人工举升理论第18讲 水力射流泵
- 格式:ppt
- 大小:797.00 KB
- 文档页数:18
射流泵的工作原理介绍发布时间:2010-12-8 阅读次数:1300 来源:亚洲泵网编辑:亚洲泵网编辑部射流泵的工作原理:工作流体Qo从喷嘴高速喷出时,在喉管入口处因周围的空气被射流卷走而形成真空,被输送的流体QS即被吸入。
两股流体在喉管中混合并进行动量交换,使被输送流体的动能增加,最后通过扩散管将大部分工作原理动能转换为压力能。
1852年,英国的D.汤普森首先使用射流泵作为实验仪器来抽除水和空气。
射流泵的工作原理20世纪30年代起,射流泵开始迅速发展。
按照工作流体的种类射流泵可以分为液体射流泵和气体射流泵,其中以水射流泵和蒸汽射流泵最为常用。
射流泵主要用于输送液体、气体和固体物。
武汉大学射流泵技术应用于支线飞机工作原理日前,武汉大学动力与机械学院陆宏圻、龙新平教授收到西安飞机工业(集团)有限责任公司提供工作原理的射流泵应用证明,称他们利用射流泵技术开发的燃油喷射泵供输油系统,可使该公司“新舟60”飞机每架产生经济效益313.6万元。
“新舟60”飞机是西安飞机工业(集团)有限责任公司自主研制、生产的新一代涡桨支线飞机。
该技术对“新舟60”飞机的供输油系统进行优化,从而使该飞机身轻价廉、产生的效益更高。
龙新平介绍,民用飞机传统上采用离心电泵供输燃油,重量大、造价贵,供输燃油中间环节射流泵相对较多。
课题组工作原理从飞机的心脏——发动机入手,用喷射泵取代传统的离心电泵,直接利用发动机的动流(压力高的一股流体)作为喷射泵的动力给飞机供输油。
这样的替代使飞机结构更简单,减少了供输燃油的中间环节,减少了运动部件,提高了飞机射流泵的安全可靠性,且维护性好、飞行操作驾驶方便。
西安飞机工业(集团)有限责任公司提供的射流泵应用证明显示,采用喷射泵供输油系统,每架飞机工作原理可以减轻飞机重量30公斤,节约成本43.6万元,每架飞机射流泵在安全寿命期内将产生经济效益270万元,合计产生经济效益313.6万元。
截至目前,该飞机已销售136架,新系统累计产生效益超过4亿元。
射流泵工作原理
射流泵是一种利用高速流体动能来抽取液体或气体的装置。
它的工作原理基于
贝努利定律和连续方程,通过高速流体的动能转化为压力能,从而实现液体或气体的抽取。
射流泵通常由喷嘴、吸口、扩散管和抽液口等部件组成。
首先,液体或气体从吸口进入射流泵,并经过喷嘴。
当流体通过喷嘴时,由于
喷嘴的设计使得流体速度急剧增加,从而使得流体的动能增加。
根据贝努利定律,流体的动能增加意味着其压力降低。
因此,流体在喷嘴内部的压力会急剧下降。
随后,流体从喷嘴出口进入扩散管。
扩散管的设计使得流体在通过管道时速度
逐渐减小,从而动能逐渐转化为压力能。
这种设计可以有效地将流体的动能转化为压力能,使得流体的压力增加。
最终,流体从抽液口排出,完成了抽取的过程。
射流泵的工作原理可以简单总结为,利用喷嘴将流体速度增加,动能增加,压
力降低;然后通过扩散管将动能转化为压力能,使得流体的压力增加;最终实现了液体或气体的抽取。
射流泵的工作原理非常简单,但其在实际应用中具有广泛的用途。
由于其结构
简单、维护成本低、无需动力驱动等优点,射流泵被广泛应用于化工、石油、冶金、环保等领域。
同时,射流泵也被用于一些特殊场合,如在航空航天领域用于推进剂的抽取,以及在实验室中用于真空系统的抽取等。
总之,射流泵的工作原理基于贝努利定律和连续方程,通过将流体的动能转化
