污水处理工艺水质净化效果分析
- 格式:pdf
- 大小:600.29 KB
- 文档页数:3
污水处理技术及其效果评估污水处理技术在现代社会中扮演着重要角色,它能够将废水转化为可再利用的资源。
本文将对污水处理技术及其效果评估进行详细介绍。
一、污水处理技术概述污水处理技术是指将废水中的有害物质去除,使废水达到国家或地方排放标准的一系列工艺和设备。
常见的污水处理技术包括物理处理、化学处理和生物处理。
1. 物理处理:主要通过过滤、沉淀和吸附等手段去除废水中的悬浮物、悬浮沉淀物和溶解性物质。
常见的物理处理设备有格栅、沉砂池和过滤器等。
2. 化学处理:通过添加化学药剂与废水中的污染物发生化学反应,达到去除有害物质的目的。
常见的化学处理方法有混凝沉淀、氧化和还原等。
3. 生物处理:利用微生物的降解作用,将废水中的有机物转化为无机物或可生物降解的物质。
常见的生物处理方法有活性污泥法、生物膜法和植物净化等。
二、污水处理技术的步骤污水处理通常包括预处理、一级处理、二级处理和三级处理等步骤。
1. 预处理:主要是对进入污水处理厂的废水进行初步处理,去除大颗粒物质和沉积物,以保护后续处理设备的正常运行。
预处理步骤包括格栅过滤、沉砂池和调节池等。
2. 一级处理:涉及物理和化学处理方法,用于去除废水中的悬浮物、悬浮沉淀物和溶解性物质。
常见的一级处理设备包括沉淀池、曝气池和气浮池等。
3. 二级处理:主要通过生物处理来进一步去除废水中的有机物和氮、磷等营养物质。
常见的二级处理设备包括活性污泥法、厌氧消化和生物膜法等。
4. 三级处理:用于进一步提高废水的处理效果,去除残留的营养物质和微量有机物。
常见的三级处理方法有臭氧氧化、紫外辐照和活性炭吸附等。
三、污水处理技术效果的评估指标为了评估污水处理技术的效果,可以考虑以下指标:1. COD去除率:COD是废水中的有机物浓度指标,COD去除率越高,说明废水处理效果越好。
2. 悬浮物去除率:悬浮物是废水中的固体颗粒物,悬浮物去除率高,说明废水处理后悬浮物减少,水质变好。
3. 氨氮和总磷去除率:氨氮和总磷是废水中的营养物质,其去除率高,说明废水处理过程中对营养物质的去除效果好。
常见污水处理工艺原理优缺点及处理效率对比污水处理是保护环境、维护生态平衡的重要环节。
随着城市化进程的加快和工业化的不断发展,污水处理工艺也在不断创新和完善。
本文将就常见的污水处理工艺的原理、优缺点以及处理效率进行对比分析。
一、生物处理工艺生物处理工艺是目前最常见的污水处理方式之一。
它利用微生物的作用,将有机物质降解为无机物质,从而达到净化水质的目的。
生物处理工艺主要有活性污泥法、生物膜法和人工湿地等。
1. 活性污泥法活性污泥法是将含有有机物质的污水与活性污泥混合,在一定的温度和氧气供应下,微生物通过吸附、吸附和生物降解等过程,将有机物质转化为无机物质。
这种工艺操作简单,处理效果稳定,但对温度、氧气供应等条件要求较高。
2. 生物膜法生物膜法是在固定载体上形成生物膜,通过微生物的附着和生物降解作用,将有机物质降解为无机物质。
相比于活性污泥法,生物膜法具有更高的处理效率和更好的抗冲击负荷能力,但对于载体的选择和维护较为复杂。
3. 人工湿地人工湿地利用湿地植物和微生物的共同作用,通过植物吸收、微生物降解等过程,将有机物质转化为无机物质。
人工湿地工艺具有造价低、运行成本低的优点,但处理效率相对较低,适用于处理一些低浓度、小规模的污水。
二、物理化学处理工艺物理化学处理工艺主要是利用物理和化学手段,将污水中的悬浮物、沉淀物和溶解物等进行分离和去除。
