纳米金属粉末在润滑油中的应用
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
2020年12月Dec.2020润滑油LUBRICATING OIL第35卷第6期V ol.35,N o.6D O I:10.19532/j. cnki. cn21 -1265/tq. 2020.06.009 文章编号:1002-3119(2020)06-0043-09碳纳米材料在润滑油脂中的应用开发彭春明,张玉娟,张晟卯,杨广彬,宋宁宁,张平余(河南大学纳米材料T程研究中心,河南开封475001 )摘要:纳米材料因在润滑油脂中展现出优越的摩擦学性能引起人们极大的兴趣。
碳纳米材料因其多样且独特的形态和微观结 构,具有物理化学性能独特、热稳定性强和剪切强度低等特点,作为润滑油脂添加剂在高温、长效、环保要求高的润滑环境中具 有不可替代的优势。
文章从碳纳米材料的结构、表面改性、与其他润滑材料复合等方面综述了碳纳米材料作为添加剂在润滑 油脂领域中的性能和机制研究及其应用开发。
关键词:碳纳米材料;添加剂;综述中图分类号:TE624.82 文献标识码:AApplication and Development of Carbon Nanomaterials in Lubricating Oil and GreasePENG Chun - ming, ZHANG Yu - juan, ZHANG Sheng - mao, YANG Guang - bin,SONG Ning-ning,ZHANG Ping-yu(Engineering Research Center for Nanomaterials of He^nan University, Kaifeng 475001, China)Abstract :Nanomaterials are of great interest because of their excellent tribological properties in lubricating oil and grease. Carbon nanomaterials have unique physical and chemical properties, strong thermal stability and low shear strength due to their diverse and unique morphology and microstructure. As lubricant additives, they have irreplaceable advantages in high temperature, long - term and high environmental protection requirements. In this paper, the properties, mechanism and application of carbon nanomaterials as additives in the field of lubricating oil and grease are reviewed from the aspects of structure, surface modification and composite with other lubricating materials.Key words:carbon nanomaterials;additive;review〇引言摩擦磨损是机械运转过程中能量和材料损耗的 主要原因。
MoS2晶体属于六方晶系,为典型三明治结构的层状化合物,每个平面层为S-Mo-S的结构,层内Mo和S以共价键结合为三方柱面体结构,层间以微弱的范德华力维系,因此,层状的MoS2容易受外界环境的影响破坏层与层之间的堆垛结构,并形成较为稳定的薄层,当MoS2用作润滑剂时,层状MoS2会转移到金属表面,缓和摩擦和磨损,这一性质使其在摩擦润滑领域有很好的应用,20世纪50年代,普通MoS2就作为固体润滑剂得到了广泛应用。
纳米材料是指至少有一维尺寸为纳米级别的材料,而当材料的尺寸缩小至纳米级别时,会凸显处诸如小尺寸效应、界面效应、量子隧道效应等性能特点。
研究表明,一些纳米尺度的固体粒子加入到润滑油中,可以明显提升润滑油的性能,展现出许多优于传统添加剂的特点。
近年来,将纳米MoS2用作润滑油添加剂得到了广泛关注,本文主要介绍纳米MoS2作为润滑油添加剂的润滑机理。
