交叉圆柱镜检查散光的基本原理
- 格式:doc
- 大小:39.00 KB
- 文档页数:4
交叉圆柱镜的原理交叉圆柱镜是一种用于矫正眼睛出现的交叉圆柱度视力散光的光学工具。
它的工作原理是通过改变光线的走向来矫正人眼球形的变化,从而消除交叉圆柱度引起的视力问题。
为了更好地理解交叉圆柱镜的原理,首先需要了解什么是交叉圆柱度视力散光。
视力散光是一种普遍的眼睛问题,它会导致视网膜上的像点变成线条状或星形,从而影响视力清晰度。
视力散光可以分为正交散光和交叉散光,其中交叉散光是指散光的两个主要轴线相互交叉。
在交叉圆柱镜中,镜片的一对轴线与眼睛视轴相同,另一对轴线与散光的主要轴线相互垂直。
交叉圆柱镜的镜片具有柱面度,意味着镜片在一个方向上具有曲率,而在垂直方向上是平坦的。
这种设计使得光线能够在一个方向上得到较强的折射,而在另一个方向上得到较弱的折射。
通过仔细选择镜片的曲率和位置,交叉圆柱镜可以将光线引导到正确的位置,消除散光引起的视力问题。
当一只眼出现交叉圆柱度视力散光时,眼球的形状是不规则的。
这意味着光线在进入眼球时被不同程度地折射。
在正常情况下,光线会聚在视网膜上,形成清晰的视觉图像。
然而,在交叉圆柱度散光下,由于眼球形状的变异,光线无法正确聚焦在视网膜上,导致视力模糊。
通过使用交叉圆柱镜,眼睛的散光问题可以得到纠正。
在镜片制作过程中,镜片的一个方向上具有适度的曲率,以补偿眼球的形变。
这种曲率的选择是根据眼睛的散光程度来确定的。
镜片的另一个方向上是平坦的,以保持无扭曲的光线路径。
镜片的曲率会使光线在正确的角度折射,从而准确聚焦在视网膜上。
具体而言,交叉圆柱镜的工作原理如下。
当一个眼睛穿戴该镜片时,光线进入镜片会在其曲率变化处发生折射。
通过正确选择镜片的曲率和位置,镜片能够将光线引导到正确的方向。
镜片的一个方向上的曲率将光线引导到与视网膜对齐的位置,使得像点得以正确聚焦。
镜片的另一个方向上的平坦表面保持光线的方向不变,并防止其扭曲。
这样,视网膜上的像点能够得到准确的聚焦,从而改善视力。
总而言之,交叉圆柱镜通过改变光线的走向来矫正交叉圆柱度视力散光。
交叉圆柱镜原理和运用
交叉圆柱镜(cross cylinder)是由两个屈光力大小相等,但符号相反的柱镜,柱镜轴向互相垂直叠加而成的。
使用的交叉圆柱镜是按杰克逊(Jac-son)的设计原理制作的,因此又将交叉圆柱镜称为按杰克逊交叉圆柱镜(Jacson cross cylinder)。
一般常用的交叉圆柱镜有±0.25DC、±0.50DC、±1.00DC等几种规格,其中以±0.25DC在精调散光时比较常用(综合验光仪)。
±0.25DC交叉圆柱镜是由+0.25DC和-0.25DC柱镜互相垂直叠加在一起组成的,为了方便识别轴向及柱镜屈光力符号,一般红点表示负柱镜轴向,在此方向有最大正屈光力;白点表示正柱镜轴向,在此方向有最大负屈光力。
其中在+0.25DC和-0.25DC轴位之间中央处配有翻转手轮,由于有最大正屈光力和最大负屈光力的相互作用,因此在最大正屈光力和最大负屈光力中间也就是手轮处的屈光力相等但是符号相反,此处屈光力为0.
