“大众”系列固定式丙烯亚胺检测仪
- 格式:doc
- 大小:786.00 KB
- 文档页数:11
大众汽车康采恩-零件设计任务书副驾驶气囊技术开发, 康采恩设计任务书: LAH.DUM.880.BASchneider, Ullrich / Gerstenberger, Michael /作者Havelka, Petr / Alsleben, Uwe / Linder, Leo / Bartels, Bettina 部门EKSR-2 / 1565电话35125手机传真5735125电子邮件*******************************第一版17.10.2008更改状态27.01.2014设计任务书版本 1.4分发者:Günther, Jan (K-BI-1/1)Bosch, Jens (EKSR)Meisel, Michael (I/EK-52)Alsleben, Uwe (SE/EK-50)Kucera, Miroslav (TKP)Miodek, Thomas (Porsche AG)Jähn, Norbert (NE-KC)[I: BT-LAH-941]更改文件目录1.前言1.1总要求2.总体项目指导准则2.1 对供应商的要求2.2 目标设定2.3 零件任务分配2.3.1 目标车辆2.3.2 零件使用地点及目标市场2.3.3 零件变体形式管理2.4 产品开发及供货范围2.4.1 技术变更2.5 报价范围2.6 产品开发流程2.6.1 时间进度及里程碑节点2.6.1.1 整体进度计划2.6.1.2 团队组织及任务分工2.6.1.3 待办事项清单(待定问题清单)2.6.2 项目跟踪的一些指标2.6.3 样件版本及样件数量2.6.4 型式实验及型式认证2.7 质量及可靠性2.7.1 质量管理理念2.7.2 风险管理(FMEA和FTA)2.8专业部门和具体项目对DMU数据模型的指导准则2.9 关于产品数据管理的技能要求3.项目管理及项目组织3.1 项目管理及项目组织规划中的责任划分3.2 文档管理3.2.1 样件信息文档3.2.2 数据交换3.2.2.1 数据环境设施4.系统环境4.1 功能性系统环境4.2 物理性系统环境4.2.1 标准件及重复件的使用4.3 系统布线图5.技术要求5.1 零件名称及零件号5.1.1 零件履历5.1.2 零件标签5.1.2.1可追溯性5.1.2.2 实验样件及模型样件5.1.2.3 批量样件及替代样件5.1.2.4 惰性模块5.2 结构框图及原理图5.3 功能5.3.1 功能描述5.3.1.1 气囊点爆充满时间5.3.1.2 气体发生器5.3.1.3 气袋5.3.1.4 气囊壳体5.3.1.5 气袋盖板5.3.1.6 仪表板5.3.2 操作错误5.3.3 紧急模式5.4 结构图5.5 控制器策略5.6 电特性要求5.6.1 接插头布置5.6.2 接地连接5.6.3 惰性模块结构5.7具体特征数据5.8 安全要求5.8.1 人员及乘员安全5.8.1.1 乘员保护指标5.8.1.2 OoP(假人离位实验)时乘员所受载荷5.8.1.3 假人坐姿的变换5.8.1.4 燃烧及起火隐患5.8.2 车辆安全5.9 代用模块以及未来模块改款5.10 重量目标5.11 安装5.11.1 安装点和安装位置5.11.2 装配策略5.11.3 几何轮廓5.11.4 公差5.12 模块造型及设计5.13 人机工程学5.13.1 外观及触觉效果5.13.2 声学5.13.3 搬运5.14 技术材料要求5.15 对介质的抗性及化学要求5.15.1 清洁度要求5.15.2 清洁5.15.3 耐腐蚀保护5.15.4 保护等级5.16 环境可持续性5.16.1 材料选型5.16.2 回收方案5.16.3 生态平衡5.17 机械要求5.17.1 负载能力5.17.2 振动载荷下的表现5.17.3 刚度及弹性强度5.17.4 扭曲及变形5.17.5 压力5.18 寿命5.19 总要求5.19.1 总要求描述5.20 气候要求5.21 服务要求5.22 运输保护5.23 物流要求5.23.1 运输法规评级5.23.2 包装5.23.3 JIT零件的批量供货及系统供货5.24 质量保证要求5.24.1 产品监控及过程监控5.24.2 缺陷件分析5.24.3 批量监控6.实验要求6.1 实验器材及辅料6.1.1 定位网格6.2实验完成及合格证明6.2.1 实验文档管理6.3 实验计划6.3.1启动HWZ(辅助模具)的实验认可矩阵(P-F/X-认可)6.3.2 启动SWZ(批量模具)的实验认可矩阵(B-F认可)6.3.2.1 “Module-only”点爆实验6.3.2.2 系统点爆实验(仪表板及气囊)6.3.2.3 针对3岁假人及6岁假人的OoP离位实验矩阵(仅针对北美)6.3.3 针对TE及Q车身的实验认可矩阵6.3.4 BMG认可实验矩阵6.3.4.1 模块点爆实验6.3.4.2系统点爆实验(仪表板及气囊)6.3.4.3 气囊模块牢固性验证实验矩阵(多次装配)6.3.4.4 气袋牢固性动态验证实验矩阵6.3.4.5针对3岁假人及6岁假人的OoP离位实验矩阵(仅针对北美)6.3.5 针对右侧驾驶位车型的认可实验矩阵(RL)6.3.6 针对气囊技术更改的认可实验矩阵6.4 测量6.4.1 飞溅物测量6.4.2 点爆噪音测量6.4.3 扩展实验测量6.4.4 耐久检验6.5 实验时的数据测量6.5.1 摄像及测量技术要求6.6 实验样件的特性6.7 操作状态6.8 数字模拟及仿真计算6.9 整车试验7.定义、概念及缩写7.1 定义7.2 缩写8.参考文档8.1 图纸、规划图、轮廓图;方案变种谱图8.1.1 几何描述、CAD数据质量要求8.1.2 图纸及数据要求8.1.2.1 草案设计8.1.2.2 结构设计8.1.3 针对外部公司的CAD要求8.2 技术标准8.3 型式认证实验、规则、法规、耗用实验8.3.1 法规8.3.2 规定及耗用实验8.4 设计任务书总揽8.4.1 文档优先级8.4.2 核对清单8.5 关于专利及许可证8.6 其它文档9.附件9.1 关于气囊台架实验数据的评价表9.2 实验数据(视频及照片)9.3 开发费用表格9.4 认可程序文档9.4.1 里程碑检查表9.4.2 认可程序文档9.5 关于副驾驶气囊模块的详细描述清单9.6 气囊模块评价清单1.前言[I: BT-LAH-4]该产品设计任务书的编制(BT-LAH)基于VDA产品要求规范(www.vda-qmc.de)的模块2内容,对产品开发提出了具体要求。
感谢您选择安帕尔“大众”系列固定式气体检测仪!为确保人身和系统安全,并使产品达到最佳性能,在产品安装、使用和维修前,请完全阅读和理解本手册中的内容,特别是警告和注意的事项。
警告固定式气体检测仪安装必须符合相关的国家标准。
▶为保证固定式气体检测仪整体的合格性,对固定式气体检测仪的任何操作,必须由受过专门培训的人员来执行;并且要确保遵循了当地的规章制度和现场的操作程序。
▶禁止在潜在危险环境下打开固定式气体检测仪机壳、替换或改装传感器;在固定式气体检测仪运行期间要保持装配紧密连接,打开固定式气体检测仪机壳前,必须断开固定式气体检测仪所有电气线路的连接。
▶为了保证漏电流安全和避免电磁波干扰,固定式气体检测仪必须可靠接地。
应确保同一气体监测系统下的所有固定式气体检测仪和气体报警控制主机的接地端相连并与大地可靠连接,不要各自连接到大地。
▶固定式气体检测仪的内部和外部各有一个接地点,内部接地点应优先作为设备接地,外部接地点只是补充的绑定连接;只有当地权威机构要求时,才可采用外部接地点。
提示▶固定式气体检测仪的安装位置请尽量远离大功率的设备,如电机,射频设备。
▶固定式气体检测仪的电源不要与大功率设备共用,因大功率设备的电源可能对固定式气体检测仪的正常工作造成影响。
▶固定式气体检测仪的电源线不要与高压线(如220VAC)布置在同一线槽,如现场无法避免,则必须分别选择屏蔽铠装线材,但仍有引起固定式气体检测仪工作异常的可能。
▶若安装在户外,则应注意外界因素的影响,如淋雨或浸水。
▶通常应记录固定式气体检测仪的安装位置,以及电缆的布线情况,以便于维护。
深圳市安帕尔科技有限公司真诚接受任何针对本说明书内容上的错误或遗漏而提出的批评指正。
目录1、产品简介及应用领域- ------------------------------------------- 42、产品特点--------------------------------------------------43、产品分类及型号定义-----------------------------------------------54、技术参数---------------------------------------------------- 65、产品结构------------------------------------------------8 5.1、总体结构介绍----------------------------------------- 8 5.2、主要部件结构--------------------------------------- 95.3、产品尺寸图--------------------------------------96、产品现场安装固定、现场布线、内部接线操作说明-------------------10 6.1、安装环境--------------------------------------------------10 6.2、安装位置---------------------------------------------10 6.3、固定式气体检测仪的安装方法--------------------------------11 6.4、不同信号输出仪表的信号传输距离及电缆选择------------------ 12 6.4.1、有线“大众”系列固定式气体检测仪--------------------- 12 6.4.2、其它说明----------------------------------------------- 13 6.5、“大众”系列无线固定式气体检测仪---------------------------14 6.6、固定式气体检测仪端子接线指导-------------------------------156.6.1、接线方法------------------------------------------------157、操作方式说明--------------------------------------------------16 7.1、遥控器使用操作说明-----------------------------------------167.2、仪表按键使用操作说明---------------------------------------178、检测仪使用操作说明--------------------------------------------- 