润滑机理1物理吸附/沉积作用学者们普遍认为,典型的MoS2晶体为层状结构,层与层之间以范德华力连接,在摩擦产生的剪切应力下层状结构剥离,并吸附到摩擦表面,这一过程对抗磨减摩有显著作用,如图1所示摩擦过程中纳米MoS2的层状剥离Wu等研究了纯MoS2和硼酸锌/MoS2纳米复合材料的摩擦学性能,研究发现当使用纯纳米MoS2作为添加剂时,有缺陷的MoS2纳米片和部分氧化的MoS2纳米片会导致润滑不良,在润滑油中加入硼酸锌/MoS2纳米复合材料时,具有极压性能的硼酸锌纳米颗粒能有效地填充MoS2纳米片的表面缺陷,并连续提供保护膜,以进一步降低摩擦系数,提高承载能力。
还有学者指出,纳米MoS2可以填充摩擦表面的微裂纹区域,对磨损位置起到了修复作用化学吸附/反应膜纳米MoS2扩散能力强、表面能高、颗粒表面缺陷结构多,容易参加摩擦化学反应。
有学者报道,在钢制摩擦副中纳米MoS2可以生成含FeS、FeSO4等产物的化学反应膜,反应膜的形成减少了摩擦基体的直接接触,降低了摩擦磨损,图2展示了纳米MoS2参加摩擦化学反应的一种典型方式。
纳米二硫化钼(MoS2)在润滑材料中的研究进展纳米二硫化钼(MoS2)在润滑材料中的研究进展摘要:本文介绍了MoS2的润滑性状、纳米MoS2的性能。
对纳米MoS2在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中的摩擦学应用与研究现状进行了综述,并对比了微米级与纳米级MoS2在使用中的效果。
对未来纳米MoS2在润滑材料中的应用与研究进行了展望。
关键词:纳米MoS2;润滑材料;摩擦The research progress of molybdenum disulfidenanoparticles(MoS2) in lubrication materialsAbstract: This paper describes the lubricating properties of MoS2and the performance of nano-MoS2. Nano-MoS2on the rolling fluid, mechanical oil, copper alloy drawing grease and space lubrication materials’ tribology applications and research status are reviewed. The micron and nano-level effect of MoS2 in use is compared. Nano-MoS2 lubricating materials application and research in the future are discussed.Key words: nano-MoS2; lubrication materials; friction0 引言二硫化钼(MoS2)用作固体润滑剂已有50多年的历史,是应用最广泛的固体润滑剂。
在相同条件下,含MoS2的粘结固体润滑膜在真空中的摩擦系数约为大气中的1/3,而耐磨寿命比在大气中高几倍甚至几十倍。
纳米材料在化工行业中的应用分析1. 引言纳米技术是指在尺寸小于 100 纳米的范围内开展相关活动的一个学科领域。
纳米粒子具有极高的比表面积和特殊的物理、化学性质,因此在化学工业中具有广泛的应用前景。
本文主要探讨纳米材料在化工行业中的应用分析。
2. 纳米材料的概念与分类纳米材料是指至少有一维度小于 100 纳米的材料。
根据不同的制备方法和化学性质,纳米材料可分为无机纳米材料、有机纳米材料和生物纳米材料。
无机纳米材料的主要代表有金属、氧化物、炭黑等;有机纳米材料的主要代表有聚合物、碳纳米管等;生物纳米材料的主要代表有蛋白质、核酸等。
3. 纳米材料在化工行业中的应用3.1 煤化工纳米材料在煤化工领域中的应用主要表现在以下两个方面:•煤基纳米材料的制备:以煤为原料制备出纳米材料,可用于制备纳米金属催化剂、吸附材料等。
•纳米材料在煤的加工中的应用:将纳米材料加入到煤的加工中,可有效提高煤炭的转化率,减少污染物的排放。
3.2 催化剂纳米材料在制备催化剂方面具有得天独厚的优势。
由于纳米材料具有极高的比表面积和特殊的物理、化学性质,可使催化剂的活性大大提高。
常见的纳米材料催化剂包括纳米金属、纳米氧化物和纳米碳材料等。
3.3 其他应用纳米材料还可以被应用在化学反应中的催化剂、分离、吸附、催化燃烧、传感器、涂料和润滑油等领域。
值得一提的是,在涂料领域中,纳米材料的应用可实现防腐、增加涂层硬度等效果。
4. 纳米材料在化工行业中的挑战纳米材料在化工行业中面临很多挑战,主要有以下几点:1.如何精确地控制纳米材料的大小、形状、表面性质和分散性等方面的特征;2.纳米材料的聚集作用,有可能使纳米材料的比表面积急剧减小,从而影响其性能;3.纳米材料的毒性和环境安全问题。
5. 结论纳米材料在化工行业中的应用前景广阔,但也面临着不少挑战。
未来需要通过创新技术和安全环保的制备方法,进一步拓展其应用领域,实现从量产到高质量、高效率和大规模生产的转变。
