厌氧颗粒污泥的培养注意事项
- 格式:doc
- 大小:50.50 KB
- 文档页数:2
厌氧颗粒污泥分为淀粉、淀粉糖、柠檬酸、酒精、造纸等行业高浓度污水处理系统中的高负荷厌氧反应器(EGSB、IC)生产出的新鲜颗粒污泥。
厌氧反应器的容积负荷、上升流速和去除率均分别高于20kgCOD/m3∙d、5m/h和 90%。
厌氧颗粒污泥体型规则呈球形,VSS/TSS≥0.7,沉降速度50-150m/h,粒径0.5-2mm,颗粒度大于90%,最大比产甲烷速率≥400mlCH4/gVSS∙d。
作为接种污泥可用于淀粉、淀粉糖、柠檬酸、酒精、啤酒、造纸、蛋白、食品、味精等行业的污水处理系统中高负荷厌氧反应器(IC、EGSB、UASB 等)的启动运行。
2.4 碱度一般认为,进水水质中碱度通常应在1000mg/L(以CaCO3计)左右,而对于以碳水化合物为主的废水,进水碱度:COD >1:3是必要的。
有学者研究表明,在颗粒污泥培养初期,控制出水碱度在1000mg/L(以CaCO3计)以上能成功培养出颗粒污泥。
在颗粒污泥成熟后,对进水的碱度要求并不高[2].这对降低处理成本具有积极意义。
2.5 微量元素及惰性颗粒微量元素对微生物良好的生长也有重要作用。
其中Fe,Co,Ni,Zn等对提高污泥活性,促进颗粒污泥形成是有益的。
此外,惰性颗粒作为菌体附着的核,对颗粒化起着积极的作用。
另外,有研究表明,投加活性炭可大大缩短污泥颗粒化的时间;在投加活性炭后颗粒污泥的粒径大,并使反应器运行更加稳定[3]. (考试大环境影响评价师)2.6 SO42-关于SO42-对颗粒污泥的形成目前尚在讨论中。
据Sam-Soon的胞外多聚物假说,局部氢的高分压是诱导微生物产生胞外多聚物从而与细菌表面之间的相互作用,通过带电基团的静电吸引及物理接触等架桥作用,构成一种包含多种组分的生物絮体,从而形成颗粒污泥的必要条件,而有硫酸盐存在时,由于硫酸盐还原菌对氢的快速利用,使反应器无法建立高的氢分压,从而不利于形成颗粒污泥[5].但有些国内外外学者发现处理含高硫酸盐废水时,会有非常薄的丝状体产生,它可作为产甲烷丝菌附着的原始核,从此开始颗粒的形成;硫酸盐还原产生的硫化物与一些金属离子结合形成不溶性颗粒,可能成为颗粒污泥生长的二次核[4][5].2.7 接种污泥及接种量一般来说,对接种污泥无特殊要求,但接种污泥的不同对形成颗粒污泥的快慢有直接影响。
污水处理厌氧工艺中颗粒污泥培养注意事项目前厌氧生物技术在食品、化工行业有广泛的应用,但是在厌氧污泥中,颗粒污泥的接种、培养、驯化及贮存还存在许多的不足,一个新的项目完成后,调试厌氧工艺时,只能找类似相同行业的厌氧污泥进行接种驯化,同时厌氧系统在检修过程中,厌氧颗粒污泥的贮存、培养没有一个很好的处理方法。
那么下面专业污水处理环保公司就给大家解析污水处理厌氧工艺中颗粒污泥培养注意事项。
厌氧颗粒污泥培养床集成装置,它包括主体培养床、搅拌装置、自动加药系统、排气装置、排污装置、恒温系统、PLC控制系统,人机界面等。
进行厌氧颗粒污泥的培养,首先要有接种污泥,可以采用颗粒污泥,厌氧絮状污泥或好氧污泥进行接种,驯化时需要控制的因素有:1、温度:温度对于厌氧系统的启动与保持系统的稳定性具有重要的影响。
厌氧反应器在常温(25℃),中温(33℃~41℃)和高温(55℃)下均能顺利启动,并形成颗粒污泥。
2、碱度:碱度对污泥颗粒化的影响表现在两方面:一是对颗粒化进程的影响;二是对颗粒污泥活性的影响。
颗粒污泥培养床内控制PH值在6.8-7.2之间。
3、有机负荷率和污泥负荷率:可降解的有机物为微生物提供充足的碳源和能源,是微生物增长的物质基础。
在微生物关键性的形成阶段,应尽量避免进水的有机负荷率剧烈变化。
实验研究表明,由絮状污泥作为种泥的初次启动时,有机负荷率在0.2~0.4 kgCOD/(kgVSS·d)和污泥负荷率在0.1~0.25kgCOD/(kgVSS·d)时,有利于颗粒污泥的形成。
4、营养元素和微量元素:颗粒污泥的培养,需要C、N、P元素来提供营养元素,同时,颗粒污泥的培养还需要铁、镍、钴和锰等微量元素来进行辅助培养,铁、镍、钴和锰等微量元素是产甲烷辅酶重要的组成部分。
5、选择压:通常将水力负荷率和产气负荷率两者作用的总和称为系统的选择压。
选择压对污泥床产生沿水流方向的搅拌作用和水力筛选作用,是厌氧反应器形成颗粒污泥的必要条件。
厌氧颗粒污泥的污泥浓度、污泥量以及污泥活性,如达不到上述要求时厌氧反应器的效率则会受到影响,因此甲方必须按质按量的投加。
那么该颗粒污泥标准是多少呢?