17 8.1、开启设备----------------------------------------------------17 8.2、菜单功能介绍及使用说明--------------------------------------188.2.1、进入配置列表方法--------------------------------------- 188.2.2、配置列表操作详细说明----------------------------------- 19气体标定---------------------------------------------------- 19报警设置--------------------------------------------------23 通讯设置-------------------------------------------------24 恢复出厂------------------------------------------------24 时间设置-------------------------------------------------24 输出调节----------------------------------------25 密码设置---------------------------------------------25 其他设置----------------------------------------------258.3、工作状态说明---------------------------------------------- 269、检测仪标定操作说明----------------------------------------------289.1、气体标定的定义---------------------------------------------289.2、标定前注意事项------------------------------------ --------289.3、什么情况下需要标定-------------------------------- --------289.4、标定前的准备-----------------------------------------------289.5 、气体检测仪的零点标定--------------------------------------299.6、仪表的高点(或称目标点)标定流程-----------------------------30 9.6.1、单个高点标定流程---------------------------------------309.6.2、多级高点(或称目标点)标定流程---------------------------319.7标定结果测试------------------------------------------------3310、传感器更换及保养--------------------------------------- 3311、故障现象和排除-----------------------------------3412、责任限定------------------------------------------- 3413、附表----------------------------------------------------351、产品简介及应用领域“大众”系列固定式气体检测仪是安帕尔公司根据客户市场需求和多年行业应用经验推出的一款低价格、高性能、功能齐全的现场在线监测固定式气体检测仪。
Sci Pharm www.scipharm.atResearch articleDevelopment and Validation of aGas Chromatography Method for the Trace Level Determination of Allylamine inSevelamer Hydrochloride andSevelamer Carbonate Drug SubstancesRaju V. S. N. K ADIYALA * 1, Pavan Kumar S. R. K OTHAPALLI1, Madhava Reddy P EDDOLLA1, Pradeep R AJPUT1, Hemant Kumar S HARMA1, Shankar Reddy B UDETI1, Himabindu G ANDHAM2, Annapurna N OWDURI21 Aurobindo Pharma Ltd Research Centre-II, Survey No: 71 & 72, Indrakaran village, Sangareddy mandal, Medak district, 502329, Andhra Pradesh, India.2 Andhra University College of Engineering, Visakhapatnam-530003, Andhra Pradesh, India.* Corresponding author. E-mails: raju_kadiyala@ (R. V. S. N. Kadiyala),pavan_kothapalli@ (P. K. S. R. Kothapalli)Sci Pharm. 2014; 82: 117–128 doi:10.3797/scipharm.1309-12Published: November 14th 2013 Received: September 22nd 2013Accepted: November 14th 2013This article is available from: /10.3797/scipharm.1309-12© Kadiyala et al.; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.AbstractA capillary gas chromatography method using a flame ionization detector hasbeen developed for the trace analysis of allylamine (AA) in sevelamerhydrochloride (SVH) and sevelamer carbonate (SVC) drug substances.The method utilized a mega bore capillary column DB-CAM (30 m x 0.53 mm x1.0 µm) with a bonded and cross-linked, base-deactivated polyethylene glycolstationary phase and was validated for specificity, sensitivity, precision, linearity,and accuracy. The detection and quantitation limits obtained for allylamine were2 µg/g and 6 µg/g, respectively. The method was found to be linear in the rangebetween 6 µg/g and 148 µg/g with a correlation coefficient of 0.9990. Theaverage recoveries obtained in SVH and SVC were 93.9% and 99.1%,respectively. The developed method was found to be robust for thedetermination of AA in sevelamer drug substances and also the specificity wasdemonstrated with a gas chromatograph coupled with a mass spectrometer.118 R. V. S. N. Kadiyala et al.:KeywordsAllylamine • Sevelamer hydrochloride • Sevelamer carbonate • Gas chromatography with Flame ionization detectorIntroductionSevelamer is known as poly(allylamine) cross-linked with epichlorohydrin. Sevelamer is available in the form of hydrochloride salt as well as carbonate salt (sevelamer hydrochloride and sevelamer carbonate) and both are insoluble in water [1]. Sevelamer hydrochloride (SVH) was marketed as Renager® and sevelamer carbonate (SVC) was marketed as Renvela® respectably by the Genzyme Corporation. These are orally active drug substances which are used for the treatment of hyperphosphatemia. Sevelamer acts as a phosphate binder and it has been shown to decrease serum phosphate concentrations in patients with chronic kidney disease [2]. The chemical structures of sevelamer hydrochloride and sevelamer carbonate are shown in Figure 1.Sevelamer hydrochlorideSevelamer carbonateCl b acmClH 3NH 3N HN HNOHb acmHCO 3H 2NH 3NHN HNOHWhere in a,b = Number of primary amine groups (a + b = 9); c = Number of cross-linking groups (c = 1);m = Large number to indicate extended polymer networkFig. 