1。
交叉圆柱镜名词解释
交叉圆柱镜是一种用于矫正视觉问题的光学工具。
它是一种特殊的眼镜镜片,其作用是校正患者眼睛的散光问题。
散光是一种视觉异常,使得眼睛无法将光聚焦到一个点上,而是在不同的方向上产生多个焦点。
交叉圆柱镜通过将垂直方向的弯曲逐渐增加或减少,使得眼睛能够在水平和垂直方向上恢复正常的光聚焦能力。
它的设计原理与常规镜片略有不同,主要在一个方向上弯曲较多,而在另一个方向上弯曲较少或不弯曲。
这种特殊的镜片形状使得光线在通过时被适当地折射,以实现矫正散光的效果。
交叉圆柱镜通常用于矫正近视、远视和散光同时存在的情况。
这种眼镜通常由验光师或眼科医生根据患者的具体视力问题来定制。
患者在佩戴交叉圆柱镜后,可以在视力上得到显著的改善,并且能够看到更清晰和清晰的图像。
虽然交叉圆柱镜在矫正视觉问题方面非常有效,但它并不适用于所有的眼睛问题。
因此,建议患者在佩戴交叉圆柱镜之前咨询眼科专业人士,以确保其能够获得正确的眼镜配戴解决方案。
交叉圆柱镜原理
交叉圆柱镜是一种光学镜片,可用于矫正眼睛的视力问题,特别是在患有散光的人群中常被使用。
与普通的圆柱镜不同,交叉圆柱镜通过将两个圆柱面置于垂直角度上来达到矫正的效果。
交叉圆柱镜的原理是利用两个成对的圆柱面,其焦距不同,形成一个交叉的光场。
每个圆柱面都有一个主轴(光线通过时的正中心线),并且两个圆柱面的主轴垂直交叉。
当光线通过交叉圆柱镜时,根据法拉第定律,它们会在圆柱面上发生折射。
由于焦距不同,通过每个圆柱面的光线会以不同的方式折射。
这种交叉的折射作用会对光线进行微调,使得眼睛能够更准确地聚焦在视网膜上。
为了正确使用交叉圆柱镜进行视力矫正,需要一个准确度量患有散光的眼睛的角度和强度的过程。
医生会根据测量结果来确定正确的交叉圆柱镜矫正度数。
值得注意的是,交叉圆柱镜的主轴必须与患者的散光方向垂直,这样才能最有效地矫正散光。
一旦正确配置,患者将能够看到更清晰、更准确的图像。
总的来说,交叉圆柱镜通过将两个焦距不同的圆柱面交叉使用,可以矫正散光问题。
它是一种常用的视力矫正工具,可以帮助人们恢复清晰的视力。
交叉圆柱镜原理交叉圆柱镜是一种广泛应用于光学领域的光学元件,它具有独特的光学特性,被广泛应用于激光加工、医疗设备、科学研究等领域。
本文将介绍交叉圆柱镜的原理及其在光学系统中的应用。
交叉圆柱镜是由两个相互垂直的圆柱面构成的光学元件,其中一个圆柱面是凸面,另一个是凹面。
当平行入射光线通过交叉圆柱镜时,会发生两次折射,分别在凸面和凹面上发生。
这种特殊的折射过程使得交叉圆柱镜能够实现光线的交叉、分离和聚焦。
在交叉圆柱镜中,光线的交叉是通过凸面和凹面的折射作用实现的。
当平行入射光线通过凸面折射时,会发生向光轴的偏折;而当偏折后的光线再通过凹面折射时,则会发生垂直于光轴的偏折。
这样,原本平行的光线就会在交叉圆柱镜中交叉,实现光线的分离和聚焦。
交叉圆柱镜在光学系统中有着广泛的应用。
其中,最常见的应用之一是在激光加工系统中。
由于交叉圆柱镜能够实现光线的交叉和聚焦,因此它常被用于激光切割、打标等加工过程中。
通过合理设计交叉圆柱镜的参数,可以实现对激光光束的精确定位和聚焦,从而提高加工精度和效率。
此外,交叉圆柱镜还被广泛应用于医疗设备中。
例如,在激光眼科手术中,交叉圆柱镜常被用于调整激光光束的方向和焦距,从而实现对眼部组织的精确切割和修复。
交叉圆柱镜的高精度和稳定性,使得它成为眼科激光手术中不可或缺的光学元件。
除此之外,交叉圆柱镜还在科学研究领域中发挥着重要作用。
在光学显微镜、激光干涉仪等实验装置中,交叉圆柱镜常被用于实现光线的交叉和分离,从而实现对样品的精确定位和观测。
其高度的光学性能和稳定性,为科学研究提供了可靠的光学支持。
总之,交叉圆柱镜作为一种重要的光学元件,在光学系统中具有着广泛的应用前景。