厌氧颗粒污泥固含量一般为10%,粒径为1-3mm,VSS/TSS>65%,具体等级划分,如下:
厌氧颗粒污泥培养办法
1、厌氧颗粒污泥的制备
对颗粒污泥或絮状污泥进行接种,接种后密封在恒温水浴中保存待用。
2、加入营养液及微量元素
向密闭的反应器中加入制备好的厌氧颗粒污泥,再加入营养液到达指定的刻度,所述营养液包括必须营养液和微童元素物质。
3、设置厌氧颗粒污泥培养条件
开启设置在所述反应器内的搅拌装置,调整转速进行搅拌,采用定向搅拌,同时将所述反应器内废水的PH值控制在6.5~8. 2之间,温度控制在25~55C 之间,并使氧化还原电位值控制在小于或等于-350mV,盐度小于0000mg/1。
4、排泥
在反应过程中如出现污泥膨胀悬浮,则关闭所述搅拌装置静置5~ 15分钟,通过设置在所述反应器上的第一阀]将腾胀污泥排出:当厌氧颗粒污泥粒径达到
3~7mm,色泽灰黑色,关闭所述搅拌装置静置10~ 30分钟,打开设置在所述反应器上的第二阀门,将污泥颗粒排出。
以上就是厌氧颗粒污泥培养办法以及标准的一些相关介绍,希望对大家进一步的了解有所帮助。
作为厌氧技术中的代表,颗粒污泥的使用给污水处理行业带来了一些新的突破,处理效果较之普通污泥更为出色,由于其特殊的结构和特性,在使用和培育方面也提出了更高的要求,下面就有关注意事项给您介绍一下。
当厌氧颗粒污泥培养成功后即可投产试运行。
试运行的水量可根据来水情况安排。
一般开始试运行时按照设计量的一半运行,待正常时再投入另一半试运行,在使用中需要考虑的变量因素有污水的温度、pH、电导率、曝气池中的溶解氧和污泥浓度、消化池内泥温、pH値、加热污泥系统的运行情况、沼气柜的运行情况、脱水机的运行状况。
给您详细介绍一下使用厌氧颗粒的注意事项:
1、有机负荷率和污泥负荷率
可降解的有机物为微生物提供充足的碳源和能源,是微生物增长的物质基础。
在微生物关键性的形成阶段,应尽量避免进水的有机负荷率剧烈变化。
2、接种污泥
一般说来,用处理同样性质废水的厌氧反应器污泥作种泥是有利的,但在没
有同类型污泥时。
不同的厌氧污泥同样对反应器的启动具有一定的影响,没有处理同样性质废水的厌氧反应器污泥作种泥时,厌氧消化污泥或粪便可优先考虑。
3、营养元素与微量元素
在当废水中N、P等营养元素不足的时候,对已经形成的颗粒污泥会发生细胞自溶,导致颗粒破碎,所以要适当加以补充。
N源不足时,可添加氮肥、含氮量高的粪便、氨基酸渣以及剩余活性污泥等;P源不足时,可适当投加磷肥。
铁、镍、钴和锰等微量元素是生产甲烷辅酶重要的组成部分,适量补充可增加所有种群单位质量微生物中活细胞的浓度及它们的酶活性。
在应用和推广厌氧颗粒污泥的过程中需要注意的事项还有很多,我们也会在日后的文章中不断地给大家补充说明。
随着工业的不断发展,污染问题也得到了很多人的关注,进而为了保护环境,需要采用专业的污水处理技术以降低污水中有害物的排放。
进而于厌氧颗粒污泥应声而来,那么用该产品进行废水处理有什么作用呢?1、对毒性废水的降解2、降解五氯苯酚(PCP)3、对重金属有吸附作用4、厌氧菌生长缓慢,难富集,若形成颗粒污泥,此菌可大量滞留,并形成与反硝化菌的共生体系,可处理低C高NH3-N废水。
厌氧颗粒污泥使用注意事项1、营养元素与微量元素在当废水中N、P等营养元素不足的时候,不易于形成颗粒,对已经形成的颗粒污泥会发生细胞自溶,导致颗粒破碎,所以要适当加以补充。
N源不足时,可添加氮肥、含氮量高的粪便、氨基酸渣以及剩余活性污泥等;P源不足时,可适当投加磷肥。
铁、镍、钴和锰等微量元素是生产甲烷辅酶重要的组成部分,适量补充可增加所有种群单位质量微生物中活细胞的浓度及它们的酶活性。
2、选择压通常将水力负荷率和产气负荷率两者的作用总和称为系统的选择压。
选压对污泥床产生沿水流方向的搅拌作用和水力筛选作用,是UASB等一系列无载体厌氧反应器产生颗粒污泥的必要条件。
高选择压条件下,水力筛选作用可以将微小的颗粒污泥与絮体污泥分开,污泥床底聚集比较大的颗粒污泥,而比重较小的絮体污泥则进入悬浮层区,或被淘汰出反应器。