1. Chemical structures of sevelamer hydrochloride and sevelamer carbonate.Poly(allylamine hydrochloride) is an intermediate in the synthetic process of SVH and SVC drug substances. In the preparation of poly(allylamine hydrochloride), allylamine (AA) is used as a key starting material, which is an unsaturated aliphatic amine, a colorless liquid, and chemically known as 3-amino-1-propene. It is potentially toxic and its oral LD 50 is 106 mg/kg for rats. The general toxic effects of the freebase forms are primarily related to irritation of the mucous membranes, whereas the relatively long history of experimental use of this chemical has emphasized its extraordinarily deleterious effects on the heart and vascular tissue [3]. Its acute toxicity is believed to be involved in the metabolism of AA to highly reactive acrolein. Because of its known toxic nature, the presence of residual AA in SVH and SVC drug substances should be controlled as per ICH (International Conference on Harmonization), Food and Drug Administration (FDA), and European Medicines Agency Guidelines (EMAG) [4–6].Development and Validation of a Gas Chromatography Method for the Trace Level Determination (119)Some of the analytical methods are already available in literature for the determination of AA and aliphatic amines. Recently, the United States Pharmacopeial forum has published a HPLC (High Pressure Liquid Chromatography) derivatization method (with sodium tetraborate solution) using a fluorescence detector [7] for the quantification of allylamine. An ion chromatography method with a conductivity detector was published for trace level determination of allylamine with the limit of detection and limit of quantitation values 2.7 and 9.0 µg/ml, respectively [8]. Kurt Andersson has reported the determination of a trace amount of n-propylamine, n-butylamine, and allylamine in air samples by an HPLC reversed-phase method with UV (Ultraviolet-visible) detection using 1-naphthyl isocyanate derivatives [9]. The determination of aliphatic amines in water by gas chromatography using headspace solvent microextraction was reported by Massoud Kaykhaii [10]. The quantification of residual aliphatic amines in oligonucleotides was reported on headspace gas chromatography (GC) [11]. The determination of short aliphatic amines in water by HPLC with chemiluminescence detection [12] was reported by S. Meseguer Lloret. Although different methods were reported in the literature for the determination of AA in different samples, this research paper describes a simple and sensitive GC method with a flame ionization detector (FID) for the quantification of AA in SVH and SVC drug substances with limit of detection and limit of quantitation values 0.3 and 1.0 µg/ml, respectively, which is more sensitive when compared with the ion chromatography (IC) method [8]. Considering a maximum daily dosage of 7.2 g per day of sevelamer drugs, any impurity in sevelamer drugs must be less than 0.05%, but 100 µg/g has been chosen as the specification level for this research work. The developed method was validated for specificity, sensitivity (limit of detection and limit of quantitation), linearity, precision (system precision, method precision, and intermediate precision), accuracy, and robustness in accordance with ICH Q2 (R1) / United States Pharmacopeia (USP) guidelines [13, 14].ExperimentalChemicals and ReagentsThe SVH and SVC drug substances were gifted by the Aurobindo Pharma Limited Research Centre (Hyderabad, India). Triethylamine and allylamine were purchased from Sigma-Aldrich (Steinheim, Germany). Analytical grade methylene chloride, chloroform, sodium carbonate, sodium hydroxide pellets, HPLC grade dimethyl sulfoxide, and water were procured from Merck chemicals (Mumbai, India). Sodium sulfate anhydrous was purchased from RFCL limited (New Delhi, India).Instrumentation for GC-FIDThe Agilent 7890A equipped with a flame ionization detector and a 7683B auto sampler was used in the research work. Data acquisition and processing were conducted using the EZ chrom software.Instrumentation for GC-MSThe Shimadzu GC coupled with a GCMS-QP 2010 plus mass detector (GC-MS) and a Combipal auto sampler was used in the research work. Data acquisition and processing were conducted using GCMS solution software.120 R. V. S. N. Kadiyala et al.:Operating Conditions for GC-FIDThe GC separation was carried out on a J&W Scientific DB-CAM column with dimensions of 30 m length, 