第8章 热辐射基本定律和辐射特性(杨世铭,陶文栓,传热学,第四版,答案)
- 格式:doc
- 大小:553.50 KB
- 文档页数:5
第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dtq λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
第8章热辐射基本定律和辐射特性(复习题解答)【复习题8-1】什么叫黑体?在热辐射理论中为什么要引入这一概念?答:吸收比α=l的物体叫做黑体。
黑体完全吸收投入辐射,从黑体表面发出的辐射都为自身辐射,没有反射,因而黑体辐射的特性反映了物体辐射的规律,这为研究实际物体的辐射提供了理论依据和简化分析的基础。
【复习题8-2]温度均匀的空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射?答:空腔内部壁面不一定是黑体辐射。
小孔之所以呈现黑体特性,是因为辐射在空腔内经历了多次的吸收和反射,辐射能基本基本都被内壁面吸收,从小孔射出的辐射能基本为零。
【复习题8-3]试说明,为什么在定义物体的辐射力时要加上“半球空间”及“全部波长”的说明?答:因为辐射表面会向半球空间各个方向辐射能量,且辐射能中包含各种波长的电磁波,而辐射力必须包括辐射面辐射出去的所有能量,所以要加上“半球空间”和“全部波长”的说明。
【复习题8-4】黑体的辐射能按波长是怎样分布的?光谱辐射力E根的单位中分母的“n?”代表什么意义?答:黑体辐射能按波长的分布服从普朗克定律。
光谱辐射力单位中的分母“n?”代表了单位辐射面积“n?”和辐射的电磁波单位波长范围“m”的意思。
【复习题8-5]黑体的辐射能按空间方向是怎样分布的?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的?答:黑体辐射能按空间方向分布服从拦贝特定律。
定向辐射强度与空间方向无关并不意味着黑体的辐射能在半球空间是均匀分布的。
因为定向辐射强度是指单位可见辐射面积,而在空间不同方向可见辐射面积是不同的,辐射能在各个方向也不同。
【复习题8-6】什么叫光谱吸收比?在不同光源的照耀下,物体常呈现不同的颜色,如何解释?答:光谱吸收比是指物体对某一特定波长的投入辐射所吸收的百分比。
在光源照射下,物体会吸收一部分辐射,并反射一部分辐射,物体呈现的是反射光的颜色,因而光源不同,反射光也会不同,物体也会呈现不同的颜色。
815 传热学《传热学》(第四版)或(第五版),章熙民、任泽霈、梅飞鸣编著,中国建筑工业出版社;《传热学》(第三版),杨世铭,陶文铨编著,高等教育出版社基本要求1.掌握热量传递的三种基本方式及传热过程所遵循的基本规律,学会对传热过程进行分析和计算的基本方法。
2.掌握导热的基本规律。
能对无内热源的简单几何形状物体,在常物性条件下的稳态导热和传热过程进行熟练的分析计算。
较深刻地了解物体在被持续加热或冷却时的温度场及热流随时间而变化的规律。
能应用集总参数法和诺模图来计算在对流边界条件下的非稳态导热问题。
3.较深刻地了解各种因素对对流换热的影响。
对受迫对流换热、自然对流换热现象的物理特征及有关准则有正确的理解。
对相变换热现象特征有所了解,并能运用准则方程进行计算。
4.掌握热辐射的基本定律。
熟悉由透明介质所隔开的物体表面辐射换热的基本计算方法。
对气体辐射换热的特性和特征有所了解。
5.掌握换热器的两种基本计算方法:对数平均温度差法和传热效率-单元数法。
基本内容绪论1.传热学的研究对象及其应用介绍。
2.热量传递的三种基本方式:导热、对流和辐射。
3.传热过程与传热系数。
第一章导热理论基础1.导热基本概念。
温度场。
温度梯度。
傅里叶定律。
2.导热系数。
3.导热微分方程。
4.导热过程的单值性条件。
第二章稳态导热1.通过单平壁和复合平壁的导热。
2.通过单圆筒壁和复合圆筒壁的导热。
临界热绝缘直径。
3.通过肋壁的导热,肋片效率。
4.通过接触面的导热。
5.二维稳态导热问题。
第三章非稳态导热1.非稳态导热过程的特点。
2.对流换热边界条件下非稳态导热,诺模图,集总参数法。
3.常热流通量边界条件下非稳态导热。
第四章导热问题数值解1.泰勒级数法和热平衡法。
2.导热问题的数值计算,节点方程的建立及求解。
3.非稳态导热问题的数值计算,显式差分格式及其稳定性,隐式差分格式。
第五章对流换热分析1.对流换热过程和影响对流换热的因素。
对流换热过程微分方程式。
第8章 热辐射基本定律和辐射特性课堂讲解课后作业【8-10】一等温空腔的内表面为漫射体,并维持在均匀的温度。
其上有一个面积为0.022m 的小孔,小孔面积相对于空腔内表面积可以忽略。
今测得小孔向外界辐射的能量为70W ,试确定空腔内表面的温度。
如果把空腔内表面全部抛光,而温度保持不变,问这一小孔向外的辐射有何影响?【解】小孔可以当做黑体来处理,4T A Φσ=498.4496K02.01067.570484b =⨯⨯==-A E T σ 小孔的黑体特性与空腔的内表面的性质无关,故不影响小孔向外的辐射。
