液压基本回路1
- 格式:pdf
- 大小:559.15 KB
- 文档页数:14
液压基本回路原理与分析液压基本回路是用于实现液体压力、流量及方向等控制的典型回路。
它由有关液压元件组成。
现代液压传动系统虽然越来越复杂,但仍然是由一些基本回路组成的。
因此,掌握基本回路的构成,特点及作用原理,是设计液压传动系统的基础。
1. 压力控制回路压力控制回路是以控制回路压力,使之完成特定功能的回路。
压力控制回路种类很多。
例如液压泵的输出压力控制有恒压、多级、无级连续压力控制及控制压力上下限等回路。
在设计液压系统、选择液压基本回路时,一定要根据设计要求、方案特点,适当场合等认真考虑。
当载荷变化较大时,应考虑多级压力控制回路;在一个工作循环的某一段时间内执行元件停止工作不需要液压能时,则考虑卸荷回路;当某支路需要稳定的低于动力油源的压力时,应考虑减压回路;在有升降运动部件的液压系统中,应考虑平衡回路;当惯性较大的运动部件停止、容易产生冲击时,应考虑缓冲或制动回路等。
即使在同一种的压力控制基本回路中,也要结合具体要求仔细研究,才能选择出最佳方案。
例如选择卸荷回路时,不但要考虑重复加载的频繁程度,还要考虑功率损失、温升、流量和压力的瞬时变化等因素。
在压力不高、功率较小。
工作间歇较长的系统中,可采用液压泵停止运转的卸荷回路,即构成高效率的液压回路。
对于大功率液压系统,可采用改变泵排量的卸荷回路;对频繁地重复加载的工况,可采用换向阀的卸荷回路或卸荷阀与蓄能器组成的卸荷回路等。
1.1调压回路液压系统中压力必须与载荷相适应,才能即满足工作要求又减少动力损耗。
这就要通过调压回路实现。
调压回路是指控制整个液压系统或系统局部的油液压力,使之保持恒定或限制其最高值。
1.1.1用溢流阀调压回路1.1.1.1远程调压回路特点:系统的压力可由与先导式溢流阀1的遥控口相连通的远程调压阀2进行远程调节。
远程调压阀2的调整压力应小于溢流阀1的调整压力,否则阀2不起作用。
特点:用三个溢流阀进行遥控连接,使系统有三种不同压力调定值。
第八章液压基本回路§1 概论一、液压回路的组成一般液压回路的主要元件的动力传递关系为:原动机液压泵液压阀液动机负载。
原动机将机械能输入液压系统,由液压动力元件—-液压泵转变为液压能,通过控制元件——液压阀调整控制压力油的方向、流量和压力的大小,然后传递给执行元件——液动机,使其按照一定的方向、速度和出力带动负荷运动和工作,构成液压回路。
原动机主要有交流电动机、直流电动机和内燃机等。
液压阀、液压泵和液动机等互相配合构成三种基本类型的控制回路,即压力控制回路,方向控制回路和速度控制回路。
此外,还有由此派生出来的位置控制回路和时间控制回路。
有时,一个回路可同时兼有几种职能。
二、液压回路的表示方法液压回路可用以下几种表示方法。
1.外观图它能直观地表示出各液压元件的形状、位置和管路的联接走向,不能表示出元件的内部结构和液压系统的工作原理,一般仅用于装配工作。
2.截面图它直接表现出各元件的内部结构和系统的工作原理,便于理解和查找故障,但因制图较麻烦,一般仅用于教学。