定向搅拌作用产生的剪切力使颗粒产生不规则的旋转运动,有利于丝状微生物的相互缠绕,为颗粒的形成创造一个外部条件。
3、有机负荷率和污泥负荷率可降解的有机物为微生物提供充足的碳源和能源,是微生物增长的物质基础。
在微生物关键性的形成阶段,应尽量避免进水的有机负荷率剧烈变化。
4、碱度碱度对污泥颗粒化的影响表现在两方面:一是对颗粒化进程的影响;二是对颗粒污泥活性的影响。
后者主要表现在通过调节pH值(即通过碱度的缓冲作用使pH值变化较小)使得产甲烷菌呈不同的生长活性,前者主要表现在对污泥颗粒分布及颗粒化速度的影响。
在一定的碱度范围内,进水碱度高的反应器污泥颗粒化速度快,但颗粒污泥的产甲烷活性低;进水碱度低的反应器其污泥颗粒化速度慢,但颗粒污泥的产甲烷活性高。
直接培养法培养颗粒污泥时通常使用非颗粒性的污泥,虽然厌氧处理工艺的大多数菌种要求严格的厌氧条件,但在培养启动时不必追求严格的厌氧。
因此直接培养时既可以使用非颗粒性的纯厌氧污泥,也可以使用经过陈化的好氧剩余污泥,如果有搅拌设施,还可以投入未经消化的脱水污泥。
即使引入的污泥中含有一定量的溶解氧,只要不再补充氧,反应器内的溶解氧也会很快被接种泥中的兼性菌消耗掉而最终形成严格的厌氧条件。
其他的注意事项如下:(1)最好一次投加足够量的接种厌氧污泥,同时进水中要补充足够的营养盐,必要时还要添加硫、钙、钴、钼、镍等微量元素。
(2)为使颗粒污泥尽快形成,开始进水时CODcr,浓度不宜过高,一般要低于5000 mg/L,可采取加大回流比的方法,使进水负荷按污泥负荷计应低于O.1~0.2kg(CODcr/(kgMLSS·d)。
同时要将反应器内温度严格控制在35~40℃或50~55℃之间,必要时将进水可用蒸汽加热;pH值应保持在7~7.2之间,进水碱度一般不低于750mg/L。
(3)出现小颗粒污泥后,为使小颗粒污泥发展为大颗粒污泥,要适当提高反应器表面水力负荷,将絮状污泥和分散的细小颗粒污泥从反应器中“洗出”。
但是一定要使“洗出"缓慢进行、逐步提高水力负荷,过度的“洗出”会使反应器内污泥量大量减少而使颗粒污泥培养失败。
有关试验表明,当表面水力负荷在O.25m3/(m2·h)以上时,会使污泥产生水力分级现象。
(4)在培养初期,出水中会夹带着一些污泥絮片,反应器内污泥浓度有所降低,在颗粒污泥尚未形成之前,即使反应器具有一定去除率,但由于污泥流失量大于生物增长量,反应器内污泥浓度还会继续下降。
颗粒污泥形成后,随着容积负荷的不断加大,增殖的生物量才会大于污泥流失量,反应器内污泥浓度开始增加。
因此,培养初期污泥流失造成污泥浓度下降是正常现象,因培养时间较长,要有耐心,注意观察和分析有关化验数据。
(5)培养不能长期在低负荷下运行,当出水水质较好、CODcr去除率较高后,应当逐渐提高负荷,但不能突然提高负荷,以防止造成冲击,对污泥颗粒化不利。
市新琪安科技EGSB厌氧污泥床反应器调试方案工业大学2013.4.13EGSB调试及厌氧颗粒污泥的驯化一、调试计划1、颗粒污泥菌种经研究决定EGSB颗粒污泥菌种选用金禾柠檬酸集团污水站的颗粒污泥,经现场考察,颗粒污泥的性状非常好。
其粒度分布较均匀,大小在2-3mm,表面光滑,呈现灰黑色;颗粒的密度较大,沉降性能非常好,几乎几秒钟的时间,颗粒就与水分离,且水色清澈,没有浑浊现象。
产气量大,静置几分钟时间,容器就产生大量的气泡升浮到液面,需要不时地打开容器的瓶盖排气。
见图示。
2、颗粒污泥的运输由于调试时间紧,近日气温高,决定选用30吨槽罐车由高速公路运输。
由于颗粒污泥价格较高,考虑柠檬酸废水与三氯蔗糖废水在水质性质上存在一定的差异,需要积累和掌握三氯蔗糖废水颗粒污泥驯化的经验和要求,以减少调试的风险,保证调试时间。
基于上述的考虑,调试分两阶段进行。
第一阶段先调试西北面的EGSB反应器,待调试成功进入第二阶段调试余下的反应器。
根据调试经验和试验结果,利用颗粒污泥进行驯化,所需颗粒污泥量要求大于12kg/m3,据此计算,第一阶段一个罐体所需干污泥量大于9600kg,按污泥的含水率为90%~93%计算,则湿污泥量为96t~120t。
按100t采购,三辆槽罐车运输。
