基于ANSYS的边坡开挖模拟
- 格式:pdf
- 大小:138.00 KB
- 文档页数:2
第4章ANSYS边坡工程应用实例分析本章重点边坡工程概述ANSYS边坡稳固性分析步骤ANSYS边坡稳固性实例分析本章典型成效图4.1 边坡工程概述4.1.1 边坡工程边坡指地壳表部一切具有侧向临空面的地质体,是坡面、坡顶及其下部一定深度坡体的总称。
坡面与坡顶面下部至坡脚高程的岩体称为坡体。
倾斜的地面称为斜坡,铁路、公路建筑施工中,所形成的路堤斜坡称为路堤边坡;开挖路堑所形成的斜坡称为路堑边坡;水利、市政或露天煤矿等工程开挖施工所形成的斜坡也称为边坡;这些对应工程就称为边坡工程对边坡工程进行地质分类时,考虑了下述各点。
第一,按其物质组成,即按组成边坡的地层和岩性,能够分为岩质边坡和土质边坡(后者包括黄土边坡、砂土边坡、土石混合边坡)。
地层和岩性是决定边坡工程地质特点的差不多因素之一,也是研究区域性边坡稳固问题的要紧依据.其次,再按边坡的结构状况进行分类。
因为在岩性相同的条件下,坡体结构是决定边坡稳固状况的要紧因素,它直截了当关系到边坡稳固性的评判和处理方法。
最后,假如边坡差不多变形,再按其要紧变形形式进行划分。
即边坡类属的称谓顺序是:岩性—结构—变形。
边坡工程对国民经济建设有重要的阻碍:在铁路、公路与水利建设中,边坡修建是不可幸免的,边坡的稳固性严峻阻碍到铁路、公路与水利工程的施工安全、运营安全以及建设成本。
在路堤施工中,在路堤高度一定条件下,坡角越大,路基所占面积就越小,反之越大。
在山区,坡角越大,则路堤所需填方量越少。
因此,专门有必要对边坡稳固性进行分析,4.1.2 边坡变形破坏差不多原理4.1.2.1 应力分布状态边坡从其形成开始,就处于各种应力作用(自重应力、构造应力、热应力等)之下。
在边坡的进展变化过程中,由于边坡形状和结构的不断改变以及自然和人为营力的作用,边坡的应力状态也随之调整改变。
依照资料及有限元法运算,应力要紧发生以下变化:(1)岩体中的主应力迹线发生明显偏转,边坡坡面邻近最大主应力方向和坡而平行,而最小主应力方向则与坡面近于垂直,并开始显现水平方向的剪应力,其总趋势是由内向外增多,愈近坡脚愈高,向坡内逐步复原到原始应力状态。
本章首先对边坡工程进行了概述,然后介绍了ANSYS 模拟边坡稳定性分析的步骤,最后用实例详细介绍了ANSYS 进行边坡稳定性分析的全过程。
内容 提要 第4章 ANSYS 边坡工程应用实例分析本章重点边坡工程概述 ANSYS 边坡稳定性分析步骤ANSYS 边坡稳定性实例分析本章典型效果图4.1 边坡工程概述4.1.1 边坡工程边坡指地壳表部一切具有侧向临空面的地质体,是坡面、坡顶及其下部一定深度坡体的总称。
坡面与坡顶面下部至坡脚高程的岩体称为坡体。
倾斜的地面称为斜坡,铁路、公路建筑施工中,所形成的路堤斜坡称为路堤边坡;开挖路堑所形成的斜坡称为路堑边坡;水利、市政或露天煤矿等工程开挖施工所形成的斜坡也称为边坡;这些对应工程就称为边坡工程对边坡工程进行地质分类时,考虑了下述各点。
首先,按其物质组成,即按组成边坡的地层和岩性,可以分为岩质边坡和土质边坡(后者包括黄土边坡、砂土边坡、土石混合边坡)。
地层和岩性是决定边坡工程地质特征的基本因素之一,也是研究区域性边坡稳定问题的主要依据.其次,再按边坡的结构状况进行分类。
因为在岩性相同的条件下,坡体结构是决定边坡稳定状况的主要因素,它直接关系到边坡稳定性的评价和处理方法。
最后,如果边坡已经变形,再按其主要变形形式进行划分。
即边坡类属的称谓顺序是:岩性—结构—变形。
边坡工程对国民经济建设有重要的影响:在铁路、公路与水利建设中,边坡修建是不可避免的,边坡的稳定性严重影响到铁路、公路与水利工程的施工安全、运营安全以及建设成本。
在路堤施工中,在路堤高度一定条件下,坡角越大,路基所占面积就越小,反之越大。
在山区,坡角越大,则路堤所需填方量越少。
因此,很有必要对边坡稳定性进行分析,4.1.2 边坡变形破坏基本原理4.1.2.1 应力分布状态边坡从其形成开始,就处于各种应力作用(自重应力、构造应力、热应力等)之下。