常见的物理化学处理工艺有混凝沉淀法、吸附法和膜分离法等。
1. 混凝沉淀法混凝沉淀法是通过加入混凝剂,使悬浮物和胶体物质凝聚成较大的颗粒,然后通过重力沉降将其分离。
这种工艺操作简单,处理效果较好,但对于一些难降解的有机物质效果较差。
2. 吸附法吸附法利用吸附剂对污水中的有机物质进行吸附,从而达到去除的目的。
常见的吸附剂有活性炭、陶瓷颗粒等。
吸附法处理效果好,但吸附剂的选择和再生较为困难。
3. 膜分离法膜分离法是利用膜的选择性透过性,将污水中的溶解物和悬浮物进行分离。
常见的膜分离工艺有超滤、反渗透等。
污水处理厂分析报告1. 引言污水处理厂是一个关键的环境工程设施,其主要目的是处理和清洁城市和工业区的废水。
本报告旨在对某污水处理厂进行详细的分析和评估,以评估其运行状况和效率。
2. 污水处理工艺污水处理厂通常采用多个工艺步骤来处理废水,包括初级处理、生物处理和二次处理。
这些步骤的主要目标是去除悬浮物、有机物和微生物等污染物。
2.1 初级处理初级处理是将污水通过物理方法去除大部分可沉性固体和悬浮物。
这通常包括格栅除渣、沉砂池和沉淀池等步骤。
初级处理可以有效地减少废水中的固体负荷和污染物浓度。
2.2 生物处理生物处理是通过利用微生物将废水中的有机物质转化为生物质和二氧化碳来进一步净化废水。
常见的生物处理方法包括活性污泥法和固定床滤池法。
这些方法通过提供适宜的环境条件,使微生物能够高效地降解有机物。
2.3 二次处理二次处理是对已经进行生物处理的污水进行进一步处理,以去除残留的有机物和微生物。
常见的二次处理方法包括氧化沟和河流自净能力等。
这些方法通过进一步增加氧气和提供更多的生物降解表面,确保废水达到排放标准。
3. 污水处理厂运行评估为了评估污水处理厂的运行状况和效率,我们对其进行了以下几个方面的评估。
3.1 污水处理效率通过分析进出站点的水质数据和监测记录,我们可以评估污水处理厂的处理效率。
重点关注废水中的悬浮物、化学需氧量(COD)和氨氮等指标的去除率。
3.2 设备状况设备的运行状况对污水处理厂的正常运行至关重要。
我们对各个处理单元的设备进行了检查和评估,包括泵站、格栅、沉砂池和曝气系统等。
发现任何异常或损坏的设备,及时进行维修和更换。
3.3 污泥处理污水处理过程中会产生大量的污泥,如何有效处理污泥也是评估污水处理厂运行状况的重要指标。
我们评估了污泥的浓度、含水率和处理方式,如是否采用干化、焚烧或土壤改良等方式进行处理。
4. 问题和改进建议在对污水处理厂进行分析和评估的过程中,我们发现了一些问题,并提出了以下改进建议:4.1 处理效率提升根据水质数据分析,发现废水中COD和氨氮的去除率不稳定。
农村污水治理技术及其应用效果分析农村污水治理是当前环境保护的重要组成部分,随着农村经济的快速发展,污水治理问题日益突出。
污水排放量不断增加,水体污染加重,给农村生态环境和居民健康带来了严重威胁。
因此,探索适合农村特点的污水治理技术显得尤为重要。
本文将对当前常用的农村污水治理技术及其应用效果进行分析。
在农村地区,污水主要来源于农业生产、牲畜养殖、家庭生活等多个方面。
近年来,随着农业现代化进程的加快和居民生活水平的提高,污水的产生量显著上升。
如果不及时对这些污水进行处理,将对当地水资源造成严重污染。
因此,采用合适的污水治理技术成为迫在眉睫的问题。
一方面,自然处理技术在农村水治理中得到了广泛应用。
这类技术利用天然生态系统及其生物链,通过自然界的物理、化学和生物过程对污水进行净化。
常见的自然处理技术包括湿地处理、塘坝处理和人工湿地等。