3.符号图它用简单的符号把复杂的液压系统表现出来,它既能表现出各元件之间管路的联接方法,又可以说明它的工作原理,制图也很简单.但是事先必须对各种元件的符号,工作原理和职能有充分的了解,否则看不懂符号图.这种方法被国内外广泛应用。
4.混和图为了特别说明某元件的工作原理或不便于用符号表示液压元件时,可在符号图中采用局部截面图.三、开式回路和闭式回路液压系统按照油液的循环情况可分开式回路和闭式回路.开式回路中液动机的回油流到一个大气压条件下的开式油箱,液压泵靠自吸能力将油箱中的油液输入液压工作系统。
闭式回路中液动机的回油直接输入液压泵的吸油口,形成封闭的回路。
开式回路结构简单,油液散热条件好,但是它的油箱体积较大,空气与油液的接触机会较多,因而容易混入空气,使系统工作不够稳定。
开式回路要求液压泵有较好的自吸能力,对于自吸能力较差的柱塞泵等,需设置辅助液压泵.闭式回路比开式回路效率高。
[连载]《液压与气动技术》第六章液压基本回路(1)
所谓基本回路就是能够完成某种特定控制功能的液压元件和管道的组合。
例如用来调节液压泵供油压力的调压回路,改变液压执行元件工作速度的调速回路等都是常见的液压基本回路,所谓全局为局部之总和,因而熟悉和掌握液压基本回路的功能,有助于更好地分析、使用和设计各种液压传动系统。
第一节压力控制回路
压力控制回路是利用压力控制阀来控制系统整体或某一部分的压力,以满足液压执行元件对力或转矩要求的回路,这类四路包括调压、减压、增压、卸荷和平衡等多种回路。
一、调压回路
功用:使液压系统整体或部分的压力保持恒定或不超过某个数值。
在定量泵系统中,液压泵的供油压力可以通过溢流阀来调节。
在变量泵系统中,用安全阀来限定系统的最高压力,防止系统过载。
若系统中需要二种以上的压力,则可采用多级调压回路。
(1)单级调压回路
如图4-16a所示,在液压泵1出口处设置并联的溢流阀2,即可组成单级调压回路,从而控制了液压系统的最高压力值。
(2)二级调压回路
如图6-1a,可实现两种不同的压力控制。
(3)多级调压回路如图6-1b所示的由溢流阀1、2、3分别控制系统的压力,从而组成了三级调压回路。
在这种调压回路中,阀2和阀3的调定压力要小于阀1的调定压力,但阀2和阀3的调定压力之间没有什么一定的关系。
?
二、减压回路
减压回路的功用是使系统中的某一部分油路具有较低的稳定压力。
最常见的减压回路通过定值减压阀与主油路相连,如图6-2所示。
回路中的单向阀供主油路压力降低(低于减压阀调整压力)时防止油液倒流,起短时保压之用。
减压回路中也可以采用类似两级或多级调压的方法获得两级或多级减压,图6-2b所示为利用先导型减压阀1的远控口接一远控溢流阀2,则可由阀1、阀2各调得一种低压,但要注意,阀2的调定压力值一定要低于阀1的调定压力值。
为了使减压回路工作可靠起见,减压阀的最低调整压力不应小于0.5Mpa,最高调整压力至少应比系统压力小 0.5MPa。
当减压回路中的执行元件需要调速时,调速元件应放在减压阀的后面,以避免减压阀泄漏(指由减压阀泄油口流回油箱的油液)对执行元件的速度发生影响。
?