0.53 mm I.D., and film thickness 1.0 μm with an injection volume of 2 μL. The oven temperature gradient was started at 70°C and held for 6 min. Then it was raised to 200°C at the rate of 20°C/min and held at 200°C for 7.5 min. Helium was used as a carrier gas with a constant flow rate of 5.33 ml/min with split mode 1:5. The injector temperature and the detector temperature were kept at 220°C and at 260°C, respectively.Operating Conditions for GC-MSThe J&W Scientific DB-CAM capillary column with a dimension of 30 m x 0.25 mm x 0.25 μm film thickness was used for the chromatographic separation. The initial oven temperature was 60°C, maintained for 6 min, and then increased to 200°C at a rate of 10°C/min followed by holding at 200°C for 1 min. The injection volume was 2 μl with split mode 1:5. Helium was used as the carrier gas with a constant flow rate of 0.49 ml/min. The injector temperature was 200°C. The ion source and interface temperatures were set at 250 and 220°C, respectively. The electron impact (EI) mode at 70 eV was utilized for sample ionization. The GC-MS spectra for AA and internal standard were obtained through the injection of the standard and sample solutions and scanning in the range of m/z 30–700.Preparation of Solutions2 N Sodium Hydroxide SolutionAccurately weigh and transfer 8.0 g of sodium hydroxide pellets into a 100 ml volumetric flask containing about 50 ml of water, dissolve, and then dilute to volume with water. Internal Standard SolutionAccurately weigh and transfer 40 mg of triethylamine into a 25 ml volumetric flask containing about 10 ml of chloroform, then dilute to volume with chloroform. Further dilute 1.0 ml of this solution to 200 ml with chloroform (8 mg/ml).Preparation of Blank SolutionTransfer 3 ml of internal standard solution into a 10 ml centrifuge tube and add 4 ml of 2 N sodium hydroxide solution and centrifuge for 5 min at 3000 rpm. Collect the lower layer (chloroform layer) carefully through an automatic pipette and pass through anhy-drous sodium sulfate.Preparation of Standard Solution (17 mg/ml)Accurately weigh and transfer 42 mg of allylamine into a 50 ml volumetric flask containing about 20 ml of internal standard solution, then dilute to volume with internal standard solution. Further dilute 1.0 ml of this solution to 50 ml with internal standard solution. Transfer 3 ml of standard solution into a 10 ml centrifuge tube and add 4 ml of 2 N sodium hydroxide solution and centrifuge for 5 min at 3000 rpm. Collect the lower layer (chloroform layer) carefully through an automatic pipette and pass through anhydrous sodium sulfate.Development and Validation of a Gas Chromatography Method for the Trace Level Determination (121)Preparation of Sample SolutionAccurately weigh and transfer 500 mg of the sample into a 10 ml centrifuge tube, add 4 ml of 2 N sodium hydroxide solution. Shake the contents for approximately 5 min mechanically. Transfer 3.0 ml of the internal standard solution into the centrifuge tube. Again, shake the contents for approximately 5 min mechanically and centrifuge for 5 min at 3000 rpm. Collect the lower layer (chloroform layer) carefully through an automatic pipette and pass through anhydrous sodium sulfate.Results and DiscussionsMethod Development and OptimizationThe challenge is to achieve the detection and quantitation at a low level using the gas chromatograph with a flame ionization detector (GC-FID) for obtaining good separation and the desired sensitivity. Development trials were initiated on the head-space technique using the stationary phase, 5% diphenyl, 95% dimethyl polysiloxane (Rtx-5; Make: Restek) as this column is an amine column specific for amines and other basic compounds. Standard AA solution and spiked sample solutions were prepared and injected into the GC. AA was eluted at around 5 min and unknown peak interference was observed at AA retention time in the spiked sample chromatogram. Further different trials were performed by changing the temperature programmes, column dimensions, and stationary phases. However, interference was observed. Later on, the direct-liquid injection technique was selected for the quantification of AA. The sample solution was prepared by dissolving the sample in chloroform, filtering, and injecting into the GC. Background interference was encountered in this trial. After cleaning the inlet port (to avoid ghost peaks), a broad peak shape of AA was observed, which suggests another type of sample preparation to reduce the interference from the sample matrix for quantification and proper peak shape purposes. The extraction technique using