【8-18】暖房的升温作用可以从玻璃的光谱穿透比变化特性解释。
有一块厚为3mm 的玻璃,经测定,其对波长为0.3~2.5μm 的辐射能的穿透比为0.9,而对其他波长的辐射能可以认为完全不穿透。
试据此计算温度为5800K 的黑体辐射及温度为300K 的黑体辐射投射到该玻璃上时各自的总穿透比。
【解】()()()()()()()()[]12212121212211~0b ~0b ~b bb b b bbbb bb bbb 0b9.09.0d 9.0d 9.0d d d d d λλλλλλλλλλλλλλλλλλλλλλλλλτλλτλλτλλτλλττF F F E E E E E E E E E E E E E E -=====++==⎰⎰⎰⎰⎰⎰⎰∞∞T 1=5800K ,K m 174058003.011⋅=⨯=μλT ,K m 1450058005.212⋅=⨯=μλT()0.0328541~0b =λF ,()0.9660652~0b =λF ()()[][]0.8398899032854.0966065.09.09.012~0b ~0b =-=-=λλτF F T 2=300K ,K m 903003.011⋅=⨯=μλT ,K m 0573005.212⋅=⨯=μλT()0.00002881~0b =λF ,()0.000242~0b =λF ()()[][]0.000190080.00002880.000249.09.012~0b ~0b =-=-=λλτF F【8-21】温度为310K 的4个表面置于太阳光的照射下,设此时各表面的光谱吸收比随波长的变化如附图所示。
试分析,在计算与太阳能的交换时,哪些表面可以作为灰体处理?为什么?【解】太阳辐射能的绝大部分集中在2μm 以下的区域,温度为310K 的物体辐射能则绝大部分在6μm 以上的红外辐射,由图可见,第一种情形与第三种情形,上述波段范围内单色吸收率相同,因而可以作为灰色处理。
【8-23】已知一表面的光谱吸收比与波长关系如附图所示,在某一瞬间,测得表面温度为1100K 。
投入辐射G λ按长分布的情形示于附图b 。
试:(1) 计算单位表面积所吸收的辐射能; (2) 计算该表面的发射率及辐射力;(3) 确定在此条件下物体表面的温度随时间如何变化,设物体无内热源,没有其他形式的热量传递。
【解】(1)()()()()()23322323643433336434333036336633m W 101146102.3234108.023104.0d 102.3d 108.0d 104.0d 1048.0d 108.0d 104.0d 8.0d 4.0d d d d ⨯=-⨯⨯+-⨯⨯+⨯⨯=⨯+⨯+⨯=⨯⨯+⨯+⨯=+=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∞∞λλλλλλλλλλλλλλαλλαλλαλλαλλλλλλG G G G G G G(2)()()()()()()()()()()[]()()3~0b 6~0b 3~0b 6~0b 3~0b 6~3b 3~0b b63b b3b b63b 3b b6b 63b 3b bb bb 4.08.08.04.08.04.0d 8.0d 4.0d 8.0d d d d d d F F F F F F F E E E E E E E E E E E E E E E -=-+=+=+=+=++===⎰⎰⎰⎰⎰⎰⎰⎰⎰∞∞∞λλλλλλαλλαλλαλλαλλεελλλλλλλλλT =1100K ,K m 3003110031⋅=⨯=μλT ,K m 0066110062⋅=⨯=μλT()0.340093~0b =F ,()0.783166~0b =F ()()0.4904920.340094.00.783168.04.08.03~0b 6~0b =⨯-⨯=-=F F ε 23484m W 1040.717911001067.50.490492⨯=⨯⨯⨯==-T E εσ(3) G E >,所以在此条件下物件表面的温度随时间的延长而降低。
【8-24】一测定物体表面辐射特性的装置示于附图中。
空腔内维持在均匀温度T f =1000K ;腔壁是漫灰体ε=0.8,腔内1000K 的热空气与试样表面间的对流换热表面传热系数h =10W/(m 2∙K);试样的表面温度用冷却水维持,恒为300℃。
试样表面的光谱反射比示于附图。
试:(1) 计算试样的吸收比;(2) 确定其发射率;(3) 计算冷却水带走的热量。
试样表面A =5cm 2。