这些方法不仅能有效去除污水中的有机物和营养盐,而且因其建设和维护成本相对较低,更符合农村的实际情况。
湿地处理技术是利用湿地植物的根系及其微生物资源进行污水净化。
在中国的一些农村,采用了人工湿地作为固态和液态污水的处理方式,效果显著。
通过植被过滤,湿地能够有效去除氮、磷等污染物,减少水体富营养化的风险,与此同时,植物吸收的重金属减轻了土壤和水体污染。
另一种值得关注的技术是厌氧氨氧化(ANAMMOX)工艺,这一新兴的污水处理技术在农村地区的应用越来越引起了重视。
该工艺主要依靠特定的厌氧菌种,在无氧环境下将氨氮直接转化为氮气,这样既省去了传统好氧法所需的曝气过程,降低了能源消耗,也避免了污泥污染的问题。
在一些中小型农村污水处理项目中,通过ANAMMOX工艺的引入,达到了去除氮氮达90%以上的效果。
另一方面,先进的物理化学处理方法同样在农村污水治理中取得了积极进展。
膜分离技术由于其高效、节能、占地面积小,被越来越多地应用于农村污水处理。
膜技术主要包括超滤、纳滤及反渗透等,通过膜的选择性渗透原理,有效去除污水中的悬浮物、病原体及少量溶解性污染物。
常见污水处理工艺原理、优缺点及处理效率对比A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有肯定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充分供氧条件下,自养菌的硝化作用将NH3N(NH4+)氧化为NO3,通过回流掌控返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
2.A/O内循环生物脱氮工艺特点依据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的阅历,我们总结出(A/O)生物脱氮流程具有以下优点:1.效率高。
该工艺对废水中的有机物,氨氮等均有较高的去除效果。
当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。
2.流程简单,投资省,操作费用低。
该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。
尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。
3.缺氧反硝化过程对污染物具有较高的降解效率。
如COD、BOD5和SCN在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。
污水处理厂二次沉淀池水质净化效果的评价与优化研究二次沉淀池是污水处理厂中重要的处理单元之一,其主要功能是进行初步的固液分离和去除悬浮污泥。
在污水处理过程中,二次沉淀池的水质净化效果直接影响着后续处理步骤的效果和整个处理系统的运行稳定性。
因此,评价二次沉淀池的水质净化效果并进行优化研究具有重要的理论意义和实践应用价值。
首先,评价二次沉淀池的水质净化效果需要从处理效果、处理能力和处理稳定性三方面进行综合考虑。
处理效果是评价水质净化效果的重要指标之一,可通过比较进出水水质指标的变化来进行评估。
常用的水质指标包括悬浮物、浊度、COD、BOD和氮磷等。
通常情况下,经过二次沉淀池处理后,悬浮物和浊度的去除率可以达到较高水平,而COD、BOD和氮磷的去除率则受到水质、操作条件和污泥特性等因素的影响。
评价二次沉淀池的水质净化效果,可以通过对关键水质指标的监测和分析,结合国家和地方排放标准进行对比,从而判断处理效果的好坏。