internal standard has been chosen for the low level quantification of AA by the liquid injection technique. Triethylamine (TEA) was chosen as the internal standard as it does not react with AA and it has a similar functional group. Initially, methylene chloride was chosen as an extraction solvent, but some interference was observed at the retention time of the internal standard in the DB-CAM (30 m x 0.53 mm x 1.0 µm) column. When chloroform was used as an extraction solvent, there was no interference found at the retention time of TEA and AA. The resolution between TEA and AA peaks should not be less than 2.0, which is kept as the system suitability criteria. Finally, the DB-CAM (30 m x 0.53 mm x 1.0 µm) (Make: J&W, fused silica coated with base-deactivated polyethylene glycol) column was preferred, as the analyte peaks were eluted with shorter retention times when compared with smaller internal diameter columns. Method ValidationThe developed and optimized method was validated for specificity, sensitivity [limit of detection (LOD) & limit of quantitation (LOQ)], linearity, precision [system precision, method precision & intermediate precision], accuracy, and robustness as per ICH guideline Q2(R1) [13] and USP<1225> [14].122 R. V. S. N. Kadiyala et al.:SpecificityThe blank solution, individual injections of AA, and all other known residual solvents (which are used in the process of sevelamer drugs i.e. methanol and epichlorohydrin), SVH and SVC drug substance sample solutions, control sample solutions (SVH and SVC drug substances spiked with AA), and spiked sample solutions (SVH and SVC drug substances spiked with AA and all other known residual solvents) were prepared and injected into the GC. From the chromatograms, it was found that the AA peak was well-separated from all other known solvents, indicating that the test method is selective and specific for the determination of AA in sevelamer compounds. Typical GC chromatograms of the blank solution, standard solution, and spiked sample solutions of SVH and SVC are shown in Figure 2. The identity and specificity of the AA peak was further demonstrated through GC-MS. The internal standard solution, mass fragments including the base peak of the AA standard and sevelamer compounds spiked with AA were found to be comparable with National Institute of Standards Technology (NIST) mass spectral library for AA. Typical GC-MS ion chromatograms of the blank solution, standard solution, and sevelamer compounds spiked with AA are shown in Figure 3. From the GC and GC-MS data, it is concluded that the proposed method is specific for allylamine determination.LOD and LOQ PrecisionThe limit of detection (LOD) and limit of quantification (LOQ) values for AA were determined by the signal-to-noise ratio (s/n) method. The minimum concentration at 3:1 s/n was considered as the LOD and the concentration at 10:1 s/n was considered as the LOQ. The LOD and LOQ values obtained for AA were 2 and 6 µg/g, respectively, with respect to the sample concentration, which corresponds to 0.3 and 1.0 µg/ml. Precision was verified by preparing the solutions at about the LOD and LOQ concentrations and injecting each solution six times into the GC. The results are tabulated in Table-1.LinearityThe linearity was evaluated by measuring the area ratio for AA to internal standard over the range of 1.0 to 25 µg/ml [6 to 150 µg/g with respect to sample concentration] and the obtained data were subjected to statistical analysis using a linear regression model. The statistical results such as correlation coefficient, slope, intercept, STEYX are reported in Table 1.Tab. 1. Statistical data of linearity, LOD/LOQ for allylamineStatistical parameters ResultsCorrelation coefficient 0.9990Concentration range (µg/g) 6–148Intercept 0.0231Slope(S) 0.0125Residual standard on deviation response (SD) 0.0322Limit of detection (µg/g) 2Limit of quantification (µg/g) 6Precision for Limit Of Detection (%R.S.D) 3.1Precision for Limit Of Quantification (%R.S.D) 2.6Calibration points 6Development and Validation of a Gas Chromatography Method for the Trace Level Determination (123)abcdFig. 2. Typical GC chromatograms of a) blank solution, b) standard solution,c) sevelamer hydrochloride spiked with allylamine including known residualsolvents, and d) sevelamer carbonate spiked with allylamine including knownresidual solvents.124 R. V. S. N. Kadiyala et al.:abcdFig. 