3、颗粒污泥的验收运输车到现场后,应进行验收含水率、颗粒形态和污泥量检验验收:(1)含水率检测现场准备一只100ml或1000ml玻璃量筒,运输车到现场后,取泥量至量筒的刻度,经5~10分钟的静置沉淀,泥水界面大于8ml或80ml,即含水率满足要求;(2)颗粒形态观察观察沉淀筒中的颗粒污泥的形态。
如颗粒的大小约2~3mm,形状呈球形或橄榄状,颜色呈灰黑色,即形态满足要求;(3)污泥量估算根据槽罐车的形状,量测污泥的液位深度。
通常液位超过罐顶,在罐顶人孔颈位附近。
否则,量不够。
4、颗粒污泥的装填(1)排空EGSB反应罐污水,以免现存废水对接种颗粒污泥产生毒害作用;(2)直接装填,减少中间环节从槽罐车到反应器宜直接装填,尽可能减少中间环节,以免打碎颗粒污泥;(3)应采用螺杆泵增压提升颗粒污泥输送提升应采用螺杆泵,以免导致颗粒污泥破碎解体;(4)管道输送流速应小于1.0m/s,以免打碎污泥;(5)适当加热在输送污泥罐上设置间接加热装置,使污泥温度保持在35℃。
厌氧菌在有氧的情况下不能生长。
要培养厌氧菌,必须创造一个环境中的游离氧,以降低氧化还原电势。
如疱肉培养基、硫基乙酸钠培养基,牛心脑浸液培养基等。
常用的厌氧培养方法有许多,可根据实际情况选用。
1.厌氧缸法:接种好标本的平板或液体培养基试管,可放入厌氧缸内培养,厌氧缸是普通的干燥缸,用物理化学的方法使缸内造成厌氧环境,从而将厌氧菌培养出来。
2.厌氧袋:即在塑料袋内造成厌氧环境来培养厌氧菌。
塑料袋透明而不透气,内装气体发生管、美兰指示剂管、钯催化剂管、干燥剂。
放入已接种好的平板后,尽量挤出袋内空气,然后密封袋口。
先折断气体发生管,后折断美兰指示剂管,命名袋内在半小时内造成无气环境。
如不突变表示袋内已达厌氧状态,可以孵育(较为推荐)。
3.厌氧手套箱:是迄今为止国际上公认的培养厌氧菌最佳仪器之一。
它是一个密闭的大型金属箱,箱的前面有一个有机玻璃做的透明面板,板上装有两个手套,可通过手套在箱内进行操作,故名。
箱侧有一交换室,具有内外二门,内门通箱内先关着。
欲放物入箱,先打开外门,放入交换室,关上外门进行抽气和换气达到厌氧状态,然后手伸入手套把交换室内门打开,将物品移入箱内,关上内门。
箱内保持厌氧状态,也是利用充气中的氢在钯的催化下和箱中钱残余氧化合成水的原理。
该箱可调节温度,本身是孵箱或孵箱即附在其内,还可放入解剖显微镜便于观察厌氧菌菌落,这种厌氧箱适于作厌氧细菌的大量培养研究,大量培养基可放入作预还原和厌氧性无菌试验。
金属硬壁型厌氧箱的抽气、充气、厌氧环境和温度等均系自动调节。
4.厌氧盒:原理同厌氧袋,有成品销售。
5.生物耗氧法:在一密闭的容器内放以生物,消耗氧气,同时产生二氧化碳,供细菌生长用。
我没见过。
6.焦性末食子酸法:在一洁净的玻片上铺上纱布或滤纸,均匀撒上焦性末食子酸,然后再混入NaHCO3粉末或NaOH溶液,迅速将已接种细菌的平板倒扣在上面,用融化的白蜡封边,造成一个封闭空间。
焦性末食子酸与碱反应后耗氧。
详解污泥厌氧消化工艺1、厌氧消化池消化污泥培养时的注意事项厌氧消化池(1)污泥厌氧消化池处理的对象是活性污泥,一般不存在毒性问题。
但为了加快培养启动过程,除了投入接种污泥外,还应做好加热保温工作。
(2)充分搅拌消化池内的接种污泥加热至规定温度后,再逐渐投加浓缩污泥,同时继续做好加热和搅拌工作,使消化池内的温度始终处于最佳状态。
(3)采用接种培养法时,初期生污泥的投加量与接种消化污泥的数量和培养时间有关,早期可按设计进泥量的30%~50%投加,一般培养到60d后,再逐渐增加投泥量。
(4)经常测定产气量和池内消化液VFA的浓度及pH直、如果由监测结果发现消化进行得很不正常,应立即减少进泥量、或再投加其他类型的消化污泥作为接种污泥重新培养。
(5)为防止发生爆炸事故,接种前应使用氮气将消化池和输气管路系统中的空气置换出来,产生沼气后,再逐渐把氮气置换出去。
(6)污泥厌氧消化池处理的对象是活性污泥,其中的跤、氮、磷等营养物质一般是均衡的,能够适应厌氧微生物生长繁殖的需要。