处理能力是指二次沉淀池对污水处理量的适应能力,也是评价水质净化效果的重要指标之一。
在评价处理能力时,需要考虑二次沉淀池的尺寸、水力负荷和污泥负荷等因素。
通常情况下,二次沉淀池的尺寸越大,处理能力越大,处理效果也会相应提高。
此外,合理设计水力负荷和污泥负荷,调整进水流量和进水浓度,都可以对二次沉淀池的处理能力进行优化,从而提高水质净化效果。
处理稳定性是指二次沉淀池在长时间运行过程中,对进水水质波动和污泥负荷变化的适应能力。
处理稳定性与水质净化效果密切相关,也是评价水质净化效果的重要指标之一。
在评价处理稳定性时,需要考虑污泥沉降性能、污泥产量和泥浆浓度等因素。
通过控制进水负荷和维持合适的污泥含水率,可以提高二次沉淀池的处理稳定性,从而优化水质净化效果。
二次沉淀池水质净化效果的优化研究主要包括进水水质调整、工艺改进和运行管理三个方面。
首先,进水水质的调整是提高水质净化效果的关键措施之一。
通过优化原水处理工艺和提供稳定的进水水质,可以减少二次沉淀池的处理负荷,提高处理效率。
一体化AO工艺处理生活污水设计及运行效果分析一体化AO工艺处理生活污水是一种常见的污水处理方法,它通过一系列的生物和化学过程将污水中的有机物、悬浮物、营养物等进行去除和转化,从而达到净化水质的目的。
本文将对一体化AO工艺处理生活污水的设计及运行效果进行分析。
一、设计原则1.初次设计要考虑工艺效果、处理能力和经济性,并根据当地环境条件和污水性质来确定适合的工艺流程。
常见的一体化AO工艺包括厌氧池、好氧池和沉淀池等。
2.生活污水处理过程中,应充分考虑对氮磷等有机营养物质的去除,以避免对环境产生污染。
3.整体系统的设计要满足污水处理的高效性、稳定性和安全性要求,预留适当的余量以应对未来的扩建和改造。
二、工艺流程1.进水预处理:对进入污水处理厂的生活污水进行格栅、沉砂等机械预处理,去除大块物质和杂质。
2.厌氧池:在这一环节中,通过厌氧菌的作用,有机物质被分解成甲烷和二氧化碳等有机酸,部分氮磷化合物还在这个环节被转化为亚硝酸和亚硝酸盐。
3.好氧池:进入好氧环节后,利用好氧菌的作用将有机物质进一步分解为水和二氧化碳,同时将亚硝酸和亚硝酸盐氧化为硝酸盐。
4.沉淀池:经过好氧池的处理,水质中的有机物和氮磷等营养物质已经大量去除,进入沉淀池后,通过重力作用将悬浮物和污泥沉淀下来。
5.出水处理:经过沉淀池的净化,出水已经达到一定的水质要求,可以通过一系列的后续处理,例如消毒或再生利用,以满足具体的要求。
1.去除率高:一体化AO工艺处理生活污水可以有效去除水中的有机物、悬浮物、氮磷等污染物质,去除率较高,大大改善了出水的水质。
2.厌氧池作用明显:通过厌氧池的处理,可以充分利用厌氧菌的作用将有机物质分解,有效提高水质的净化效果。
3.稳定性较强:一体化AO工艺具有较强的稳定性,在处理生活污水过程中,可以保持较好的稳定运行,减少机械故障的发生。
4.灵活性:一体化AO工艺的设计可以根据实际需要进行调整和改善,适用于不同规模和不同性质的生活污水处理厂。
污水处理报告一、背景介绍污水处理是指将含有废水的水体经过一系列的处理工艺,去除其中的污染物质,使其达到国家相关排放标准,以保护环境和人类健康的工作。
本报告将详细介绍某污水处理厂的处理工艺和处理效果。
二、污水处理工艺1. 初级处理初级处理是指对污水进行物理处理,以去除大颗粒悬浮物和沉淀物。
该厂采用格栅和沉砂池进行初级处理。
格栅用于拦截大颗粒杂质,如纸张、树叶等,沉砂池则通过重力沉淀将污水中的砂石等沉积物去除。
