(-∞,a3),(-a ,+∞).(2)①∵f (x )=e x -ax -1, ∴f ′(x )=e x -a . 令f ′(x )≥0,得e x ≥a ,当a ≤0时,有f ′(x )>0在R 上恒成立; 当a >0时,有x ≥ln a .综上所述:当a ≤0时,f (x )的单调增区间为(-∞,+∞);当a >0时,f (x )的单调增区间为[ln a ,+∞).②∵f (x )=e x -ax -1,∴f ′(x )=e x -a . ∵f (x )在R 上单调递增,∴f ′(x )=e x -a ≥0恒成立,即a ≤e x ,x ∈R 恒成立, ∵x ∈R 时,e x ∈(0,+∞),∴a ≤0. 例2 解 (1)由f (x )=x -1+ae x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0恒成立,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 所以f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值. 跟踪训练2 [1,32)例3 解 (1)因为f ′(x )=3x 2+2ax , 曲线在P (1,0)处的切线斜率为f ′(1)=3+2a , 即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2. 所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2,得f ′(x )=3x 2-6x . 由f ′(x )=0得,x =0或x =2.①当0<t <2时,在区间(0,t )上f ′(x )<0,f (x )在[0,t ]上是减函数, 所以f (x )max =f (0)=2,f (x )min =f (t )=t 3-3t 2+2.②当2≤t <3时,当x 变化时,f ′(x )、f (x )的变化情况如下表:f (x )min =f (2)max f (t )-f (0)=t 3-3t 2=t 2(t -3)<0. 所以f (x )max =f (0)=2.综上,当0<t <2时,f (x )max =f (0)=2,f (x )min =f (t )=t 3-3t 2+2; 当2≤t <3时,f (x )max =f (0)=2,f (x )min =f (2)=-2. 跟踪训练3 431例4 解 (1)f ′(x )=x -a x =x 2-ax(x >0).当a ≤0时,f (x )的单调递增区间为(0,+∞),当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上,当a ≤0时,f (x )的单调递增区间为(0,+∞);当a >0时,f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ). (2)当x >1时,12x 2+ln x <23x 3恒成立,令g (x )=23x 3-12x 2-ln x ,g ′(x )=2x 2-x -1x =2x 3-x 2-1x =2x 3-2x 2+x 2-1x=(x -1)(2x 2+x +1)x,当x >1时,g ′(x )>0,故g (x )在(1,+∞)上递增, ∴g (x )>g (1)>0, ∴23x 3-12x 2-ln x >0, 即12x 2+ln x <23x 3在x ∈(1,+∞)上恒成立. 跟踪训练4 证明 令f (x )=13x 3-4x ,x ∈[-2,1],则f ′(x )=x 2-4.因为x ∈[-2,1],所以f ′(x )≤0, 即函数f (x )在区间[-2,1]上单调递减.故函数f (x )在区间[-2,1]上的最大值为f (-2)=163,最小值为f (1)=-113.所以,当x ∈[-2,1]时,-113≤f (x )≤163,即-113≤13x 3-4x ≤163成立.达标检测 1.⎣⎡⎭⎫13,+∞ 2.③ 3.(-∞,0)∪(12,2) 4.(7,+∞)。