在边坡的发展变化过程中,由于边坡形态和结构的不断改变以及自然和人为营力的作用,边坡的应力状态也随之调整改变。
隧道台阶法开挖的有限元模拟分析1.力学模型的建立岩体的性质是十分复杂的,在地下岩体的力学分析中,要全面考虑岩体的所有性质几乎是不可能的。
建立岩体力学模型,是将一些影响岩石性质的次要因素略去,抓住问题的主要矛盾,即着眼于岩体的最主要的性质。
在模型中,简化的岩体性质有强度、变形、还有岩体的连续性、各项同性及均匀性等。
考虑岩石的性质和变形特性,以及外界因素的影响,采用的模型有弹性、塑性、弹塑性、粘弹性、粘弹塑性等。
根据对隧道的现场调查及试验结果分析,围岩具有明显的弹塑性性质。
因此,根据隧道的实际情况,考虑岩体的弹塑性性质,在符合真实施工工序和支护措施的基础上,在数值模拟过程中将计算模型简化成弹塑性平面应变问题,采用Drucker—Prager屈服准则来模拟围岩的非线性并且不考虑其体积膨胀,混凝土材料为线弹性且不计其非线性变形。
对地下工程开挖进行分析,一般有两种计算模型:(1)“先开洞,后加载”在加入初始地应力场前,首先将开挖掉的单元从整体刚度矩阵中删除,然后对剩余的单元加入初始地应力场进行有限元计算。
(2)“先加载,后开洞”这种方法是首先在整个计算区域内作用地应力场,然后在开挖边界上施加反转力,经过有限元计算得到所需要的应力、位移等物理量。
两种方法对线弹性分析而言,所得到的应力场是相同的,而位移场是不同的,模型(2)(即:“先加载,后开洞”)更接近实际情况。
在实际地下工程开挖中部分岩体已进入塑性状态,必须用弹塑性有限元进行计算分析,而塑性变形与加载的路径有关,所以模拟计算必须按真实的施工过程进行,即在对地下工程开挖进行弹塑性数值模拟过程中,必须遵循“先加载,后开洞”的原则。
在有限元法中,求解非线性问题最常采用的方法是常刚度初应力法。
对于弹塑性问题,由于塑性变形不可恢复,应力和应变不再是一一对应的关系,即应力状态与加载路径有关,因此应该用增量法求解。
弹塑性应力增量与应变增量之间的关系可近似地表示为}{}]{[}]){[]([}{][}{0σεεεσd d D d D D d D d p ep +=-== (1) 式中,][D —弹性矩阵,][p D —塑性矩阵。
邮局订阅号:82-946360元/年技术创新软件时空《PLC 技术应用200例》您的论文得到两院院士关注基于CAD 与ANSYS 的FLAC 3D 边坡模拟分析The simulation analysis of slope by FLAC 3D based on CAD and ANSYS(辽宁工程技术大学)田树昆曹兰柱TIAN Shu-kun CAO Lan-zhu摘要:FLAC 3D 自带的FISH 语言虽然可以完成复杂模型的建立,但是需要耗费大量时间,同时采用FISH 语言生成复杂模型比较困难,因此提出了一种快速建模方法,即以AutoCAD 与ANSYS 为基础建立FLAC 3D 模型。
采用AutoCAD 及VBA 二次开发程序进行基础数据预处理,在ANSYS 中完成复杂模型建立、材料属性定义、网格划分,并通过ANSYS_TO_FLAC 3D 接口程序,实现FLAC 3D 复杂模型的快速建立。
通过露天矿边坡三维模型的建立与数值模拟分析,验证了该方法的快速性、有效性及可行性。
该方法是综合应用不同程序的优点解决复杂工程地质问题的典型范例。
关键词:数值分析;接口程序;模型转换中图分类号:TP391.9文献标识码:BAbstract:Although it can complete complex model by FISH which in FLAC 3D ,but need to spend a lot of time.At the same time gen -erate complex models using FISH difficult.Therefore,a rapid modeling method proposed.That is to establish model of FLAC 3D based on AutoCAD and ANSYS.The procedures which secondary