2. 次级处理次级处理是指对初级处理后的污水进行生物处理,以去除有机物和氮磷等营养物质。
该厂采用活性污泥法进行次级处理。
污水经过曝气池,引入氧气,促使活性污泥中的微生物分解有机物,同时去除部分氮磷等营养物质。
3. 高级处理高级处理是指对次级处理后的污水进行进一步的处理,以去除残留的污染物质。
该厂采用深度过滤和紫外线消毒进行高级处理。
深度过滤通过多层过滤介质,如石英砂、活性炭等,去除微小悬浮物和溶解有机物。
紫外线消毒则利用紫外线的杀菌作用,彻底消灭残留的细菌和病毒。
三、处理效果评估1. 净化率该污水处理厂经过以上工艺处理后,对污水中的悬浮物、有机物和营养物质的去除率均达到了国家相关排放标准要求,净化效果显著。
2. 出水水质经过处理后的污水出水水质符合国家相关排放标准,水质清澈透明,无异味,可以安全排放到周边水体中。
3. 处理能力该污水处理厂的设计处理能力为每天处理X吨污水,根据实际运行情况,处理能力稳定可靠,能够满足当地的污水处理需求。
四、环境影响评估1. 噪音控制污水处理过程中产生的噪音得到有效控制,不会对周围居民和环境造成噪音污染。
2. 气体排放污水处理过程中产生的气体经过处理设备去除有害物质后,排放的气体符合国家相关排放标准,不会对大气环境造成污染。
3. 残留物处理处理过程中产生的污泥经过脱水处理后,可以作为肥料或填埋处理,不会对土壤和地下水造成污染。
五、运行管理该污水处理厂建立了完善的运行管理体系,定期对处理设备进行检修和维护,确保设备的正常运行。
污水处理各段工艺去除率标题:污水处理各段工艺去除率引言概述:污水处理是保护环境、维护人类健康的重要工作,而不同的污水处理工艺在去除污染物方面的效果也有所不同。
本文将重点探讨污水处理各段工艺的去除率,匡助读者更好地了解污水处理过程中各个环节的效果。
一、预处理工艺去除率1.1 筛网过滤:筛网过滤是预处理工艺的一种常见方法,通过筛网将较大的杂物拦截下来,去除率通常在80%以上。
1.2 沉砂池:沉砂池通过重力沉降去除污水中的沙、泥等颗粒物,去除率可达90%以上。
1.3 调节池:调节池主要用于调节污水的流量和水质,对悬浮物和有机物的去除率普通在60%摆布。
二、生化处理工艺去除率2.1 活性污泥法:活性污泥法是一种常见的生化处理工艺,通过微生物降解有机物,去除率可达90%以上。
2.2 厌氧消化:厌氧消化是一种高效的处理工艺,通过厌氧菌降解有机物,去除率在85%以上。
2.3 好氧消化:好氧消化是利用好氧条件下的微生物降解有机物,去除率可达80%以上。
三、深度处理工艺去除率3.1 植物净化:植物净化是一种绿色环保的深度处理工艺,通过植物的吸收和生长去除污染物,去除率在70%摆布。
3.2 膜分离:膜分离是一种高效的深度处理工艺,通过膜的选择性截留去除污染物,去除率可达95%以上。
3.3 化学沉淀:化学沉淀是一种常见的深度处理工艺,通过添加化学药剂将污染物沉淀下来,去除率在90%以上。
四、消毒工艺去除率4.1 氯气消毒:氯气消毒是一种常用的消毒方法,对细菌、病毒等有较好的杀灭效果,去除率可达99%以上。
4.2 紫外线消毒:紫外线消毒是一种无化学物质参预的消毒方法,对细菌、病毒等有高效的灭活效果,去除率在99%以上。
4.3 臭氧消毒:臭氧消毒是一种高效的消毒方法,臭氧对细菌、病毒的氧化能力强,去除率可达99.9%以上。
五、综合处理工艺去除率5.1 A2O工艺:A2O工艺是一种综合处理工艺,结合了生化反应和沉淀过程,去除率可达90%以上。