因此,在消化污泥的培养过程中不必处理高浓度工业废水那样需要加入营养物质。
2、污泥厌氧消化池内设置搅拌的作用混合搅拌是提高污泥厌氧消化效率的关键条件之一,没有搅拌的厌氧消化池,池内料液必然存在分层现象。
透过搅拌可消除分层,增加污泥与微生物的接触,使进泥与池中原有料液迅速混匀,并促进沼气与消化液的分离,同时防止浮渣层结壳。
搅拌良好的消化池容积利用率可达到70%,而搅拌不合理的消化池的容积利用率会降到50%以下。
搅拌可以连续进行,也可以间歇操作,多数污水厂采用间歇搅拌方式。
一般情况下,每隔2~4h搅拌1次,搅拌时间不应超过1h。
通常在进泥和蒸汽加热时同时进行搅拌,而在排放消化液时应停止搅拌、使上清液经静止沉淀分离后排出。
采用底部排泥方式时排泥过程中可停止搅拌,而在采用上部排泥方式时在排泥过程中必须同时进行搅拌。
3、污泥厌氧消化池的搅拌方式(1)池内机械搅拌:即在池内设有螺旋桨,通过池外电机驱动而转动对消化混合液进行搅拌,搅拌强度一般为10~20W/m3池容,所需能耗约为0.0065KW/m3。
污泥培养几点注意事项污泥是生活和工业废水处理后的产物,其中含有大量的有机物和微生物。
为了有效利用污泥,可以进行污泥培养,将有机物转化为有用的产物,如有机肥料、生物能源等。
污泥培养的过程中,需要注意以下几点事项。
一、污泥样品的采集1.应在处理过的污泥中采集样品,避免采集进入污染源中的污泥。
2.采集时应避免污染物的附着,使用干净的工具,避免与周围环境接触。
3.采集时应采集多个地点的样品,以保证代表性。
二、污泥样品的处理1.采集后的污泥样品应放入干净的容器中,并尽快进行处理,避免样品的变质。
2.样品处理过程中应避免高温、强酸、强碱等条件的使用,以免对样品的微生物造成伤害。
3.为避免外来微生物的干扰,采集样品后应尽快进行处理,减少其他微生物的污染。
三、培养基的选择1.培养基的选择需要根据不同的目的选择不同类型的培养基,如碳源培养基、氮源培养基等。
2.培养基的配制要严格控制其成分,避免过多的污染源进入培养基中。
3.培养基的pH值和温度需要根据微生物的要求进行调节,不同的微生物对环境条件的要求不一样。
四、培养条件的控制1.培养容器应采用无菌技术,避免外来微生物进入培养体系中。
2.对于需要氧气的微生物,应提供足够的通气条件,保持适宜的氧气浓度。
3.对于厌氧微生物,应采用密封的容器,并提供适宜的厌氧条件。
五、培养过程的观察1.在培养过程中应及时观察微生物的生长状态,包括菌落的形状、颜色等。
2.观察培养液中的气泡情况,可以了解微生物的产气情况。
3.观察培养液的浑浊程度,可以了解微生物的生长状况。
六、微生物的鉴定和分离1.在培养结束后,可以进行微生物的鉴定和分离工作,了解样品中微生物的种类和数量。
2.分离后的微生物可以进行进一步的鉴定和培养,研究其生理特性和应用价值。
通过对污泥的培养,可以有效利用污泥中的有机物和微生物资源。
在进行污泥培养过程中,需要注意样品的采集和处理,选择适宜的培养基和培养条件,观察微生物的生长状态,并进行微生物的鉴定和分离工作,最终实现对污泥的有效处理和利用。
厌氧颗粒污泥的培养及注意事项1、前期污泥适应1)新加入的厌氧颗粒污泥在放入厌氧池中需要先让颗粒污泥适应一下。
2)保持UASB厌氧温度,使温度控制在35-45℃之间,达到中温消化温度。
3)测试UASB厌氧池PH值,如污泥呈酸性,可人工加碱调整pH至6.5~7.5。
4)颗粒污泥添加后,宜减少进水量,增加水力停留时间,用较低的COD 负荷进行培养(可将COD调至1500mg/L左右,逐渐提升负荷),待出水稳定后再提高COD负荷和缩短停留时间,逐渐增大进水量。
在逐渐提高COD的过程中,可在池中投加适量葡萄糖,提高B:C比。
短停留时间对颗粒污泥造成大的冲击,会造成颗粒污泥解体的。
5)维持消化温度,颗粒污泥稳定一段时间(3-5d)后,污泥即可成熟。
2、驯化需注意事项1)营养元素和微量元素维持废水中的C:N:P=100:5:1,当废水中N、P等营养元素不足时,对于投加的颗粒污泥会发生细胞自溶,导致颗粒破碎,因此要适当加以补充。