【解】(1)()()()()()[]()()()[]()()()()()()()()()()()()()()()()()()()()()()()[]()()()[]()4~0b 4~0b 4~0b ~4b 4~0b f b 4f b f b 40f b f b 4f b f b 40f b f b 4f b f b 40f b f b 0f b f b 0f b f b 0f b f b 0f b f b 0f b 6.02.018.02.018.02.01d 8.0d 2.01d 8.0d 2.01d ,d ,1d ,d d ,1d ,1d ,F F F F F T E T E T E T E T E T E T E T E T E T E T T E T E T T E T E T T E T E T E T E T T E T E T T E T E T T +=-+-=+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=-=-=-==∞∞∞∞∞∞∞∞∞⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰λλλλλλρλλρλλρλλλρλλρλλααλλλλλλλλλλλT f =1000K ,K m 000410004f ⋅=⨯=μλT ,()0.480854~0b =F()0.488510.480856.02.06.02.04~0b =⨯+=+=F α (2)()()()()()()()()[]()()()[]()()()()()()()()()()()()()()()()()()()()()()()[]()()()[]()4~0b 4~0b 4~0b ~4b 4~0b b 4b b 40b b 4b b 40b b 4b b 40b b 0bb 0b b 0b b 0b b 0b b 0b 6.02.018.02.018.02.01d 8.0d 2.01d 8.0d 2.01d ,d ,1d ,d d ,1d ,1d ,d ,F F F F F T E T E T E T E T E T E T E T E T E T E T T E T E T T E T E T T E T E T E T E T T E T E T T E T E T T E T E T T +=-+-=+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=-=-=-===∞∞∞∞∞∞∞∞∞∞⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰λλλλλλρλλρλλρλλλρλλρλλαλλεελλλλλλλλλλλλT f =273+300=573K ,K m 22925734f ⋅=⨯=μλT ,()0.11848884~0b =F ()0.271093280.11848886.02.06.02.04~0b =⨯+=+=F ε(3) 冷却水带走的热量为:r c ΦΦΦ+=()()[]W 2.1353002731000101054f c =+-⨯⨯⨯=-=-T T Ah Φ ()()[][][]()13.02W5730.2710932810000.488511067.5105448444f 44f b f b r =⨯-⨯⨯⨯⨯⨯=-=-=-=--T T A T T A T E T E A εασεσασεαΦ 15.16W 02.13135.2r c =+=+=ΦΦΦ【8-26】为了考验高温陶瓷涂层材料使用的可靠性,专门设计了一个试验,如附图所示。
已知辐射探头表面积A d =10m 2,陶瓷涂层表面积A c =10-4m 2。
金属基板底部通过加热维持在T 2=1500K ,腔壁温度均匀且T w =90K 。
陶瓷厚δ1=5mm ,λ1=60W/(m∙K);基板厚为δ2=8mm ,λ2=30W/(m∙K)。
陶瓷表面是漫灰的,ε=0.8。
陶瓷涂层与金属基板间无接触热阻。
试确定:(1) 陶瓷表面的温度T 1及表面热流密度;(2) 置于空腔顶部的辐射能检测器(辐射探头)所接受到的由陶瓷表面发射出去的辐射能量;(3) 经过多次试验后,在陶瓷涂层与基板之间产生了很多小裂纹,形成了接触热阻,但T w 及陶瓷涂层表面的辐射热流密度及发射率均保持不变,此时温度T 1及T 2是增加、降低,还是不变?【解】如图所示:(1) 稳态运行时,电热器发出之热通过导热传导到陶瓷表面上,再通过辐射传递到腔壁四周,设陶瓷表面温度为T 2,则有()4w41c 221112c T T A T T A -=+-εσλδλδ()4418331901067.58.030108601051500-⨯⨯⨯=⨯+⨯--T T 用试凑法或计算机迭代,解得: K 14332=T(2) 对于漫灰体,兰贝特定律πεεθΩΦb b cos d d d E I I A ===⋅ πθΩεΦcos d d d b A E ⋅=由于辐射探头面积A d 和陶瓷涂层表面积A c 都很小,可按照微元面积来处理,面积A d 可构成微元角,则sr 10110d 5252d --===R A Ω, 24c m 10d -==A A面积A d 与面积A c 平行且共法线,所以θ=0W 106.0880cos 101015001067.58.0cos d d d 5454842----⨯=⨯⨯⨯⨯⨯⨯=⋅=ππθΩεσΦA T(3) ()Φεσλδλδ=-=+-4w 41c 221112cT T A T T A上式中,Φ恒定,ε恒定,T w 恒定,则T 1恒定;由于接触热阻的作用,左端分母增大,则T 2要升高。