污水处理总结一、引言污水处理是保护环境、维护生态平衡的重要环节,它的目标是将污水中的有害物质去除或转化为无害物质,以确保水质达到国家和地方标准要求。
本文将对污水处理的工艺流程、技术指标以及处理效果进行总结和分析。
二、污水处理工艺流程1. 初级处理初级处理主要通过物理方法去除污水中的固体悬浮物和大颗粒有机物。
常用的方法包括格栅过滤、沉砂池和沉淀池等。
格栅过滤可以去除大颗粒杂质,沉砂池可以沉淀较重的悬浮物,沉淀池则用于沉淀有机物。
2. 次级处理次级处理是在初级处理的基础上进一步去除污水中的溶解性有机物和氮、磷等营养物质。
常用的方法有活性污泥法、厌氧消化和生物膜法等。
其中,活性污泥法通过利用微生物分解有机物来净化水体,厌氧消化则将有机物转化为沼气,生物膜法则通过生物膜上的微生物去除有机物。
3. 深度处理深度处理是为了去除污水中的微量有机物、微生物和重金属等难以降解的物质。
常用的方法包括活性炭吸附、臭氧氧化和紫外线消毒等。
活性炭吸附可以去除有机物和重金属离子,臭氧氧化可以分解难降解的有机物,紫外线消毒则可以杀灭细菌和病毒。
三、污水处理技术指标1. 净化效率净化效率是衡量污水处理工艺的重要指标,通常以去除率来表示。
对于不同的污染物,其去除率要求也不同。
例如,COD(化学需氧量)的去除率应达到80%以上,BOD(生化需氧量)的去除率应达到90%以上。
2. 出水水质出水水质是指处理后的污水是否满足国家和地方的排放标准。
常见的出水水质指标包括COD、BOD、氨氮、总磷和总氮等。
根据不同的用途,出水水质要求也有所不同。
3. 能耗能耗是指污水处理过程中所消耗的能量,包括电力和化学药剂等。
降低能耗是提高污水处理工艺经济性的关键。
常用的降低能耗的方法包括改进工艺流程、优化设备配置和提高操作管理水平等。
四、污水处理效果分析根据实际的污水处理工程数据统计和分析,我们可以得出以下结论:1. 在初级处理阶段,格栅过滤和沉砂池的效果较好,能够有效去除大颗粒杂质和沉淀悬浮物。
污水处理工艺水质净化效果分析
发表时间:2019-06-10T11:38:47.517Z 来源:《防护工程》2019年第5期作者:朱琳[导读] 但五日生化需氧量和总磷三种污染物的处理能力,效率明显高于A厂B处理厂,因此认为B厂工艺更适合该地区污水废水的处理。
山东泉建工程检测有限公司山东济南 250014 摘要:对某新区两座不同处理工艺的污水处理厂长达一年的进出水水质比较,发现两种工艺对氨氮和总氮处理效率相当,但是在化学需氧量、五日生化需氧量和总磷三类污染物处理能力方面,B厂处理效率明显高于A厂。
我们认为B厂工艺更加适合处理该地区的污废水。
关键词:污水处理;水质净化效果;处理工艺随着大量污水处理厂的建设和投入使用,新的污水处理厂迫切需要提高符合条件的排放的操作和操作水平。
然而,就目前的国际废水处理技术而言,每一种方法都有一个适用性问题。
一、国内污水处理工艺概况
自工业革命以来,废水处理已经被越来越多地被关注,从原始的自然处理到简单的初级处理,到各种先进技术的使用,到废水的深层处理和再利用。
处理过程也从传统的活性污泥法、氧化污水法、A/O、A2/O、AB、SBR(包括CASS过程)等方法发展,以满足不同的疏散要求。
目前,二次废水处理通常使用活性污泥法、生物膜法和生态处理法,以补充微生物有氧代谢在废水中去除有机物。
日本已经开发出生物反应器,能够有效地消除工业和家庭废水中的氮化合物,并将氮化合物转化为氮。
在20世纪90年代,美国开发了先进的电絮凝废水处理技术,这些技术运行良好,水质稳定;到20世纪末,欧盟国家已经开发出了等离子污水处理技术,其耗电量是一般臭氧发生器的十倍以上。