通过充分理解交叉圆柱镜的原理和特性,合理应用其光学特性,将有助于提高光学系统的性能和稳定性,推动光学技术的发展和应用。
JCC精确散光的原理及方法
JCC是一种交叉柱镜,通常在综合验光仪上被用于进一步精确散光轴和散光度数。
其原理和使用方法如下:
首先,综合验光仪上的交叉柱镜(JCC)由一对度数均为0.25D、符号相反、轴向相互垂直的两个柱镜组合在一起。
然后,红点表示负柱镜的轴位置,白点表示正柱镜的轴位置,两个轴位之间的角平分线方向是JCC的控制转轮,使得两轴的位置可以切换。
使用JCC测量散光方向和大小之前,需要先红绿等清,需要把最小弥散圈落在视网膜上,这是前提。
在调整散光大小的时候,加减两次柱镜就要调整一下球镜,是为了始终把最小弥散圈控制在视网膜上。
具体来说,如果你的轴位是刚好精准的,那么以此轴位翻转交叉圆柱镜,前后两次对最小弥散圈的干扰完全是等量的,或者说前后两次形成的最小弥散圈离视网膜的距离是等量的,顾客看到的就是几乎等清的。
交叉圆柱镜对散光的验配作者:王春兰来源:《卷宗》2017年第16期摘要:交叉圆柱镜检查散光的基本原理是首先把规则散光眼改造成正负等焦量的混散。
这一过程可以借助于MPMVA或红绿法。
其次使用正负等焦量的混散试镜片测试人造的混散眼。
这一过程借助交叉圆柱镜来实施。
最后使用正负等焦量的混散镜片矫正人造混散眼。
这一过程借助正球镜联合负柱镜等形式提供正负等焦量的混散镜片。
因此交叉圆柱镜检查散光实质是使用两个已知的正负等焦量的混合性散光镜度去测试一个未知的人造的正负等焦量的混合性散光。
关键词:散光;交叉圆柱镜1 散光的定义以及分类如果眼球在不同的经线上的屈光状态或屈光度不一致,尤其是角膜表面的曲率半径不是一个球面,则眼在无调节状态下,5米以外平等光线,经眼球的不同经线屈折后就不能在视网膜上结成一个焦点,而形成焦线,因而视网膜上的物像模糊不清。
这种屈光不正状态称为散光。
散光可根据屈光情况分为不规则散光和规则散光。
不规则散光是指各子午线的弯曲度不一致,用一般柱镜无法矫正;规则散光是指弯曲度最大的子午线与弯曲度最小的子午线正好垂直,用柱镜矫正能获得较好的视力。
故以下我们讨论的都是规则散光。
2 交叉圆柱镜检查散光的方法和原理1.基本原理:用交叉圆柱镜校正散光轴向时,交叉圆柱镜两面放上去后与假设柱镜分别产生一合成柱镜,其轴与眼散光轴之间的交角有差异,因此同样交叉圆柱镜翻面时视网膜前后焦线位置及最小弥散圆大小迅速改变,病人能感知视标清晰程度不同,较清晰一面时的眼散光轴位于假设柱镜轴和合成柱镜轴之间,所以应将假设柱镜轴向着符号相同的交叉柱轴的子午线转动。
用交叉圆柱镜校正散光度数时,散光眼经等效球镜矫正后,将眼本身真实屈光度变成等量异号正交圆柱镜的混合散光,最小弥散圆位于视网膜上。
第一交线位于视网膜前,第二焦线位于视网膜后,交叉圆柱镜翻转可迅速改变两焦线的位置和最小弥散圆的大小,因此病人可感知视标清晰程度的变化。
2.交叉圆柱镜检查患者有无散光患者经客观验光后未发现散光。
交叉柱镜精调散光的轴向和度数交叉柱镜精调散光的轴向和度数随着眼镜配制技术的不断进步,交叉柱镜精调散光的轴向和度数成为了眼镜定制中不可或缺的一部分。
交叉柱镜是一种特殊的眼镜镜片,它可以校正散光问题,让人们在日常生活中能够更清晰地看到物体。
而精调散光的轴向和度数则直接影响了镜片的效果和舒适度。
在本文中,我们将深入探讨交叉柱镜精调散光的轴向和度数,帮助您更好地理解这一重要概念。
#1 交叉柱镜的作用让我们先了解一下交叉柱镜的作用。
交叉柱镜是一种特殊的眼镜镜片,它主要用于矫正散光问题。
散光是一种常见的眼睛问题,它会导致视力模糊、眼睛疲劳等不适症状。
而交叉柱镜的设计可以有效地纠正这一问题,让人们能够获得更清晰、舒适的视觉体验。
