北大计量经济学讲义-第四讲
- 格式:ppt
- 大小:359.00 KB
- 文档页数:99
计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。
本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。
第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。
时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。
2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。
这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。
第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。
这些方法可以帮助我们理解和总结经济数据的基本特征。
2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。
例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。
第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。
这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。
2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。
例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。
第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。
2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。
第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。
计量经济学讲义王维国讲授课程的性质计量经济学是一门由经济学、统计学和数学结合而成的交叉学科,从学科性质来看,计量经济学是一门应用经济学。
具体来说,计量经济学是在经济学理论指导下,借助于数学、统计学和计算机等方法和技术,研究具有随机特征的经济现象,目的在于揭示其发展变化规律。
课程教学目标计量经济学按其内容划分为理论计量经济学和应用计量经济学。
本课程采用多媒体教学手段,结合Eviews软件应用,讲解理论计量经济学的最基本内容。
本课程教学目标:一是使学生了解现实经济世界中可能存在的计量经济问题,掌握检测及解决计量经济问题的方法和技术;二是使学生能够在计算机软件辅助下,建立计量经济模型,为其他专业课的学习及对经济问题进行实证分析研究奠定基础。
课程适用的专业与年级本大纲适用于数量经济专业2001级计量经济学课程的教学。
课程的总学时和总学分课程总学时为72,共计4学分。
本课程与其他课程的联系与分工学习本课程需要学生具备概率论与数理统计、微积分、线性代数、Excel、微观经济学、宏观经济学、经济统计等学科知识。
概率论与数理统计等数学课是计量经济学的方法论基础,计量经济学主要解决的是实际中不满足数理统计假定时经济变量之间关系及经济变量发展变化规律分析方法和技术,而经济学为计量经济学提供经济理论的准备,它仅就经济变量之间的关系提出一些理论假设,而不进行实证分析,只有具备了计量经济学的基本知识才能更好地解决一些实际问题。
课程使用的教材及教学参考资料使用的教材:计量经济学(Basic Econometrics) 第三版,[美]古扎拉蒂(DamodarN.Gujarati) 著,林少宫译,中国人民大学2000年3月第1版。
该教材畅销美国,并流行于英国及其他英语国家。
该书充分考虑了学科发展的前沿,十分重视基础知识的教学及训练,内容深入浅出。
教学参考资料:1. 王维国,《计量经济学》,东北财经大学2001.2.Aaron C. Johnson, Econometrics Basic and Applied学时分配表第一讲引言:经济计量学的特征及研究X围第一节什么是计量经济学一、计量经济学的来源二、计量经济学的定义计量经济学几种定义。
第一讲 普通最小二乘法的代数一、 问题假定y 与x 具有近似的线性关系:01y x ββε=++,其中ε是随机误差项。
我们对01ββ、这两个参数的值一无所知。
我们的任务是利用样本数据去猜测01ββ、的取值。
现在,我们手中就有一个样本容量为N 的样本,其观测值是:1122(,),(,),...,(,)N N y x y x y x 。
问题是,如何利用该样本来猜测01ββ、的取值?为了回答上述问题,我们可以首先画出这些观察值的散点图(横轴x ,纵轴y )。
既然y 与x 具有近似的线性关系,那么我们就在图中拟合一条直线:01ˆˆˆy x ββ=+。
该直线是对y 与x 的真实关系的近似,而01ˆˆ,ββ分别是对01,ββ的猜测(估计)。
问题是,如何确定0ˆβ与1ˆβ,以使我们的猜测看起来是合理的呢?笔记:1、为什么要假定y 与x 的关系是01y x ββε=++呢?一种合理的解释是,某一经济学理论认为x 与y 具有线性的因果关系。
该理论在讨论x 与y 的关系时认为影响y 的其他因素是不重要的,这些因素对y 的影响即为模型中的误差项。
2、01y x ββε=++被称为总体回归模型。
由该模型有:01E()E()y x x x ββε=++。
既然ε代表其他不重要因素对y 的影响,因此标准假定是:E()0x ε=。
故进而有:01E()y x x ββ=+,这被称为总体回归方程(函数),而01ˆˆˆy x ββ=+相应地被称为样本回归方程。
由样本回归方程确定的ˆy与y 是有差异的,ˆy y -被称为残差ˆε。
进而有:01ˆˆˆy x ββε=++,这被称为样本回归模型。
二、 两种思考方法法一:12(,,...,)N y y y '与12ˆˆˆ(,,...,)N y y y '是N 维空间的两点,0ˆβ与1ˆβ的选择应该是这两点的距离最短。