N源不足时,可添加氮肥、含氮量高的粪便、氨基酸渣及剩余活性污泥等;P源不足时,可适当投加磷肥。
铁、镍、钴和锰等微量元素是产甲烷辅酶重要的组成部分,适量补充可以增加所有种群单位质量微生物中活细胞的浓度以及它们的酶活性。
2)碱度碱度对颗粒污泥活性的影响。
主要表现在通过调节pH值(即通过碱度的缓冲作用使pH值变化较小)使得产甲烷菌呈不同的生长活性,在一定的碱度范围内,进水碱度高的反应器污泥颗粒化速度快,但颗粒污泥的产甲烷活性低;进水碱度低的反应器其污泥颗粒化速度慢,但颗粒污泥的产甲烷活性高。
因此,在补充有适当颗粒化污泥的厌氧池中,进水碱度应适当偏低以提高颗粒污泥的产甲烷活性。
3)温度温度对于UASB的启动与保持系统的稳定性具有重要的影响。
UASB反应器在常温(25℃),中温(33℃~45℃)和高温(55℃)下均能顺利启动,并形成颗粒污泥。
但绝大多数UASB启动过程都是在中温条件下进行的。
另外,不同种群产甲烷菌对生长的温度范围,均有严格要求。
污泥培养几点注意事项
1.污泥的培菌应尽可能在温度适宜的季节进行。
因为温度适宜,微生物生长快音菌
时间短。
如只能在冬季培菌,则应该采用接种培菌法,所需的种污泥培养时间要比春秋季长;
2.泥培菌过程中,应经常测定进水的和曝气池溶解氧、污沉降性能等指标。
活性污
泥初步形成后,要进行生物相观察,根据观察结果对污泥培养状进行评估,并动态调控培菌过程;
3.培菌过程中,特别是污泥初步形成以后,要注意防止过度曝气,特别是在夏季。
过度曝气会增加培菌时间和费用,导致污水处理系统无法按期投入运行。
4.要避免过度曝气,制曝气量和曝气时间是关键,措施有:要经常测定池内的溶解氧
含量,要及时进水以满足生物对营养的需求。
5.若进水浓度太低,则要投加大粪等以补充营养,条件不具备时可采用间歇曝气;
6.活性污泥培菌后期,适当排出一些老化污泥有利于微生物进一步生长繁殖;
7.工业污水处理厂在生产装置投产前往往没有污水进入,而一旦生产装置投产后,
排放的污水就需及时处理。
此时,应根据实际情况合理确定培菌时间,并提前准备种污泥及养料等;
8.如曝气池中污泥已培养成熟,但仍没有污水进入时,应停止曝气使污泥处于休眠
状态,或间歇曝气(延长曝气间隔时间、减少曝气量),以尽可能降低污泥自身氧化的速度。
有条件时,应投加大粪、无毒性的有机下脚料(如食堂泔脚)等营养物;
9.大部分的污水处理厂都有二个(格)以上的曝气池。
这种情况下可先利用一只曝气池
培养活性污泥,然后再输送到相邻其他曝气池进行多级扩大培养,本法适用于规模较大的污水处理厂。
厌氧菌培养注意事项
1、准备培养基:准备无氧或部分氧的适宜的培养基,通常需要加入营养剂、气体和生长素,以符合某些厌氧菌的需要。
2、环境:尽量选择安静、干净环境,以控制外界无菌条件,并维持厌氧菌培养时的恒温、恒湿条件。
3、培养温度:不同厌氧菌的最佳培养温度有所不同,一般厌氧菌适宜介于25℃以下温度。
4、恒湿条件:一般而言,厌氧菌培养湿度要保持在高湿度条件下。
5、气体条件:控制培养容器内的气体条件使培养容器内的氧分压稳定在厌氧区间,减少环境中的氧浓度,并维持培养容器的密封性。
6、清洁:使用无菌技术进行清洗,确保培养瓶、培养基和培养箱的洁净。
收藏:厌氧颗粒污泥的培养的注意事项!厌氧颗粒污泥分为淀粉、淀粉糖、柠檬酸、酒精、造纸等行业高浓度污水处理系统中的高负荷厌氧反应器(EGSB、IC)生产出的新鲜颗粒污泥。
厌氧反应器的容积负荷、上升流速和去除率均分别高于20kgCOD/(m3˙d),5m/h和90%。
厌氧颗粒污泥体型规则呈球形,VSS/TSS≥0.7,沉降速度50-150m/h,粒径0.5-2mm,颗粒度大于90%,最大比产甲烷速率≥400mlCH4/(gVSS˙d)。
作为接种污泥可用于淀粉、淀粉糖、柠檬酸、酒精、啤酒、造纸、蛋白、食品、味精等行业的污水处理系统中高负荷厌氧反应器(IC、EGSB、UASB等)的启动运行。
(一)培养颗粒污泥需考虑的因素1、基质培养颗粒污泥首先对基质有一定的要求,一般的,在培养颗粒污泥的基质中COD:N:P=110~200:5:1。