#2 精调散光的轴向和度数那么,究竟什么是精调散光的轴向和度数呢?精调散光的轴向指的是交叉柱镜镜片上的散光方向,它是用度数表示的。
精调散光的度数则是指散光的强度,也是用度数表示的。
这两个因素都对镜片的效果和舒适度有着重要的影响。
在眼镜配制过程中,精确确定交叉柱镜精调散光的轴向和度数是至关重要的。
#3 确定轴向和度数的方法在确定交叉柱镜精调散光的轴向和度数时,医生通常会进行详细的眼部检查,包括验光和眼底检查等。
通过这些检查,医生可以准确地确定患者的散光情况,进而确定交叉柱镜精调散光的轴向和度数。
这样一来,配制出的眼镜镜片才能真正满足患者的需求,起到良好的矫正效果。
#4 个人观点和理解在我看来,交叉柱镜精调散光的轴向和度数不仅是眼镜配制中的关键因素,更是影响患者视力舒适度的重要因素。
只有确定准确的轴向和度数,才能配制出符合个体需要的眼镜镜片,让患者在日常生活中能够获得更好的视觉体验。
#5 总结交叉柱镜精调散光的轴向和度数是眼镜配制中不可或缺的一部分。
精确确定轴向和度数需要依靠医生的细致检查,只有这样才能确保配制出的眼镜镜片能够真正满足患者的需求。
在选择眼镜配制服务时,务必选择经验丰富、技术精湛的医生和配镜师,以确保自己的视力得到最佳的矫正效果。
关于用交叉柱镜精调球柱镜度交叉柱镜为验光过程中精调散光轴位和散光度不可缺少的工具和方法,尤其在依赖综合验光仪的时代,此种必要性更为突出。
用交叉柱镜精调球柱镜度(精调轴位以后),当翻转交叉柱镜使其正柱镜轴与负柱镜轴互换位置的实质是:使前后两焦线相对或相背的平行移动。
如果焦线作相对移动,则缩短了它们之间的距离,也就是减小了余留散光,此时被检者必称远处目标较清晰。
反之,当被检者称远处目标更模糊时,其余留散光度变大。
也就是加大了两焦线之间的距离(两焦线做相背运动)。
焦线距视网膜越远,视标越模糊,焦线距视网膜越近视标越清晰。
在视网膜结上为焦点时,视标最清晰。
因此我们便可根据被检者主诉哪一位较清,或相仿来进行判断和操作。
从而使前后焦线或同时或单独向视网膜移近,达到调整球柱镜度的目的。
在精调散光度的方法上,一般认为加交叉柱镜于某位较加交叉柱镜他位明显清晰,则将在原镜度上加上交叉柱镜清晰位置的全部的交叉柱镜度,稍清晰时只加减柱镜度(0.25DC)。
这样要区分被检者所述的清晰和稍清晰,比较难以把握。
因此我认为在精调散光度时,只需加减25DC的散光度,而不需同时加减球镜度。
也就是说,交叉柱镜任意一轴和试镜片的柱镜轴位重合,反转测试。
如同号柱镜重合时清晰,则只需加上同号的0.25DC柱镜度,如异号重合时更清晰,则只需减去同号的0.25DC柱镜度,如反转交叉柱镜视力无变化时,表示柱镜度已准确。
随后再调整球镜度(用红绿视标)。
以下举例说明。
如有一屈光度为:-100-100某90的眼睛。
当初验光度为:(1)-100-100某90(2)-75-100某90(3)-125-100某90(4)-75-75某90(5)-100-75某90(6)-125-75某90(7)-75-125某90(8)-100-125某90(9)-125-125某90时的情况:(1)当初验光度为-100-100某90时,完全矫正,平行光线通过镜、眼的组合屈光系统,成像在视网膜上,如图:(垂直方向焦线用表示,水平方向焦线用·表示)当加交叉柱镜(精调散光轴位之后,精调散光度)+25-50某90时,视网膜附近的焦线位置为;当交叉柱镜手柄捻转180度后,视网膜附近的焦线位置为;比较图1、图2,得出交叉柱镜手柄捻转前后清晰度一致,说明原散光度准确,无需再调整,最后用红绿视标调整球镜度。
交叉圆柱镜的原理及使用方法交叉散光是一种常见的视觉问题,主要由于角膜的形状异常导致的。
