层合板强的宏观力学分析
- 格式:pptx
- 大小:349.39 KB
- 文档页数:27
第9章 层合板的宏观力学性能层合板是由若干单层板叠压而成。
单向纤维的单层板沿纤维方向力学性能较好,而在与纤维垂直方向性能较差。
工程实际中的复合材料一般做成层合结构,即将不同方向的单层板层叠在一起,每层的纤维方向是相同的,不同层之间纤维有一定的夹角,如图9.1所示。
层合结构可以提高复合材料的整体宏观力学性能,有利于发挥材料的最佳性能,满足工程对于材料力学性能的要求。
在本章中,我们把层合板看做各向异性的连续体,分析层合板的宏观力学性能。
本章主要介绍经典层合理论,简要介绍几种高阶理论。
图9.1 单层板叠压成层合板§9.1 经典层合理论经典层合理论(Classical lamination theory ,CLT )是建立在薄板假设的基础上。
这一理论从基本的单层板出发,得到最后的层合板结构的刚度性能。
9.1.1 层合板中单层的应力-应变关系在平面应力状态下,正交各向异性材料单层板在材料主方向上的应力-应变关系为:1111212122221266120000Q Q Q Q Q σεσετγ⎧⎫⎡⎤⎧⎫⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎣⎦⎩⎭(9.1.1)其中,二维刚度ij Q 可以用工程常数确定。
在单层板平面内任意坐标系中的应力为:111216122226162666x x y y xy xy Q Q Q Q Q Q Q QQ σεσετγ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎣⎦⎩⎭⎩⎭(9.1.2)式中,二维刚度ij Q 由二维刚度ij Q 通过坐标转换给出。
在确定层合板刚度时,由于组分单层板的任意定向,任意坐标下的应力-应变关系(9.1.2)是有用的。
方程(9.1.1)和(9.1.2)两者都可以设想为多层层合板第k 层的应力-应变关系。
方程(9.1.2)可写为:{}{}k k k Q σε⎡⎤=⎣⎦ (9.1.3)图9.2 层合板的变形9.1.2 层合板的应变和应力对于确定层合板的拉伸和弯曲刚度,沿着层合板厚度的应力和应变变化知识是重要的。
复合材料力学第四章层合板的宏观力学行为层合板是一种由多层材料在一定角度堆叠压制而成的复合材料结构。
它由胶合剂粘合在一起,形成一个整体的结构,具有较好的力学性能。
层合板在航空航天、汽车、建筑等行业中被广泛应用,因其具有良好的强度和刚度、较低的重量和成本等优势。
层合板的宏观力学行为可以从宏观角度和微观角度两个方面来研究。
从宏观角度来看,层合板可以看作是一个复合材料板。
在受力时,层合板主要承受拉、压、剪等力。
根据不同的力学模型,可以通过切变理论、薄板理论和剪切变形理论等方法来进行计算。
切变理论是最常用的方法之一、该理论是假设层合板在受力时,各层之间发生无滑移的切变变形,层间切应力在板的厚度方向分布均匀。
根据该理论,可以得到层合板的切变变形方程,进而计算出层合板的应力和变形。
薄板理论是另一种常用的方法。
该理论是假设层合板是一根薄板,其厚度远小于其他尺寸,因此在计算时可以忽略板厚度方向的变形。
根据薄板理论,可以得到层合板的挠度方程,并据此计算层合板的应力和变形。
剪切变形理论结合了切变理论和薄板理论的优点。
该理论考虑了层合板在受力时发生的切变变形和弯曲变形,对于层合板的力学行为具有较好的描述能力。
从微观角度来看,层合板的宏观力学行为可以理解为层与层之间的相互作用。
由于层合板是由多层材料堆叠而成的,不同材料的力学性质会影响整体的力学行为。
根据不同材料的应力应变关系和强度性能,可以得到层合板的宏观力学性能。
在层合板的设计和应用中,关键是如何选择合适的层厚度、层间胶合剂和夹层角度等参数。
通过合理选择这些参数,可以提高层合板的强度、刚度和耐疲劳性能。
总之,层合板的宏观力学行为是通过宏观角度和微观角度相结合来研究的。