纳米润滑材料的合成和性能研究随着科学技术的不断发展,纳米材料的研究和应用在各个领域都取得了重要突破。
其中,纳米润滑材料作为一种在摩擦和磨损控制方面具有广阔应用前景的材料,引起了研究人员的广泛关注。
纳米润滑材料的合成是研究的重要内容之一。
传统润滑材料主要由润滑油和固体润滑添加剂组成,而纳米润滑材料则是将纳米颗粒添加到基础润滑剂中,以提高其摩擦和磨损性能。
纳米颗粒在润滑剂中的添加可以有效地减小摩擦系数和磨损率,增强摩擦表面的抗损伤性能。
在纳米润滑材料的合成中,常用的方法包括机械合成法、化学合成法和物理合成法。
机械合成法是利用机械力作用下的碾磨、挤压等过程,使原料颗粒发生位错、变形等现象,从而促使纳米颗粒的形成。
化学合成法则是通过控制反应条件、物料浓度和温度等参数,使原料在溶液中发生特定的化学反应,从而合成纳米颗粒。
而物理合成法则是通过激光烧结、溅射、热蒸发等物理方法,使原料发生相变或凝聚,形成纳米颗粒。
纳米润滑材料的性能研究是了解其作用机制和应用潜力的关键。
纳米颗粒的添加可以改善润滑剂的减摩和抗磨损性能。
纳米颗粒与金属表面接触后,可以形成一个附着性很好的保护薄膜,从而减小金属表面的摩擦和磨损。
此外,纳米颗粒还可以填充摩擦表面的微观缺陷,起到填充作用,减小摩擦面的接触面积,降低摩擦系数。
针对纳米润滑材料的性能研究,研究人员主要从摩擦系数、磨损率和表面形貌等方面进行评价。
通过实验测试和理论模拟,可以对纳米润滑材料在各种应力条件下的性能进行评估。
同时,对于纳米润滑材料的合成方法和性能评价进行优化和改进,可以进一步提高其摩擦和磨损性能,拓宽其应用范围。
除了摩擦和磨损控制方面的应用外,纳米润滑材料还可以在能源和环境领域发挥重要作用。
例如,在发电和汽车行业中,纳米润滑材料可以用于减少摩擦和能量消耗,提高能源利用率。
另外,纳米润滑材料还可以应用于油井钻杆和航空发动机中,提高设备的工作寿命和可靠性。
总之,纳米润滑材料的合成和性能研究对于摩擦和磨损控制具有重要意义。
纳米金属粉末在润滑油中的应用
将超细金属粉末(如纳米铜、纳米镍及其合金等)以适当方式加入润滑油中,可得到一种性能优异的新型润滑油。
摩擦学实验表明,当铜粉的粒径大于100nm时,它是一种磨料,但当其粒径小于50nm时,可较大幅度提高润滑油的最大无卡咬负荷。
复朗施纳米科技利用国际领先的技术制备的高纯度50nm金属铜粉,使纳米铜粉的这种性能使之在润滑油中具有重要的用途,国内科研机构通过对纳米铜粉的表面进行改性,克服了纳米铜粉在润滑油中的自憎现象,能均匀、稳定地分散在润滑油中并可防止纳米铜粉的二次积聚和沉淀,成功开发了纳米铜润滑油添加剂。
将这种添加剂添加到汽车发动机润滑油中,可明显减小发动机的启动电流并明显增大压力。
发动机使用这种添加剂一段时间后,缸套和活塞环上便形成一层保护膜,一旦润滑油系统发生故障,汽车还能安全行使一段时间。
纳米金属粉末在电子领域中的应用
随着金属粉末粒径的急剧减小,其物理性能会发生很大万方化。
如金的常规熔点为1064度,当颗粒减小到10nm时,则降低27度,2nm尺寸金的熔点仅约327度;银的常规熔点为670度,而超微银颗粒的熔点可低于100度。
因此用纳米粉末制成的导电浆料,可以显著降低陶瓷的烧结温度,能大大提高芯片的可靠性和成品率,降低生产成本。
如超细银粉制成的导电浆料可以进行低温烧结,这种情况下元件的基片可不必采用耐高温的陶瓷材料,甚至可用塑料。
纳米导电浆料可广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要的作用。
纳米金属粉末在磁性材料领域中的应用
纳米金属粉末广泛应用于制造纳米磁记录材料、磁性液体、纳米磁性颗粒膜材料等,如用纳米钴、纳米铁、纳米镍等磁性金属粉末制备的磁性液体,可应用于旋转密封、阻尼器件、磁性液体印刷、选矿分离、精密研磨和抛光、磁性药物、磁性液体刹车等。
但这种技术对纳
米粉末质量要求较高,目前纯度有保证的制备方法是电爆法制备的金属粉,这种方法制备的金属粉力度均匀,纯度高,且稳定性好,对于纳米金属粉末在磁性材料领域中的应用起到了锦上添花的作用。
纳米金属粉末在抗菌材料中的应用
近年来的研究与发展表明,纳米银粒具有优异的抗菌活性。
据报导,美国1家公司生产的纳米银织物,其抗菌性能高于可溶性银离子(如硝酸银水溶液),也优于已问世60余年、在临床上使用效果良好、无抗药性的磺胺嘧啶银。
用其制作控制烧伤、烫伤感染的药物效果十分良好,该产品2001年的销售额为3000多万美元,预计今后几年销售额将大增。
纳米金属粉末在粉末冶金领域中的应用
由于纳米金属粉末具有高的比表面积,化学活性大,使得粉末的烧结温度低,因此在粉末冶金工艺中可用作烧结助剂,缩短烧结过程的加热周期,甚至可降低烧结温度。
另外,可用纳米金属粉末制备粉末冶金涂层,如利用激光将粉末连接到玻璃上,或将粉末凝胶熔化到基体上等。