正常的角膜呈球状,而患有散光的人的角膜通常呈椭圆形或圆柱形,从而导致光线无法正确聚焦在视网膜上。
这会导致视力模糊、双影、头痛和眼疲劳等问题。
交叉圆柱镜的原理是通过不同方向上的曲率半径来矫正角膜的形状。
交叉圆柱镜的一个表面具有球面,这使得光线在垂直轴线上聚焦。
而另一表面则呈圆柱状,使得光线在水平轴线上聚焦。
通过这种方式,交叉圆柱镜可以纠正角膜的畸变,使光线能够正确地聚焦在视网膜上,从而改善视力。
1.医生进行验光:医生使用一台装有不同度数镜片的验光仪来确定您的视力问题。
通过不同度数的镜片,医生可以逐渐纠正您的视力问题,直到找到最适合您的度数。
2.需要适配交叉圆柱镜的人经常会接受角膜拓扑检查。
这是一种通过测量角膜的形状来确定合适的交叉圆柱镜度数的方法。
3.镜片定制:根据医生的验光和角膜拓扑检查结果,一副定制的交叉圆柱镜将会被制作出来。
通过根据您的视力问题和眼睛的形状来制作镜片,可以确保最佳的视力矫正效果。
4.佩戴与调整:一旦定制好的交叉圆柱镜制作完成,您将被要求佩戴并进行适应。
一开始可能会感到不适,但随着时间的推移,您的眼睛会逐渐适应并从中获得更好的视力。
1.定期复查:定期回访医生以评估交叉圆柱镜的效果,并检查眼睛的健康状况。
由于眼球的形状和度数可能会有所变化,定期复查是确保视力正常的关键。
2.注意佩戴时间:尤其是在刚开始佩戴交叉圆柱镜时,需要根据医生的建议逐渐增加佩戴时间。
过度使用或长时间使用镜片可能会导致眼睛疲劳和不适。
3.清洁和保养:定期清洁镜片,避免污垢和脏物的积累。
使用温和的洗涤剂和温水轻柔清洗,避免使用刺激性物质。
4.避免损坏:小心处理交叉圆柱镜,避免碰撞和倒落。
在不使用时应将其放置在保护盒中,并避免将其暴露在高温、高湿度或灰尘等有害环境中。
总之,交叉圆柱镜是一种有效纠正散光问题的眼镜。
通过合理使用和维护,交叉圆柱镜能够提供良好的视力矫正效果,改善患者的视力问题。
交叉柱镜的原理和使用方法
交叉柱镜是一种用于矫正斜视的光学器具。
其原理是通过将视觉上的两个图像交叉显示在眼睛的视野中,使斜视的眼睛得到训练和矫正。
使用交叉柱镜的方法如下:
1. 将交叉柱镜放在斜视的眼睛前方,确保镜片对准眼睛的瞳孔。
2. 调整交叉柱镜的位置和角度,使眼睛能够清晰地看到两个交叉的图像。
3. 在最初的使用阶段,可能会感到不适或眼睛疲劳,可以适当调整使用的时间和频率。
4. 镜片上可能有一些标记或刻度,用于记录斜视的程度和观察矫正效果的变化。
5. 镜片的使用时间和方法应该根据医生的建议进行调整,以达到最佳的训练效果。
需要注意的是,交叉柱镜只是一种辅助矫正的方法,不能完全治愈斜视。
同时,使用交叉柱镜可能会对视觉产生一定的影响,因此在使用之前应该咨询专业的眼科医生的建议。
交叉圆柱镜精调散光的方法
交叉圆柱镜精调散光的方法是一种用于精确调整人眼近视、远视和散光的一种方法。
它的原理是通过两个特殊的圆柱镜,即左眼的圆柱镜和右眼的圆柱镜相互穿插,来帮助患者实现调整视力的目的。
交叉圆柱镜精调散光的具体步骤如下:
1、测试视力:首先需要对患者进行视力测试,以确定患者的视力水平,这样才能准确判断需要使用什么强度的圆柱镜。
2、安装交叉圆柱镜:然后将交叉圆柱镜安装在患者眼前,并使用望远镜检查安装情况,确保圆柱镜安装正确无误。
3、精确调整交叉圆柱镜:接着,使用望远镜观察患者的视力,并精确调整交叉圆柱镜的位置和强度,直到患者的视力达到最佳状态。
4、确认效果:最后,再次使用望远镜观察患者的视力,确认散光状况得到改善。
交叉圆柱镜精调散光的优点是可以实现快速、准确的调整,而且效果明显,患者不会感觉到眼部刺激或不适,因此,它是一种很好的散光矫正方法。
此外,在使用交叉圆柱镜精调散光时还需要注意以下几点:
1、镜片的强度要选择正确:需要根据患者的视力水平和散光状况,选择正确的强度,以确保效果最佳。