由于卫生条件要求过高或成本过高,这些先进的废水处理工艺尚未大规模投入使用。
与发达国家相比,废水处理在我国初始阶段,与污水处理厂生物处理工艺作为主体工艺,也有部分地区采用化学、物理强化一级处理、土地处理法等。
二、工程概况与工艺
1.再生水厂。
A厂是近几年建成的,设计污水处理能力为20000 m3/d,采用h20工艺,出水水质达到《城市污水处理厂污染物排放标准》A级标准。
该装置近年来运行良好,整个处理过程如图l所示。
A20工艺简单,总水力滞留时间比其他类似工艺短,工艺交替进行厌氧(缺氧)和好氧。
不适合丝状菌繁殖,污泥膨胀,不需要加药等。
但是,提高除氮效果比较困难,污泥生长受到一定的限制,使得提高除磷效果比较困难等缺点。
2.B可再生水厂。
B厂也是近几年建成的,工艺流程分为预处理、生物处理、深度处理、污泥处理和脱臭五个部分。
流程流程如图2所示。
主要处理工艺为卡塞尔氧化沟3000。
再生水厂的出水水质应符合《北京市水污染排放标准》(DBl 1/307-2005)B级标准,并符合国家和北京市有关标准。
Carussel氧化沟是荷兰DIN公司开发的,它是为了满足在较深的氧化沟中使混合料充分混合,并能保持较高的传质效率,克服氧化沟浅、混合效果差等缺陷而开发的。
实践证明,该工艺具有投资少、效率高、可行性好、管理方便、运行维护成本低等优点。
2.抽样和分析方法。
样本收集和存储根据水质检测中心水和废水监测分析方法相关要求Ⅲ,每月固定指向一个瞬时样本,分析化学需氧量(cod)生化需氧量(CODcr、)、5(bod)、氨氮(NH5 N)、总氮(TN)、总磷(TP),共有五个指标。
进口采样点为沉淀池出口,出口采样点为二次沉淀池出口。
样品分析。
水质分析方法:CoDcr采用GB/t22597-2008重铬酸盐法,BODs采用hj505-2009稀释接种法,nh3-n采用hj535-2009 Nash试剂分光光度法,TN采用GB/Tl 1894-1989碱性过硫酸钾消解紫外分光光度法,TP采用GB/t11893-1989钼酸铵分光光度法。
三、结果与讨论
1.入口水温分析。
相关研究表明,进水温度对污水处理效果有一定的影响。
每年6月瞧水温较高,21℃~28℃;1~3个月和12月水温很低,低于12℃;至少1个月,低于5℃。
但水温不影响A、B工艺的处理效果。
2.化学需氧量。
城市污水处理厂的主要功能之一是减少污水中的有机污染物,减少污染物总量。
浓度。
在图2中(a)和(b)为两个处理厂进水和出水的CODcr变化。
从图中可以看出,两厂的处理效果非常好,出水水质保持稳定,达到了《城市污水处理厂污染物排放标准》(gbl8918-2002)B级标准所憎恶的1。
TN采用Hj535-2009 Nash试剂分光光度法,GB/Tl 1894-1989碱性过硫酸钾消解紫外分光光度法,TP 采用GB/t1183-1989钼酸铵分光光度法。
B厂进水水质较A厂差,B厂最大COD进水达到550mg l-1,A厂最大COD进水达到300mg l-1。
A厂年均进水浓度为90mg/L,B厂年均进水浓度为216mg/L。
5 mg/L、A、B工厂年平均加工效率可达88。
和94年的9%。
两厂出水CODcr均低于25mg l-1,温度和进水浓度对两种工艺处理效果无显著影响。
出水完全符合排放要求。
3.五日生化需氧量。
图1(C)和(d)显示了两种植物的bod进出水的变化。
从图中可以看出,BOD和COD。
,两者之间存在着密切的相关性。
两种指标的进水浓度具有一致的波动特征。