3.Typical GC-MS total ion chromatograms of a) blank solution, b) standardsolution, c) sevelamer hydrochloride spiked with allylamine, and d) sevelamer carbonate spiked with allylamine.T r i e t h y l a m i n eT r i e t h y l a m i n eA l l y l l a m i n eT r i e t h y l a m i n eA l l y l l a m i n eT r i e t h y l a m i n eA l l y l l a m i n eDevelopment and Validation of a Gas Chromatography Method for the Trace Level Determination (125)AccuracyAccuracy of the method was verified through performing recovery experiments by spiking known amounts of AA at the LOQ level, 50%, 100%, and 150% of the specification level (i.e. 100 µg/g) to SVH and SVC drugs separately and the obtained recovery results are tabulated in Table 2, respectively.Tab. 2. Accuracy data of allylamine in sevelamer hydrochloride and sevelamer carbonateAccuracy(Average of 3 replicates)Sevelamer hydrochlorideLevel-I Level-II Level-III Level-IVAdded (µg/g ) 6.1 50.5 100.9 151.6 Recovered (µg/g ) 5.8 47.5 94.8 140.6 Recovery (%) 95.1 94.1 94.0 92.7 R.S.D(%) 2.0 0.0 0.3 0.1 Overall recovery (%)(Average of 12 replicates)93.9Accuracy(Average of 3 replicates)Sevelamer carbonateLevel-I Level-II Level-III Level-IVAdded (µg/g ) 6.1 50.4 101.1 151.5Recovered (µg/g ) 6.0 50.1 98.3 153.8Recovery (%) 98.4 99.4 97.2 101.5R.S.D(%) 1.7 0.4 0.2 0.8Overall recovery (%)(Average of 12 replicates)99.1PrecisionThe system precision was demonstrated by injecting the standard solution of AA six times into GC and calculating the area ratios using the areas obtained from AA and TEA. The method precision of the method was established by preparing six individual sample preparations by spiking AA to SVH and SVC drug substances separately, injecting into the GC, and calculating the AA content. The ruggedness of the method was evaluated by preparing six individual sample preparations [the same samples which were used in the method precision experiment] by spiking AA to SVH and SVC drug substances separately, injecting into the GC, and calculating the AA content using two different columns, different makes of instruments (i.e. Agilent and Shimadzu), and by different analysts on different days. The achieved precision experimental results are reported in Table 3.126 R. V. S. N. Kadiyala et al.:Tab. 3. Statistical data of precision experimentsSevelamer hydrochloride Sevelamer carbonateIDSystemprecision aMethodprecision bRuggedness b Methodprecision bRuggedness b(µg/g) (µg/g)1 1.2471 94 99 97 1002 1.2390 95 100 97 1003 1.2368 95 99 97 1004 1.2352 95 101 99 995 1.2332 95 97 99 986 1.2324 95 99 100 97 Mean 1.2373 95 99 98 99 SD 0.0054 0.4 1.3 1.3 1.3 % RSD 0.4 0.4 1.3 1.3 1.3 95% CI(±) 0.0057 0.4 1.4 1.4 1.4Overall statistical data(n=12)Mean 97 99 SD 2.4 1.3 % RSD 2.5 1.3 95% CI(±) 1.5 0.8a area ratio of allylamine;b content of allylamine.RobustnessThis study was performed by making deliberate variations in the method parameters. The effect of variation in the carrier gas flow and column initial oven temperature for the AA determination was studied. All experimental system suitability results (resolution between TEA and AA) are mentioned in Table 4.Tab. 4. Summary of system suitability resultsExperimentResolution between Triethylamine and Allylamine1st day 4.42nd day 4.93rd day 4.54th day 4.6−10% of carrier gas flow 5.3+10% of carrier gas flow 4.5−2°C column initial oven temperature 4.9+2°C column initial oven temperature 5.1ConclusionThe method validation data demonstrated that the developed GC method is more sensitive than the reported ion chromatography method (8). Also, the specificity of the method was established by both GC and GC-MS as well as accurate for the estimation of AA. Hence,Development and Validation of a Gas Chromatography Method for the Trace Level Determination (127)the validated GC method can be employed in the routine analysis for the quantification of allylamine in sevelamer hydrochloride and sevelamer carbonate drug substances. AcknowledgementThe authors gratefully acknowledge the management of APL Research Centre (A Division of Aurobindo Pharma Ltd.) for allowing us to carry out the research work. The authors are also thankful to the colleagues of the Analytical Research Department and Chemical Research Department for their cooperation.Authors’ StatementCompeting InterestsThe authors declare no conflict of interest.References[1] The Merck index 15th edition.RSC Publishing; Sevelamer. MONO1500008613.[2] Barna MM, Kapoian T, Neeta BO.Sevelamer carbonate.Ann Pharmacother. 2010; 44: 127–134./10.1345/aph.1M291[3] Boor PJ, Hysmith RM.Allylamine cardiovascular toxicity.Toxicology. 1987; 44: 129–145./10.1016/0300-483X(87)90144-2[4] Committee for medicinal products for human use (CHMP).European medicines Agency (EMEA) London, UK, 2006.