2、安装正确:交叉圆柱镜的安装非常重要,必须确保安装正确,以免影响效果。
3、注意使用:在使用交叉圆柱镜时,要注意不要把镜片旋转或移动,以免影响散光调整的效果。
总之,交叉圆柱镜精调散光是一种有效、安全的散光矫正方法,但在使用时仍需要注意以上几点,以便获得最佳的散光矫正效果。
交叉圆柱镜检查散光的基本原理
交叉圆柱镜常用于散光检查尤其是散光的精确检查。
对于该项技术,学习者固然可以通过模仿与强记教师的示教而重复操作过程。
但囿于各家对其检查原理的阐述不甚明了,多数学习者仍然无法借助可理解的理论来有效指导并提升其实践。
有感于此,本文专门对其检测原理进行了梳理。
1 交叉圆柱镜检查散光的基础条件
规则散光眼的散光度与最小弥散圆的关系
规则散光眼的生理光学特征表现为特征性的“Sturm”光锥。
而“Sturm”光锥反映的散光度与最小弥散圆之间的关系为:散光度越大,最小弥散圆越大;散光度越小,最小弥散圆越小;当散光度趋向于零时,则最小弥散圆趋向于焦点(表1)。
表1 规则散光眼的散光度与最小弥散圆的关系
正负等焦量的混合性散光的散光度与视觉的关系(表2)
表2 正负等焦量的混合性散光的散光度与视力的关系
任一类型的散光可以通过MPMVA或者红绿色法改造成正负等焦量的混合性散光
规则散光眼中,无论复性近视散光、单纯近视散光、单纯远视散光、复性远视散光还是正负焦量不等的混合性散光都可以借助于MPMVA或者红绿色法改造成正负等焦量的混合性散光状态。
而这一正负等焦量的混合性散光状态常被称为等效球镜状态。
如:单纯性近视散光×180,予等效球镜度后即获得人造的正负等焦量的混合性散光×180/+×90。
交叉圆柱镜是一个正负等焦量的混合性散光镜片,并且可以借助翻转模拟两个混合性散光镜片
交叉圆柱镜是由符号相反、焦量相同的两个柱镜按轴位互相垂直叠合而成的镜片,实际上就是一个正负等焦量的混合性散光镜片。
一个交叉圆柱镜以其中间轴进行翻转,翻转前后可产生两个混合性散光镜度。
如±的交叉圆柱镜,中间轴置于水平位180,则翻转前后获得的两个混合性散光镜度分别为:×45/+×135,+×45/×135。
2 交叉圆柱镜影响混合性散光的规律
交叉圆柱镜可以使混合性散光的最小弥散圆变得更大、更小(例1)。
更小的最小弥散圆提示交叉圆柱镜提供的镜度是需要的。
例1
当眼无散光或散光全矫后,交叉圆柱镜翻转前后产生的最小弥散圆大小相同(例2)。
当最小弥散圆不变则提示正负等焦量的混合性散光的最小弥散圆已被消减为焦点。
例2
当中间轴与混散眼散光轴重叠时,交叉圆柱镜翻转前后残余散光量相同(例3)。
例3
当中间轴与混散眼散光轴不重叠时,交叉圆柱镜翻转前后残余散光量不相同(例4)。
更小的最小弥散圆提示此时交叉圆柱镜提供的正、负轴更靠近人造混散的正、负轴。
例4
3矫正用的正负等焦量的混合性散光镜度可以通过球镜、柱镜组合获得
使用镜片箱中的正球镜、负球镜、正柱镜、负柱镜组合出的混合性散光镜片可以有三种组合形式:正球镜联合负柱镜;负球镜联合正柱镜;负柱镜联合正柱镜。
而使用综合验光仪上的镜片则只有正球镜联合负柱镜这一种组合形式,因为综合验光仪上只有负柱镜而没有正柱镜。
因此,在综合验光仪上提供混合性散光镜度时,是按照每增加同步增加+或者每减少同步减少+来进行的。
4交叉圆柱镜检查散光的基本原理
首先把规则散光眼改造成正负等焦量的混散。
这一过程可以借助于MPMVA或红绿法。
其次使用正负等焦量的混散试镜片测试人造的混散眼。
这一过程借助交叉圆柱镜来实施。
最后使用正负等焦量的混散镜片矫正人造混散眼。
这一过程借助正球镜联合负柱镜等形式提供正负等焦量的混散镜片。
因此交叉圆柱镜检查散光实质是使用两个已知的正负等焦量的混合性散光镜度去测试一个未知的人造的正负等焦量的混合性散光。