development using AutoCAD and VBA be used to basic data pre-process -ing.The model established completed in ANSYS and distributes material property,meshing,thereby achieving the purpose of building the complicated model in FLAC 3D by using the interface program of ANSYS_TO_FLAC 3D .Then three -dimensional models of surface mining established and numerical simulation analysis and the case study shows that the fastness,effectiveness and feasibility,can be realized.The procedure gives an example to build complicated engineering geological model with the advantages of different programs.Key words:numerical analysis;interface program;model transformation文章编号:1008-0570(2010)11-3-0259-021引言FLAC 3D 是由美国Itasca 公司开发的有限差分软件,可以进行岩土和其他材料的三维结构受力分析,通过调整三维网格中的多面体单元来拟合实际结构,单元材料可采用线性或非线性本构模型。
基于ANSYS平台的FLAC3D顺层岩质高边坡开挖稳定性分析发布时间:2022-03-22T07:06:53.940Z 来源:《城镇建设》2021年9月25期作者:胡宣[导读] 文章运用FLAC3D有限差分软件中Mohr-Coulomb 本构模型对某场地顺层岩质高边坡分步开挖进行模拟,揭示坡体的整体变形和应力应变特征发展过程,对边坡开挖稳定性做出评价胡宣(中铁二十五局集团有限公司设计研究院广东广州511458)摘要:文章运用FLAC3D有限差分软件中Mohr-Coulomb 本构模型对某场地顺层岩质高边坡分步开挖进行模拟,揭示坡体的整体变形和应力应变特征发展过程,对边坡开挖稳定性做出评价。
结果表明坡脚和开挖临空面应力相对集中,自上而下开挖至第七级台阶处位移突增,边坡处于不稳定状态。
关键词:顺层岩质高边坡;ANSYS;FLAC3D ;稳定性分析1引言顺层岩质高边坡作为边坡的一种特殊形式,是很容易发生变形破坏的一种边坡类型,使得顺层岩质高边坡的失稳问题成为工程地质学和岩石力学领域内亟待解决的问题之一[1】。
FLAC3D数值模拟方法全面满足了静力许可、应变相容和应力、应变之间的本构关系。
同时,采用数值分析方法可以不受边坡不规则的几何形状和材料的不均匀性的限制,这是比较理想的分析边坡应力变形和稳定性的手段。
在运用FLAC3D对边坡进行稳定性数值模拟分析时,通常要对实体对象经过适当简化建立相应的三维计算模型。
然而FLAC3D 在前期处理建模以及网格划分方面却一直很不方便,特别是遇到地层比较复杂和边界不规则时,在创建模型时就十分困难,不易控制网格点数据,不能完全创建真实的地质模型[2】。
ANSYS可以自上而下直接建立实体模型,还可以通过自下而上依次生成点、线、面和体,从而创建真实的实体模型[4】。
对于创建好的实体模型的网格划分,ANSYS提供了功能强大的控制工具,比如单元大小和形状的控制、网格的划分类型以及网格的清除和细化[5]。
基于ANSYS的边坡开挖模拟
阎波;方云
【期刊名称】《山西建筑》
【年(卷),期】2008(034)001
【摘要】基于ANSYS软件对边坡的开挖进行了模拟分析,并对该过程中涉及到的生死单元、有限元强度折减法做了介绍,提出了用生死单元在建模过程中的优点,最后以工程算例做计算分析,计算了开挖边坡的稳定系数.