B厂进水浓度明显高于A厂,A厂进水浓度年均值为30。
4毫克/升,B工厂是98。
1 mg/L,B 厂的水是A厂的3倍,两厂最大进水浓度分别为104mg/L和379 mg/L,也是A厂的3倍左右。
对比化学需氧量浓度分布图,可以看出水体具有良好的生物降解性。
根据出水指数,A厂处理后的年平均浓度为4。
8 mg/L,B厂年平均出水浓度仅为2。
在3 mg/L时,平均处理效率达到84。
和97年的2%。
7%,可以看出植物B的治疗效率高于工厂,但是工厂的废水水质可以满足排放要求,不到20 mg/L,出水水质稳定,外部条件的变化没有显著影响的效果。
4.氨氮。
图3(a)和(b)分别为a厂和b厂氨氮进水和出水监测情况。
可以看出,进水浓度随时间的变化规律不明显。
2 mg/L,11月最低浓度仅为1,9 mg/L,进水浓度为10.4 mg/L,B植物9月份采水量最差,浓度为92.7 mg/L,7月份水摄入量较好,只有11.6mg/L,年均进水浓度
33.8mg/L:A、B厂年平均出水浓度为0.645 mg/L、1.07mg/L,a厂处理效率93.8%,B厂96.8%,出水水质良好,完全满足排放要求。
图3(a)和(b)是A和B厂进出水COD=,变化情况;(c)和(d)是A和B厂进出水BOD。
,变化情况5.总氮。
从图4(c)和(d)可以看出,A厂最大进水总氮浓度为5月,浓度为44.2毫克/升,最少3个月,浓度10。
7mg/L,达到排放要求,年均进水浓度23.1 mg/L,B厂最大进水时间为9月份,浓度为95。
7毫克/升,最低二月,浓度16.2mg/L,年平均进水量为38 mg/L,说明进水总氮含量相对较低。
与氨氮浓度分布图相比,ni-h+占总氮的比例相对较低,并不是氮污染物的主要来源。
一个工厂的年平均污水浓度是
10.2mg/L,植物B的年平均浓度为13.1 mg/L,出水浓度接近均值,处理效率分别为55.8%和65.8%。
,这表明这两个工厂总氮的处理技术,处理效率低可能与水浓度、温度和硝化过程,处理效率不高,但工厂废水浓度符合排放要求,B工厂在9月和10月是异常波动,连续不出现,超过1 B 的总氮要求20 mg/L。
图4(a)(b)A和B厂进出水NH3-峒变化情况;(c)(d)A和B厂进出水TN变化情况6.AB两个厂进出水浓度变化情况,A厂进水最大浓度值为6月份3.47 mg/L,最小值是9月份为0.47 mg/L,年均进水浓度值为1.83 mg/LB厂进水浓度最大值为12月份3.77 mg/L,最小值是7月份仅为0.97 mg/L,进水浓度年均值为2.43 mg/L。
出水水质来看,A厂年均出水浓度为0.92 mg/L,B厂为0.31 mg/L,处理效率分别为49.7%和87.2%,总体来看,B厂对磷的处理效率要远远的优于A厂,从出水达标情况来看,图中可得出A厂全年达标排放率仅为50%,有6个月出现不达标排放,而B厂全年达标排放率为91.7%,仅6月出现不达标。
表明B厂处理工艺效果更好,比A厂工艺更加适合该地区污水的处理。
基于两种不同的污水处理厂的过程长达一年的水质监测,分析治疗效果比较,发现温度流入浓度处理条件对两个工厂没有对效率产生重大影响,两厂氨氮和总氮处理效率,但五日生化需氧量和总磷三种污染物的处理能力,效率明显高于A厂B处理厂,因此认为B厂工艺更适合该地区污水废水的处理。
参考文献:
[1]徐小海.关于城市污水处理厂设计的若干问题讨论[J].给水排水,2014,27(7).
[2]马东.城市污水处理工艺综述[J].新疆大学学报,2014,20(1)。