而有机废液的基质可分为偏碳水化合物类和偏蛋白质类。
为了能顺利培养出颗粒污泥,对于偏碳水化合物类的污水需要添加N和P。
而对于偏蛋白质类的污水需要添加碳源(如葡萄糖等)。
2、温度废水中的厌氧处理主要依靠微生物的生命活动来达到处理的目的,不同微生物的生长需要不同的温度范围。
温度稍有差别,就可在两类主要种群之间造成不平衡。
因此,温度对颗粒污泥的培养很重要。
颗粒污泥在低温(15~25℃)、中温(30~40℃)和高温(50~60℃)都有过成功的经验。
一般的,高温较中温的培养时间短,但由于高温下NH3与某些化合物混合毒性会增加,因而导致其应用上受一定的限制;中温一般控制在35℃左右,在其它条件适当的情况下,经1~3个月可成功的培养出颗粒污泥;低温下培养颗粒污泥的研究较少,但有文献报道在使用颗粒污泥低温驯化后处理底浓度制药废水的实验中,COD的去处率达90%,取得了较好的效果。
3、pH值反应器内pH值范围应控制在产甲烷菌最适的范围内(6.8-7.2)。
由于不同性质的废水有不同的pH值,为了保证反应器内pH值的稳定,防止酸积累而产生的对产甲烷菌的抑制,可采用向废水中添加化学药品如NaHCO3、Na2CO3、Ca(OH)2等物质。
厌氧颗粒污泥简单来讲就是由产甲烷菌,产乙酸菌和水解发酵菌等构成的自凝聚体。
由于有其良好的沉淀性能和产甲烷活性,现广泛用于淀粉、酒精、食品、造纸、印染等高浓度有机废水处理系统厌氧生物启动。
厌氧颗粒污泥的培养
一、启动与污泥活性提高阶段:
反应器的有机负荷一般控制在2.0 kgCOD/m3·d以下,运行时间约需l~l.5个月。
值得注意的是:
1、最初污泥负荷应低于0.1~0.2 kgCOD/kgTS.d;
2、在废水中的各种挥发性脂肪酸没有充分分解之前,不要增加反应器的负荷;
3、应将反应器内的环境条件控制在有利于厌氧微生物(主要是产甲烷细菌)繁殖的范围。
4、投产时,使反应器有效截留重质污泥并允许多余(稳定性差的)污泥流出反应器。
二、颗粒污泥形成阶段:
有机负荷一般控制在2.0~5.0 kgCOD/m3.d。
污泥在重质污泥颗粒的表面富集、絮凝并生长繁殖,最终形成粒径为1~5mm的颗粒污泥。
此阶段也需l~1.5个月。
三、污泥床形成阶段:
反应器的有机负荷大于5 kgCOD/m3.d。
反应器内的污泥浓度逐步增大,颗粒污泥床的高度也相应增高。
颗粒污泥床的形成约需3~4个月。
以上就是有关厌氧颗粒污泥的一些相关介绍,相信大家通过以上内容对其也有了进一步的了解,那么在河南哪里有厌氧颗粒污泥生产厂家呢?
河南翰润环境科技有限公司为一家专业的环境服务商,主要针对工业废水—酒精废水、造纸废水、淀粉废水、汽车工业涂装废水、食品废水、葡萄糖废水等已有成熟的设计经验及运行维护能力储备,并积累了丰富的行业经验。
厌氧污泥培养
容积100吨
厌氧反应器内存在厌氧颗粒污泥。
1、向厌氧反应器内加入80g目数为200目的活性炭,密闭循环2h,
2、再向其中加入阳离子聚丙烯酰胺,以反应器内溶液的总体积计每升溶液加入
0. 1mg阳离子聚丙烯酰胺,通过水力循环搅勻,水力停留时间为30h,期间
每6小时水力循环5min。
此时,控制反应器内的PH值为6~ 7,温度为34 36°C,回流比为1 :1,升流速度为3. 5m/H。
3、再向其中加入COD值约为1500mg/L的含酒精废水,待厌氧反应器运行
3d后。
4、当COD的去除率为87%。
此时投加以芽胞杆菌、酵母菌等混合制成的微生
物絮凝剂,投加方式为连续投加池,投加量以溶液总体积计,每升溶液加入5ml微生物絮凝剂,约500L投加完成后继续运行1d。
5、随后提高含酒精废水的COD值至3000mg/L,待反应2d后,继续提升酒
精废水的COD值至6000mg/L,此时反应器出现酸化,向其中加入适量氢氧化钠,使PH值保持在6-7,待运行3d后。
6、进一步提升含酒精废水COD值至10000mg/L,按前述方式和量加入微生
物絮凝剂500L,运行1天。
7、再次按照前述方式和量向其中加入微生物絮凝剂500L。
同时,降低水力停
留时间至30h,稳定运行2d.