【总页数】2页(P93-94)
【作者】阎波;方云
【作者单位】中国地质大学,湖北,武汉,430074;中国地质大学(武汉)文化遗产和岩土文物保护工程中心,湖北,武汉,430074
【正文语种】中文
【中图分类】TU413.62
【相关文献】
1.运用 ANSYS 模拟边坡开挖并计算安全系数 [J], 贾正;涂兴怀
2.边坡的有限元分析及ANSYS软件对边坡开挖的模拟 [J], 魏海波;吴敏
3.基于ANSYS软件的边坡开挖模拟和稳定性评价 [J], 熊斌
4.边坡的有限元分析及ANSYS软件对边坡开挖的模拟 [J], 魏海波;吴敏
5.ANSYS有限元数值模拟在某开挖高边坡稳定性分析中的应用 [J], 许容;王辉因版权原因,仅展示原文概要,查看原文内容请购买。
基于ANSYS有限元软件的边坡稳定性分析摘要:随着计算力学、计算数学、工程管理学与计算机科学的快速发展,数值模拟的技术随之变得越来越成熟。
本文使用ANSYS有限元软件来模拟边坡,运用强度折减法,分析凝聚力和内摩擦角对边坡安全系数的影响,获得相应的位移云图。
把安全系数作为判断边坡稳定性的一个重要的指标,从而及时地发现和避免可能发生的滑坡、崩塌等自然灾害,尽可能地降低人民生命和财产的损失。
关键词:边坡;稳定性;有限元软件;数值模拟;强度折减法引言边坡是指地壳表面具有侧向临空面的地质体,由坡面、坡顶与其下方一定深度的岩土体构成。
边坡存在于大量的工程中,包括但不限于铁路、公路和水利工程等。
近年来,滑坡,泥石流,山体崩塌等灾害时有发生,严重危害了人民的生命及财产安全,给人们的生活造成了重大的威胁,边坡稳定成为社会各界广泛关注的一个问题。
不仅如此,边坡是否稳定会严重影响工程的施工安全、运营安全和建设成本,因此,边坡的稳定性有分析研究的充分必要。
运用数值模拟的方法研究边坡稳定性最早使用的就是有限元法,也是现在最常用的数值模拟方法。
有限元法充分考虑了介质的变形特征,能够正确地反应边坡的受力状态。
既能考虑到边坡沿软弱结构面破坏,还能分析边坡的整体稳定破坏。
1ANSYS有限元软件简介FEA(Finite Element Analysis)是一种高效的,常用的计算方法,它是将连续的对象离散化成若干个有限大小的单元体的集合,从而求解连续体的力学问题。
ANSYS有限元软件包含多中有限元分析类型,从简单的线性静态分析到复杂的非线性动态分析都能够进行计算求解。
2参数选取及计算模型建立2.1 选取背景参数本次数值模拟以国内某矿边坡为对象,采用有限元软件ANSYS分析该边坡结构在不同力学参数条件下的应力应变情况,并判断其稳定性。
边坡的材料属性如表1所示。
2.2 建立计算模型对于边坡这种纵向比较长的实体,计算模型可简化成平面应变问题,即认为边坡所受的外力不随Z轴变化,其在外力作用下所发生的位移和应变都只在自身平面内。