三、增压回路
当液压系统中的某一支油路需要压力较高但流量又不大的压力油,若采用高压泵不经济,或者根本就没有这样高压力的液压泵时,就要采用增压回路。
(1)单作用增压缸的增压回路
如图6-3a所示,间歇增压
(2)双作用增压缸增压回路
如图6-3b所示,连续增压
四、卸荷回路
卸荷回路的功用是在液压泵驱动电动机不频繁启闭的情况下,使液压泵在功率损耗接近于零的情况下运转,以减少功率损耗,降低系统发热,延长泵和电机的寿命。
可分:流量卸荷和压力卸荷。
流量卸荷主要是使用变量泵,使泵仅为补偿泄漏而以最小流量运转,此方法比较简单,但泵仍处在高压状态下运行,磨损比较严重。
压力卸荷的方法是使泵在接近零压下运转,常见的压力卸荷方式有以下几种:
1)换向阀卸荷回路 M、H和K型中位机能的三位换向阀处于中位时,泵即卸荷,如图6-4所示为采用M型中位机能的电液换向阀的卸荷回路。
这种回路切换时压力冲击小,但回路中必须设置单向阀,以使系统能保持0.3MPa左右的压力,供操纵控制油路之用。
(2)用先导型溢流阀卸荷的卸荷回路
图6-la中若去掉阀4,使先导型溢流阀的远程控制口直接与二位二通电磁阀相连,便构成一种用先导型溢流阀的卸荷回路。
这种卸荷回路
卸荷压力小,切换时冲击也小。
3)双泵供油回路中利用顺序阀作卸荷阀
在双泵供油回路中利用顺序阀作卸荷阀的卸荷方式,详见图6-19。
4).限压式变量泵的卸载回路
限压式变量泵的卸载回路为零流量卸载,如图所示,当液压缸3活塞运动到行程终点或换向阀2处于中位时,泵1的压力升高,流量减小,当压力接近压力限定螺钉调定的极限值时,泵的流量减小到只补充液压缸或换向阀的泄漏,回路实现保压卸载。
系统中的溢流阀4作安全阀用,以防止泵的压力补偿装置的零漂和动作滞缓导致压力异常。
5)有蓄能器的卸载回路
图d是系统中有蓄能器的卸载回路。
当回路压力到达卸载溢流阀2的调定值时,定量泵通过阀2卸载,由蓄能器3保持系统压力,补充系统泄漏;当回路压力下降低于卸荷溢流阀2的调定值时, 阀2关闭, 定量泵恢复向系统供油。
五、保压回路
保压回路就是使系统在液压缸不动或仅有工件变形所产生的小位移下稳定地维持住压力。
最简单的保压回路是使用密封性能较好的液控单向阀的回路,但是阀类元件处的泄漏使得这种回路的保压时间不能维持太久。
常用的保压回路有:
(1)利用液压泵保压的保压回路
利用液压泵的保压回路也就是在保压过程中,液压泵仍以较高的压力(保压所需压力)工作。
此时,若采用定量泵则压力油几乎全经溢流阀流回油箱,系统功率损失大,易发热,故只在小功率的系统且保压时间较短的场合下才使用;若采用变量泵,在保压时泵的压力较高,但输出流量几乎等于零。
因而,液压系统的功率损失小。
(2)利用蓄能器的保压回路
如图6-5所示。
(3)自动补油保压回路
如图6-6所示
六、平衡回路
平衡回路的功用在于防止垂直或倾斜放置的液压缸和与之相连的工作部件因自重而自行下落。
1) 为采用单向顺序阀的平衡回路。
图6-7a为采用单向顺序阀的平衡回路。
这种回路当活塞向下快速运动时功率损失大,锁住时活塞和与之相连的工作部件会因单向顺序阀和换向阀的泄漏而缓慢下落;因此它只适用于工作部件重量不大、活塞锁住时定位要求不高的场合。
2)采用液控顺序阀的平衡回路
图6-7b为采用液控顺序阀的平衡回路。
这种平衡回路的优点是只有上腔进油时活塞才下行,比较安全可靠,缺点是活塞下行时平稳性较差;因此这种回路适用于运动部件重量不很大,停留时间较短的液压系统中。
3)采用液控单向阀的平衡回路
如图所示。
由于液控单向阀是锥面密封,泄漏量小,故其闭锁性能好,活塞能够较长时间停止不动。
回油路上串联单向节流阀2,用于保证活塞下行运动的平稳。
假如回油路上没有节流阀,活塞下行时液控单向阀1被进油路上的控制油打开:回油腔没有背压,运动部件由于自重而加速下降,造成液压缸上腔供油不足,液控单向阀1因控制油路失压而关闭。
阀1关闭后控制油路又建立起压力,阀1再次被打开。
液控单向阀时开时闭,使活塞在向下运动过程中产生振动和冲击。