(CPMP/SWP/5199/02,EMEA/CHMP/QWP/251344/2006)[5] Committee for medicinal products for human use(CHMP).European medicines Agency (EMEA) London, UK, 2008.(EMEA/CHMP/SWP/431994/2007)[6] US Department of Health and Human Services Food and Drug Administration.Center for Drug Evaluation and research (CDER), Silver Spring, MD, USA, 2008.[7] US Pharmacopeial forum 38(6).In-process revision: Sevelamer hydrochloride./pf/pub/data/v386/MON_IPR_386_m75125.html[8] Karthikeyan K, Shanmugasundaram P, Ramadhas R, Pillai KC.Development and validation of rapid ion-chromatographic method with conductivity detection for trace level determination of allylamine in sevelamer drug substances.J Pharm Biomed Anal. 2011; 54: 203–207./10.1016/j.jpba.2010.07.017[9] Andersson K, Hallgren C, Levin JO, Nilsson CA.Determination of aliphatic amines in air by reversed-phase high-performance liquid chromatography using 1-naphthyl isocyanate derivatives.J Chromatogr. 1984; 312: 482–488./10.1016/S0021-9673(01)92803-1128 R. V. S. N. Kadiyala et al.:[10] Kaykhaii M, Nazari S, Chamsaz M.Determination of aliphatic amines in water by gas chromatography using headspace solvent micro extraction.Talanta. 2005; 65: 223–228./10.1016/j.talanta.2004.06.019[11] Wald GV, Albers D, Nicholson L, Langhorst M, Bell B.Development of a headspace gas chromatography method to determine residual aliphatic amines in oligonucleotides.J Chromatogr A. 2005; 1076: 179–182./10.1016/j.chroma.2005.04.052[12] Lloret SM, Legua CM, Andres JV, Falco PC.Sensitive determination of aliphatic amines in water by high-performance liquid chromatography with chemiluminescence detection.J Chromatogr A. 2004; 1035: 75–82./10.1016/j.chroma.2004.02.027[13] International conference on Harmonization.Validation of Analytical procedures: Text and methodology Q2(R1), Step 4, 2005.[14] United States Pharmacopeia.USP 36, NF 31, General chapters: <1225>, 2013.。
丙烯气体报警器丙烯是一种无色、易燃的气态烃类化合物,广泛应用于各种工业生产中,例如化工、塑料等行业。
由于其易燃、易爆的特性,使用和储存过程中,如果发生泄漏或超标排放,将会对生产安全和环境保护带来极大风险。
为了防范丙烯泄漏和超标排放,丙烯气体报警器成为各行业必不可少的安全检测工具。
丙烯气体报警器原理丙烯气体报警器通过探测丙烯气体的浓度变化,实现对丙烯气体泄漏的监测。
其原理主要包括传感器、报警器、显示器等部分。
1. 传感器传感器是丙烯气体报警器最重要的组成部分。
一般来说,丙烯传感器采用化学传感器或红外线传感器。
化学传感器通过化学反应来测定丙烯气体的浓度,红外线传感器则是利用丙烯吸收红外线的特性来检测丙烯气体。
2. 报警器当丙烯气体浓度超过设定值时,丙烯气体报警器会自动触发报警器。
报警器一般分为声响报警和灯光报警两种形式,声响报警通常是通过蜂鸣器或喇叭等发出声响,灯光报警则是通过红色或黄色的LED灯光发出警示。
3. 显示器丙烯气体报警器还配备有显示器,用于实时显示丙烯气体的浓度值和报警状态等信息。
同时,显示器还允许用户对丙烯气体报警器进行设置和调整,以满足不同环境下的安全需求。
丙烯气体报警器的优点相比传统的手动监测和人工测量方法,丙烯气体报警器有以下几个显著的优点:1.高效性:丙烯气体报警器可实时检测泄漏情况,并立即发出警报,大大提高了安全性和检测效率。
2.准确性:丙烯气体报警器采用现代化传感器技术,能够高精度地检测丙烯气体的浓度,有效避免虚警问题。
3.可靠性:丙烯气体报警器具有高可靠性和稳定性,能够持续工作,并能自动校准与自检。
4.易操作:丙烯气体报警器具有简便易用的操作界面,可自由设置报警阈值和报警方式等参数,也易于数据下载和分析。
丙烯气体报警器的适用范围丙烯气体报警器通常适用于以下场合:•化工、塑料等工业生产现场,用于监测丙烯气体的泄漏和浓度变化。
•燃气管道、煤气站等场所,用于检测燃气泄漏和安全管控。
3对检测空间的要求检测空间要足够摆放两辆汽车。
其中一辆汽车在被检测的时候可以对另外一辆作检测准备。
除此以外空间还要足够大以方便散去红外线仪器工作时排放的热量。
务必杜绝火灾的危险。
检测空间内必须不带任何特殊气味。
机动车装配车间或者涂料工作室以及类似的地方不能用作此检测之用。
4红外线仪器以及对其要求四部红外线仪器,功率各为3.3千瓦。
照射板大小为100厘米x80厘米。
仪器由热电偶控制。
通过设定最大限度的物体温度能保护汽车。
四部红外线仪器将放在汽车的四面。
仪器距离车身50厘米。
照射面应该与汽车玻璃面平行。
此项要求请参照以下图示。
图一:仪器与车身应按图示摆放。
4.1监测温度通过预先设定红外线仪器达到的最大温度这项指标能有效地保护汽车。
照射板照到车身上最热的位置安装探测器。
推荐加热温暖最高限度为110°C。
车身温度要纪录备案。
5对车身的要求为了让测试有重复操作性,让测试结果有对比性,汽车的温度和时间都应详细纪录。
这里的时间指的是被检测汽车的已使用时间应该大致一样。
举例来说,如果在汽车装配完毕后马上测试有良好的可比性。
只要是同一套装配程序,同一型号的车在流水线上的装配时间相差无几。
5.1前期准备从经验总结,刚装配好的汽车含有浓烈的溶媒浓缩剂。
这现象很不利于一项详细的辐射测试。
因此汽车在受检测之前需要严格地遵照规定做前期处理。
汽车所有窗户打开,在室温中置放24小时。
较易挥发溶媒的浓度会通过这样的处理显著地降低。
5.2加温曲线加温中汽车车身的温度会在特定位置量取。
这个位置是前排座位头部靠垫的正中间以及距离车顶20厘米(下文继续解释)。
汽车车身最初加热升温的幅度需要比较大。
三小时内测试位置量取的温度应该达到65°C(上下5°C)。
到第四个小时结束时温度都要保持如此。
四小时以后开始测试。
整个测试过程中该位置的温度都要纪录备案。
同样,测试过程中火焰离子侦测器的值也要纪录。
一旦温度曲线呈平行延展的趋势,理想状态中,火焰离子侦测器之值也应该饱和。
便携式丙烯检测仪原理
便携式丙烯检测仪是一种用于检测空气中丙烯浓度的设备。
该仪器的工作原理是基于气体传感技术,通过检测被测气体中丙烯分子的特有光谱信号来确定丙烯的浓度。
具体来说,该仪器内部装有一种特殊的光学传感器,这个传感器可以吸收特定波长的光,并将其转化为电信号。
当空气中存在丙烯分子时,这些分子会吸收特定波长的光,导致光传感器接收到的信号发生变化。
通过测量这个变化,仪器就能够推算出空气中丙烯的浓度。
为了确保测试结果的准确性,便携式丙烯检测仪还需要进行一定的校准工作。
具体来说,仪器需要在事先已知丙烯浓度的环境中进行校准,以确定检测结果与实际情况的偏差。
同时,仪器还需要在使用前进行预热,以使其内部传感器能够达到稳定工作状态。
总之,便携式丙烯检测仪的原理是基于气体传感技术的,通过测量被测气体中特定波长光的吸收来确定丙烯的浓度。
在使用前需要进行校准和预热等工作,以保证测试结果的准确性。
- 1 -。
丙烯原料检验操作规程二零二零年二月分发号:受控状态:丙烯检验操作规程编号:版次:编制:质检部审核:审批:发布日期:实施日期:目录健康安全环保 (1)1、安全 (1)2、特殊的个人防护装备 (1)第一章技术指标 (2)1、技术指标 (2)第二章详细检验方法及具体操作步骤 (2)1、硫含量的测定 (2)1.1 检验依据 (2)1.2 方法原理 (2)1.3 试剂 (2)1.4 仪器 (3)1.5 操作步骤 (3)1.6 注意事项 (3)2、水含量的测定 (3)2.1 检验依据 (3)2.2 方法原理 (3)2.3 仪器 (4)2.3 样品测定 (4)2.4 注意事项 (4)3、二氧化碳含量的测定 (5)3.1 检验依据 (5)3.2 方法原理 (5)3.3 试剂 (5)3.4 仪器 (5)3.5 分析步骤 (5)3.6 计算 (6)3.7 注意事项 (6)4、氮气含量的测定 (6)4.1 检验依据 (6)4.2 方法原理 (6)4.3 试剂 (7)4.4 仪器 (7)4.5 分析步骤 (7)4.6 计算 (7)4.7 注意事项 (7)5、丙烯含量的测定 (8)5.1 检验依据 (8)5.2 方法原理 (8)5.3 试剂 (8)5.4 仪器 (8)5.5 分析步骤 (8)5.6 计算 (9)5.7 注意事项 (9)健康安全环保1、安全1. 实验员在操作过程中应遵守实验室安全规定。
2. 参照所使用的化学品的材料安全数据(MSDS)获得安全相关信息。
3. 丙烯:丙烯为单纯窒息剂及轻度麻醉剂。
