集成电路常用器件版图
- 格式:ppt
- 大小:7.38 MB
- 文档页数:49
集成电路常用器件介绍一、CMOS工艺下器件:CMOS工艺可分为P阱CMOS、N阱CMOS和双阱CMOS。
以NWELL工艺为例说明CMOS中常用有源及无源器件的器件结构、工作原理、特性参数等。
建议在此之前先了解CMOS的基本工艺。
1.1有源器件1. MOS管采用N阱工艺制作的PMOS与NMOS结构示意图如图(1.1-1),在衬底为轻掺杂P-的材料上,扩散两个重掺杂的N+区就构成了N沟器件,两个N+区即源漏,中间为沟道。
中间区域的表面上有以薄层介质材料二氧化硅将栅极(多晶硅)与硅隔离开。
同样,P沟器件是在衬底为轻掺杂的N-的材料(即N阱或NWELL)上,扩散两个重掺杂的P+区形成的。
图(1.1-1)图中的B端是指衬底,采用N阱工艺时,N阱接最高电位VDD,Psub接VSS。
通常将PMOS、NMOS的源极与衬底接在一起使用。
这样,栅极和衬底各相当于一个极板,中间是二氧化硅绝缘层,形成电容。
当栅源电压变化时,将改变衬底靠近绝缘层处感应电荷的多少,从而控制漏极电流的大小。
以N沟器件为例说明MOS管的工作原理:(1)N沟增强型MOS管:当栅源之间不加电压时,漏源之间是两只背靠背的PN结,不存在导电沟道,因此即使漏源之间加电压,也不会有漏极电流。
当u DS=0,且u GS>0时,由于二氧化硅的存在,栅极电流为零。
但是栅极金属层将聚集正电荷,它们排斥P型衬底靠近二氧化硅一侧的空穴,使之留下不能移动的负离子区,形成耗尽层。
当u GS增大,一方面耗尽层加宽,另一方面将衬底的自由电子吸引到耗尽层于绝缘层之间,形成一个N型薄层,称为反型层,如图(1.1-2)。
这个反型层即源漏之间的导电沟道。
指沟道刚刚形成的栅源电压称为开启电压U GS(th)。
u GS 越大反型层越厚,导电沟道电阻越小。
图(1.1-2)当u GS是大于U GS(th)的一个确定值时,若在漏源之间加正向电压,则产生一定的漏极电流。
此时,u DS的变化对导电沟道的影响与结型场效应管相似,即当u DS较小时,u DS的增大使漏极电流线性增大,沟道沿源漏方向逐渐变窄,一旦u DS增大到使u GD= U GS(th)[即u DS=U GS- U GS(th)]时,沟道在漏极一侧出现夹断点,称为预夹断,如图(1.1-3)所示。