8、进一步提升红薯酒精废水COD值至15000mg/L,稳定运行,降低水力停
留时间至18h,待其稳定运行,出水COD的去除率稳定在90%.。
厌氧颗粒污泥的培养注意事项
首先要有接种污泥,如果是已经颗粒污泥,只需培养驯化一下就可以了;如果采用活性污泥的话就比较麻烦。
必须注意以下几点:
1、营养元素和微量元素
在当废水中N、P等营养元素不足时,不易于形成颗粒,对于已经形成的颗粒污泥会发生细胞自溶,导致颗粒破碎,因此要适当加以补充。
N源不足时,可添加氮肥、含氮量高的粪便、氨基酸渣及剩余活性污泥等;P源不足时,可适当投加磷肥。
铁、镍、钴和锰等微量元素是产甲烷辅酶重要的组成部分,适量补充可以增加所有种群单位质量微生物中活细胞的浓度以及它们的酶活性。
2、选择压
通常将水力负荷率和产气负荷率两者作用的总和称为系统的选择压。
选择压对污泥床产生沿水流方向的搅拌作用和水力筛选作用,是UASB等一系列无载体厌氧反应器形成颗粒污泥的必要条件。
高选择压条件下,水力筛选作用能将微小的颗粒污泥与絮体污泥分开,污泥床底聚集比较大的颗粒污泥,而比重较小的絮体污泥则进入悬浮层区,或被淘汰出反应器。
定向搅拌作用产生的剪切力使颗粒产生不规则的旋转运动,有利于丝状微生物的相互缠绕,为颗粒的形成创造一个外部条件。
低选择压条件下,主要是分散微生物的生长,这将产生膨胀型污泥。
当这些微生物不附着在固体支撑颗粒上生长时,形成沉降性能很差的松散丝状缠绕结构。
液体上升流速在2.5~3.0m/d之间内,最有利于UASB 反应器内污泥的颗粒化。
3、有机负荷率和污泥负荷率
可降解的有机物为微生物提供充足的碳源和能源,是微生物增长的物质基础。
在微生物关键性的形成阶段,应尽量避免进水的有机负荷率剧烈变化。
实验研究表明,由絮状污泥作为种泥的初次启动时,有机负荷率在0.2~0.4 kgCOD/(kgVSS•d)和污泥负荷率在0.1~0.25kgCOD/(kgVSS•d)时,有利于颗粒污泥的形成。
4、碱度
碱度对污泥颗粒化的影响表现在两方面:一是对颗粒化进程的影响;二是对颗粒污泥活性的影响。
后者主要表现在通过调节pH值(即通过碱度的缓冲作用使pH值变化较小)使得产甲烷菌呈不同的生长活性,前者主要表现在对污泥颗粒分布及颗粒化速度的影响。
在一定的碱度范围内,进水碱度高的反应器污泥颗粒化速度快,但颗粒污泥的产甲烷活性低;进水碱度低的反应器其污泥颗粒化速度慢,但颗粒污泥的产甲烷活性高。
因此,在污泥颗粒化过程中进水碱度可以适当偏高(但不能使反应器体系的pH>8.2,这主要是因为此时产甲烷菌会受到严重抑制)以加速污泥的颗粒化,使反应器快速启动;而在颗粒化过程基本结束时,进水碱度应适当偏低以提高颗粒污泥的产甲烷活性。
5、接种污泥
颗粒污泥形成的快慢很大程度上决定于接种污泥的数量和性质[1]。
根据Lettinga的经验,中温型UASB反应器的污泥接种量需稠密型污泥12~15kgVSS/m3或稀薄型污泥6 kgVSS/m。
高温型UASB反应器最佳接种量在6~15kgVSS/m3。
过低的接种污泥量会造成初始的污泥负荷过高,污泥量的迅速增长会使反应器内各种群数量不平衡,降低运行的稳定性,一旦控制不当便会造成反应器的酸化。
较多的接种菌液可大大缩短启动所需的时间,但过多的接种污泥量没有必要。
一般说来,用处理同样性质废水的厌氧反应器污泥作种泥是最有利的,但在没有同类型污泥时。
不同的厌氧污泥同样对反应器的启动具有一定的影响,
没有处理同样性质废水的厌氧反应器污泥作种泥时,厌氧消化污泥或粪便可优先考虑。
6、温度
温度对于UASB的启动与保持系统的稳定性具有重要的影响。
UASB反应器在常温(25℃),中温(33℃~41℃)和高温(55℃)下均能顺利启动,并形成颗粒污泥。
但绝大多数UASB启动过程的研究都是在
中温条件下进行的,也有少数低温启动的报道。
另外,不同种群产甲烷菌对生长的温度范围,均有严格要求。
因此,需要对厌氧反应的介质保持恒温。
不论何种原因导致反应温度的短期突变,对厌氧发酵过程均有明显的影响。
二、加速污泥颗粒化的方法
1、投加无机絮凝剂或高聚物
投加无机絮凝剂或高聚物为了保证反应器内的最佳生长条件,必要时可改变废水的成分,其方法是向进水中投加养分、维生素和促进剂等。
2、投加细微颗粒物
向反应器中投加适量的细微颗粒物如粘土、陶粒、颗粒活性炭等惰性物质,利用颗粒物的表面性质,加快细菌在其表面的富积,使之形成颗粒污泥的核心载体,有利于缩短颗粒污泥的出现时间。
但投加过量的颗粒会在水力冲刷和沼气搅拌下相互撞击、摩擦,造成强烈的剪切作用,阻碍初成体的聚集和粘结,对于颗粒污泥的成长有害无益。
3、投加金属离子
适量惰性物如Ca2+、Mg2+和CO32-、SO42-等离子的存在,能够促进颗粒污泥初成体的聚集和粘结。
多位研究者研究了颗粒化中惰性颗粒的作用。