这可以归结为求解一个数学问题:由于ˆi i y y -是残差ˆi ε的定义,因此上述获得0ˆβ与1ˆβ的方法即是0ˆβ与1ˆβ的值应该使残差平方和最小。
(财务知识)计量经济学讲义计量经济学讲义第四讲趋势和DF检验(修订版)此翻译稿制作学习之用,如有错误之处,文责自负。
趋势平稳序列(TS)(图1和2)壹个趋势平稳序列绕着壹个确定的趋势(序列的均值),其波动幅度不显示增大或者减小的趋势。
线性确定性趋势:t=1,2,…平方确定性趋势:t=1,2,…通常:t=1,2,…均值是是随时间变化的(川),可是方差是常数。
能够为任意平稳序列,也就是说,不壹定要是白噪声过程。
通过拟合壹个确定的多项式时间趋势,趋势能够来消除:拟合趋势后残差将给出壹个去趋势的序列。
壹个带线性确定性趋势AR(1)过程能够写作:t=1,2,…此处确定性趋势被减去。
然而在实践中,、是未知的而且必须估计出来。
于是模型能够被重述为:其中包含壹个截距和壹个趋势,也就是此处且若,那么此AR过程就是围绕壹个确定性趋势的平稳过程.差分平稳序列(DF)(也叫单整序列)和随机性趋势如果壹个非平稳序列能够由壹个平稳序列通过d次差分得到,那么我们说这个序列就是d阶单整的,写做I(d).这壹过程也因此叫做差分平稳过程(DSP).因此,平稳序列就是零阶单整的,I(0)。
白噪声序列是I(0)。
所以如果序列是平稳的,那么就是I(d)。
是差分算子,即如果序列是平稳的话,是I(1);如果序列是平稳的,是I(2),随机游走(图3)是随机游走的,如果满足此处这是壹个AR(1)过程,且在中具有根这壹序列被称为具有单位根,或者叫做1阶单整,I(1)。
注意:假设此过程在t=0起始处有壹个确定的值y0.那么,……(1)注释:(a)在(1)式中,y t被表示为初始值y0和壹个序列的局部的和(即所谓的随机趋势)。
所有随机冲击对序列y t都有永久的影响,它们能够永久的改变y t的水平,而在平稳序列中,冲击的影响会随着时间的流逝而趋向于零。
因此,称随机游走具有壹个随机趋势。
(b)E(y t)=y0+t*0=y0[定值]Var(y t)=Var()=t 2都时间依赖的,即,Var(y t)存在趋势。
计量经济学讲义第四讲(共⼗讲)第四讲异⽅差⼀、同⽅差与异⽅差:图形展⽰⾼斯-马尔科夫假定四即同⽅差假定:22iεδδ=。
维持其他假定,并假设真实模型是12i i i y x ββε=++,那么这意味着:12222()iii iy E y x εββδδδ=+==为了理解该假定,我们先考察图⼀。
图⼀同⽅差情况在图⼀中,空⼼圆点代表(,())i i x E y ,实⼼圆点代表观测值(,)iix y 观测,iy观测是随机变量i y 的⼀个实现【注意,按照假定,i x 是⾮随机的,即在重复抽样的情况下,给定i 的取值,ix 不随样本的变化⽽变化】,倾斜的直线代表总体回归函数:12()i i E y x ββ=+。
图⼀显⽰了⼀个重要特征,即,尽管12,,...y y 的期望值随着12,,...x x 的不同⽽随之变化,但由于假定222iiy εδδδ==,它们的离散程度(⽅差)是不变的。
然⽽,假定误差项同⽅差从⽽被解释变量同⽅差可能并不符合经济现实。
例如,如果被解释变量y代表居民储蓄,x代表收⼊,那么经常出现的情况是,低收⼊居民间的储蓄不会有太⼤的差异,这是因为在满⾜基本消费后剩余收⼊已不多。
但在⾼收⼊居民间,储蓄可能受消费习惯、家庭成员构成等因素的影响⽽千差万别。
图⼆能够展⽰这种现象。
图⼆异⽅差情况在图⼆中,依据x1所对应的分布曲线形状,x5所对应的实⼼圆点看起来是⼀个异常点,但依据x5所对应的分布曲线形状,它也许是正常的,因为x5所对应的分布曲线形状表明,随机变量y5的⽅差很⼤。
如果我们有很多观测值,那么在上述情况下,⼀个典型的散点图如图三所⽰。
事实上,利⽤散点图来初步识别异⽅差现象在实践中经常被采⽤。
图三异⽅差情况下的散点图笔记:应该注意的是,如果第⼀个⾼斯-马尔科夫假定被违背,即模型设定有误,那么也可能出现“异⽅差”现象。
例如,正确模型是⾮线性的,但我们错误地设定为线性,以这个线性模型为参照,散点图也许显⽰出明显的异⽅差症状。
---------------------------------------------------------------最新资料推荐------------------------------------------------------内生性问题及其处理《计量经济学》专题四内生性问题及其处理本专题共四讲第一讲内生性问题概述第二讲工具变量第三讲双重差分第四讲断点回归1/ 52《计量经济学》第一讲内生性问题概述主讲:王岳龙? 内生性的定义和后果 ? 内生性的表现形式 ? 内生性的解决方法---------------------------------------------------------------最新资料推荐------------------------------------------------------内生性问题概述1.内生性的定义和后果yi ? ? 0 ? ?1xi ? ? i? OLS 1?pcov( yi, xi ) var(xi )??1?cov( xi ,? ivar(xi ))if cov(xi,?i ) ?0 则x被称为内生变量so? OLS 1??1则β1估计有偏且不一致3/ 522.内生性的表现形式ln yi ? ?0 ? ?1edui ? ?2malei ? ?3birthi ? ?i 以mincer 方程,如何准确估计教育回报率为例遗漏重要相关解释变量+ 与核心解释变量edu和因变量lny同时相关的不可观测因素ability 因无法量化而被控制,从而出现在随机干扰项中,从而导致cov(edu,ξ)≠0。
类似的还有遗漏edu ,这种错误设定函数形式也是遗漏重要解释变量的特殊形式。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 特别的,真实模型是 yi ? ?0 ? ?1x1i ? ?2 x2i ? ?i 但是却错误的估计 yi ? ?0 ??1x1i ??i??1??1??2cov(x1,x2 var( x1 ))5/ 52注意上述遗漏变量偏误公式只成立于二元回归,如果是更多元回归,遗漏一个重要解释变量导致核心变量系数的偏差方向情况则很复杂。