人吸入丙烯可引起意识丧失,当浓度为15%时,需30分钟;24%时,需3分钟;35%~40%时,需20秒钟;40%以上时,仅需6秒钟,并引起呕吐。
长期接触可引起头昏、乏力、全身不适、思维不集中。
个别人胃肠道功能发生紊乱。
对环境有危害,对水体、土壤和大气可造成污染。
是易燃品。
4. 其他关于设备的安全操作应参照设备的操作规程执行。
丙烯传感器丙烯传感器产品描述:丙烯传感器适用于各种环境和特殊环境中的挥发性有机物丙烯气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。
丙烯传感器产品特性:进口电化学传感器具有良好的抗干扰性能,适用寿命8年。
采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
检测气体:空气中的丙烯气体检测范围:0~100ppm,0~200ppm,0~1000ppm,0~1000ppm,0~5000ppm,100%LEL可选。
分别率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(0~10000ppm以上);0.1LEL.工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。
检测误差:≦1%(F.S)响应时间:≦10S输出信号:电流信号输出4-20MA报警方式:2路无源节点信号输出,报警点可设置。
工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃)相对湿度:≦90%RH工作电压:DC12~30V传感器寿命:3年防爆形式:探头变送器及传感器均为隔爆型。
防爆等级:Exd II CT6连接电缆:三芯电缆(单根线径≧1.5mm);建议选用屏蔽电缆。
连接距离:≦1000m.防护等级:IP65.外形尺寸:183X143X107mm.重量:1.5Kg.检测气体:空气中的丙烯气体检测范围:0-100ppm、500ppm、1000ppm、5000ppm、0-100%LEL分辨率:0.1ppm、0.1%LEL显示方式:液晶显示温湿度:选配件,温度检测范围:-40~120℃,湿度检测范围:0-100%RH检测方式:扩散式、流通式、泵吸式可选安装方式:壁挂式、管道式检测精度:≤±3%线性误差:≤±1%响应时间:≤20秒(T90)零点漂移:≤±1%(F.S/年)恢复时间:≤20秒重复性:≤±1%信号输出:①4-20mA信号:标准的16位精度4-20mA输出芯片,传输距离1Km②RS485信号:采用标准MODBUS RTU协议,传输距离2Km③电压信号:0-5V、0-10V输出,可自行设置④脉冲信号:又称频率信号,频率范围可调(选配)⑤开关量信号:标配2组继电器,可选第三组继电器,继电器无源触点,容量220VAC3A/24VDC3A传输方式:①电缆传输:3芯、4芯电缆线,远距离传输(1-2公里)②GPRS传输:可内置GPRS模块,实时远程传输数据,不受距离限制(选配)接收设备:用户电脑、控制报警器、PLC、DCS、等报警方式:现场声光报警、外置报警器、远程控制器报警、电脑数据采集软件报警等报警设置:标准配置两级报警,可选三级报警;可设置报警方式:常规高低报警、区间控制报警电器接口:3/4″NPT内螺纹、1/2″NPT内螺纹,同时支持2种电器连接方式防爆标志:ExdII CT6(隔爆型)壳体材料:压铸铝+喷砂氧化/氟碳漆,防爆防腐蚀防护等级:IP66工作温度:-30~60℃工作电源:24VDC(12~30VDC)工作湿度:≤95%RH,无冷凝尺寸重量:183×143×107mm(L×W×H)1.5Kg(仪工作压力:0~100Kpa器净重)标准配件:说明书、合格证质保期:一年丙烯传感器简单介绍:丙烯传感器●自动温度补偿,零点,满量程漂移补偿●防高浓度气体冲击的自动保护功能●全软件校准功能,用户也可自行校准,用3个按键实现,操作简单●二线制4-20mA输出丙烯传感器应用场所医药科研、制药生产车间、烟草公司、环境监测、学校科研、楼宇建设、消防报警、污水处理、工业气体过程控制石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、、锅炉房、垃圾处理厂、隧道施工、输油管道、加气站、地下燃气管道检修、室内空气质量检测、危险场所安全防护、航空航天、军用设备监测等。
PX装置RAMAN分析仪介绍ELUXYL系统介绍提纲一RAMAN介绍拉曼光谱的原理分析仪介绍二仪器操作使用软件故障处理1928年印度科学家拉曼(RAMAN)首次观察到拉曼散射光谱,后来,人们以他的姓氏命名了拉曼光谱学。
这项工作也使拉曼获得了1930年诺贝尔物理学奖。
该项工作也同时验证了光的量子化理论。
¾由于拉曼散射的信号非常微弱,拉曼测量相当困难。
激光技术、光谱仪和探测技术的发展促进了拉曼测量技术的发展¾“ELUXYL 系统”最佳解决方案¾在测量点上,系统安装更加容易:只需进行机械连接,在室内,使用标准市电110/220VAC,不需要冷却水系统。
由于系统中电气部分和光学部分分离,同时大大提升了系统可维护性。
¾在每一个测量点上配置一个激光器(每一个激光器通过光纤各自独立地进入拉曼系统中)。
这样可以保证即使有一个激光器无法使用,拉曼系统仍然可以正常工作,因为剩余的3个测量点仍然可以提供Para-Xylen的浓度信息。
拉曼散射是一种光散射效应:单色光与某些材料相互作用后发出散射光。
部分散射光的频率发生改变,这部分散射光即为拉曼散射,拉曼散射在总的散射光强中比例很小。
散射光频率的改变是由入射光和样品的分子能级耦合作用的结果。
在散射光中观察到的与入射光频率不一样的光信号即为拉曼散射信号。
解释拉曼光谱机制的最简单的方法是使用能级图, ,如图1示。
能量为hν0(h-普朗克常数6.626×10-34 J s;ν-频率Hz=1/s;拉曼光谱通常使用波数这个单位[cm-1] ,即用频率ν除以光速C=2.998X1010cm/s)的入射光子与分子振动能级ν1、ν2 ……相互作用。
大多数入射光与材料作用后能量不发生改变,既使这部分入射光经过透射、反射、折射、甚至散射,其能量也不会改变,此即为“瑞利线”。
散射光中有一小部分损失能量,如能带图所示,损失能量为h(ν0-ν1), h(ν0-ν2)……此即为人们所关注的拉曼散射中的能量变化,如图1示。
《基于机器视觉的丙烯聚合过程液位检测系统设计》一、引言在丙烯聚合过程中,液位检测是关键环节之一。
传统的液位检测方法主要依赖于人工观察和测量,不仅效率低下,而且容易受到人为因素的影响,导致误差和安全问题。
随着机器视觉技术的快速发展,基于机器视觉的液位检测系统逐渐成为研究热点。
本文旨在设计一种基于机器视觉的丙烯聚合过程液位检测系统,以提高检测效率和准确性。
二、系统设计目标本系统的设计目标主要包括以下几个方面:1. 实现高精度的液位检测,减少人为因素导致的误差。
2. 提高检测效率,实现实时监测和自动报警。
3. 确保系统安全可靠,降低操作人员的劳动强度。
4. 具有良好的扩展性和适应性,适应不同环境和工艺需求。
三、系统设计原理本系统采用机器视觉技术,通过摄像头采集丙烯聚合过程中的液位图像,然后通过图像处理和分析算法,实现对液位的实时检测。
系统主要包括以下几个部分:1. 图像采集模块:通过高清摄像头采集液位图像。
2. 图像处理模块:对采集的图像进行预处理、特征提取和边缘检测等操作,为液位分析提供数据支持。
3. 液位分析模块:根据图像处理结果,通过算法分析液位高度和变化趋势。
4. 报警模块:当液位超出安全范围时,系统自动发出报警信号。
5. 控制模块:根据报警信号和液位分析结果,控制相关设备进行相应的操作。
四、系统实现1. 硬件设备选型与配置根据系统设计目标,选择合适的摄像头、图像处理器和控制器等硬件设备。
摄像头应具有高分辨率和低噪声等特点,以确保图像质量。
图像处理器应具有强大的计算能力和高效的图像处理算法。
控制器应具有较高的稳定性和可靠性,以保障系统的正常运行。
2. 软件算法设计软件算法是本系统的核心部分,包括图像处理、液位分析和报警控制等算法。
图像处理算法应具有预处理、特征提取和边缘检测等功能,为液位分析提供准确的数据支持。
液位分析算法应具有高精度和高效率的特点,能够实时分析液位高度和变化趋势。
报警控制算法应根据液位分析结果,自动发出报警信号并控制相关设备进行操作。
“大众”系列固定式丙烯亚胺检测仪(网络版)
一、“大众”系列固定式丙烯亚胺检测仪(网络版)简介
“大众”系列固定式丙烯亚胺检测仪(网络版)有多个别称,可以叫做“大众”系列在线式丙烯亚胺检测仪(网络版)、“大众”系列壁挂式丙烯亚胺检测仪(网络版)等等。
“大众”系列固定式丙烯亚胺检测仪(网络版)可以同时具有现场检测浓度显示、信号变送、led灯和继电器报警功能。
“大众”系列固定式丙烯亚胺检测仪(网络版)工作原理是将现场检测到的丙烯亚胺气体浓度,转换为对应的标准信号(如电压信号(如0-5/10V)、电流信号(如
4-20mA)、标准数字信号(如总线丙烯亚胺S-485、丙烯亚胺S232)、频率信号、Hart协议信号,然后将信号变送到PLC、DCS、报警控制主机等上位机进行统一显示、管理和控制。
“大众”系列固定式丙烯亚胺检测仪(网络版)内部带有1个继电器(开关量信号),可以控制风机、声光检测仪、电磁阀等设备。
二、产品分类
三、“大众”系列固定式丙烯亚胺检测仪(网络版)特点
★快速反应。
“大众”系列固定式丙烯亚胺检测仪(网络版)对比同行同类产品,检测速度快;
★多级标定功能。
可实现高精度检测的成熟技术,已经过市场多年验证;
★零点自动校正。
针对某些环境应用,仪表可实现零点自动校正功能;
★标准信号输出种类齐全。
“大众”系列固定式丙烯亚胺检测仪(网络版)有线输出信号有多种选择。
★提醒和报警功能齐全传感器到期提醒功能、超浓度报警功能、超温度报警功能、故障报警功能、仪表标定提醒功能等;
★物联网功能。
“大众”系列固定式丙烯亚胺检测仪(网络版)可连接服务器来实现手机和电脑远程监控、报警提醒和报警值设置等;
★超高清彩色显示屏。
“大众”系列固定式丙烯亚胺检测仪(网络版),远距离可视,可视距离10米(5.0视力);
★操作指引。
人性化设计,每个功能设置都有操作指引,防止客户误操作,行业独一无二;★双操作方式。
按键操作+遥控操作;
★双语操作系统。
可以实现中英文系统切换,默认中文操作系统;
★隔爆设计、本安设计、丙烯亚胺oHS设计;
★黑匣子功能。
操作、报警记录,超温度使用记录,超量程使用记录;
应用领域
“大众”系列固定式丙烯亚胺检测仪(网络版)广泛应用于石油化工、工业生产、冶炼锻造、电力、煤矿、隧道工程、环境监测、污水治理、生物制药、家居环保、畜牧养殖、温室培植、仓储物流、酿造发酵、农业生产、消防、燃气、楼宇建造、市政企业、学校实验室、科研中心等行业。
五、系统图
六、产品尺寸与安装示意图
七、产品尺寸与安装示意图
/。