在设计和应用层合板时,需要综合考虑材料的力学性能和结构的力学行为,以提高层合板的整体性能。
第11章 复合材料层合板的强度力分析复合材料层合板中单层板的铺叠方式有多种,每一种方式对应一种新的结构形式与材料性能。
层合板的应力状态也可以是无数种,因此各种不同应力状态下层合板的强度不可能靠实验来确定.只能通过建立一定的强度理论,将层合板的应力和基本强度联系起来。
由于层合板中各层应力不同,应力高的单层板先发生破坏,于是可以通过逐层破坏的方式确定层合板的强度。
因此,复合材料层合板的强度是建立在单层板强度理论基础上的。
另外,由层合板的刚度特性和内力可以计算出层合板各单层板的材料主方向上的应力。
这样就可以采取和研究各向同性材料强度相同的方法,根据单层板的应力状态和破坏模式,建立单层板在材料主方向坐标系下的强度准则。
本章主要介绍单层板的基本力学性能、单层板的强度失效准则,以及层合板的强度分析方法。
§11.1单层板的力学性能由层合板的结构可知,层合板是若干单向纤维增强的单层板按一定规律组合而成的。
当纤维和基体的性质、体积含量确定后,单层板材料主方向的强度与和其工程弹性常数一样,是可以通过实验唯一确定的。
11.1.1单层板的基本刚度与强度材料主方向坐标系下的正交各向异性单层板,具有4个独立的工程弹性常数,分别表示为:纤维方向(方向1)的杨氏模量1E ,垂直纤维方向(方向2)的杨氏模量2E ,面内剪切模量12G ;另外,还有两个泊松比2112,νν,但它们两个 不是独立的。
这4个独立弹性常数表示正交各向异性单层板的刚度。
单层板的基本强度也具有各向异性,沿纤维方向的拉伸强度比垂直于纤维方向的强度要高。
另外,同一主方向的拉伸和压缩的破坏模式不同,强度也往往不同,所以单层板在材料主方向坐标系下的强度指标共有5个,称为单层板的基本强度指标,分别表示为:纵向拉伸强度X t (沿纤维方向),纵向压缩强度X c (沿纤维方向),横向拉伸强度Y t (垂直纤维方向),横向压缩强度Y c (垂直纤维方向),面内剪切强度S (在板平面内)。
复合材料层合板结构的力学行为分析复合材料层合板是由两种或多种不同材料层按一定规律堆叠而成的结构材料,广泛应用于航空航天、汽车工业、建筑等领域。
本文旨在分析复合材料层合板的力学行为,探讨其在工程中的应用潜力。
1. 引言复合材料层合板以其轻质、高强度的特性成为工程领域的热门材料。
它的力学行为不仅取决于各层材料的性质,还与层厚比、堆叠顺序、堆叠角度等因素密切相关。
2. 复合材料层合板的力学性能复合材料层合板的弯曲强度、抗剪强度、压缩强度等力学性能都远优于传统材料。
其中,弯曲强度是衡量其抗弯能力的重要指标。
3. 弯曲强度的分析复合材料层合板的弯曲强度主要受到各层材料的强度以及堆叠顺序的影响。
通过有限元分析等方法,可以预测不同堆叠方案下的弯曲强度,并为工程设计提供参考。
4. 抗剪性能的研究复合材料层合板的抗剪性能是指其在受到外力作用时,层间剪切破坏的能力。
研究表明,适当调整层厚比、堆叠角度等参数可以有效提高复合材料层合板的抗剪强度。
5. 压缩行为的评估复合材料层合板的压缩行为直接影响其在承受压力时的稳定性。
通过实验和数值模拟,可以研究不同层厚比、纤维束填充方式等因素对压缩性能的影响,并为结构设计提供参考。
6. 破坏机理的分析了解复合材料层合板的破坏机理对于优化设计至关重要。
常见的破坏模式包括层间剥离、纤维断裂、层间剪切破坏等。
深入研究这些破坏机理可以为材料改进和结构设计提供指导。
7. 工程应用潜力复合材料层合板由于其优异的力学性能和轻质化特点,在航空航天、汽车工业、建筑等领域具有广泛的应用潜力。
例如,利用层合板设计轻量化飞机翼等结构,可以提高飞机的燃油效率。
8. 结论复合材料层合板是一种具有优良力学性能的结构材料。
通过深入研究其力学行为,可以为工程设计和材料改进提供指导。
未来,随着技术的不断发展,复合材料层合板的应用前景将更加广阔。
通过以上分析可见,复合材料层合板在工程领域具有重要价值。
对其力学行为的深入理解有助于优化设计,提高结构性能。