为压力能来实现液体或气体的抽取。
其简单的结构和广泛的应用使得射流泵在工程领域中具有重要的地位,对于提高工作效率和节约能源具有重要意义。
射流泵技术的理论及应用1. 前言射流泵是一种流体机械,它是以一种利用工作流体的射流来输送流体的设备。
根据工作流体介质和被输送流体介质的性质是液体还是气体,而分别称为喷射器、引射器、射流泵等不同名称,但其工作原理和结构式基本相同。
通常把工作液体和被抽送液体是同一种液体的设备称为射流泵。
我国从五十年代初开始对射流泵进行研究,最初通过引进国外的射流泵及样机在生产中应用,后来一些科研机构,高等学校考试进行研究和设计工作。
1958年,淮北煤矿建井公司采用射流泵开排水。
1961—1964年,中国农业机械化研究院结合华北地区深井提水需要设计研制了SLB系列射流泵。
1960年以来,我国著名学者陆宏圻教授运用立体留学和紊流射流泵理论研究了射流泵的基本性能方程、、汽蚀方程、装置性能方程、最有参数方程等,并在1989年比较全面给出了各种射流泵的设计理论和设计方法,出版了《射流泵技术的理论与应用》,为以后的研究工作奠定了坚实的基础。
江苏大学李传君等对废气射流装置工作原理进行了分析,提出了采用单相气体等熵流动理论来设计和计算射流装置的主要工作参数,结果和理论值本吻合,为该类型的射流装置的设计提供了良好好的依据。
沙洲工学院张防一基于平面势流理论,对混凝土射流泵装置的主要参数进行了理论设计,并根据射流泵装置内固液两相混合流动的特殊情况,提出了一套新的设计方法。
1995年,高传昌采用不同VI径的喷嘴、面积比、喉嘴距和脉冲频率等几何参数和工作参数对气液活塞式脉冲射流泵进行了探索试验,初步掌握了装置运行的稳定条件。
1999年,段新胜和孙孝庆进行了大量性试验,通过对比环形多喷嘴射流泵,得出结论:合理设计环形多喷嘴射流泵的各结构参数可显著改善射流泵的工作性能的;喷嘴安装角和喉嘴距决定着高速射流是否会产生附壁流动,它们应同时取较大值或较小值,但喷嘴安装角在任何情况下都不能太小;其喉管进口角不应超过45度;喉管长度与直径的比值L/d3可比中心射流泵小,t>3.5即可;喷嘴个数并不是越多越好,一般≤6;2003年,康宏琳对非恒定射流泵的时均性能进行了数值计算,2006年,尚华对脉冲液体射流泵的性能进行了数值计算,两者的结果均证明了脉冲射流能提高射流泵的效率。
射流泵结构及工作原理水力射流泵是一种射流泵是一种工作原理基于水力原理的水泵,又称水力射流泵。
其结构简单,没有机械运动部件,只需要水流动能,能够将低压水转化为高压水,常常用于水力工程、排污、喷洒等领域。
射流泵的结构主要由喷嘴、转向管、放水管和射流管组成。
喷嘴是射流泵中的核心部件,一般由高强度材料制成,形状为锥体,底部有进水口,顶部是喷嘴出水口。
喷嘴进水口与进水管相连,射流管与放水管相连。
转向管是连接放水管和喷嘴的管道,其作用是使水流发生方向改变,从而产生静水压力。
转向管的角度和形状会影响水流的压力和速度。
放水管一端与转向管相连,另一端用于放水,使沿射流管产生的高速水流形成有向冲击力。
射流管一端与喷嘴相连,另一端与放水管相连。
射流管中通过水流动能转移,将低压水流转化为高压水流,并且形成射流,以产生动能。
射流泵的工作原理是基于水力原理的。
进水管内的水流由于喷嘴的限制而加速,形成高速水流,使得水流动能增大。
当高速水流通过转向管折线转向时,水流动能无法完全转化为动压能,形成了一部分剩余的动能,这就产生了水流冲击力和压力。
放出的高压水直行水流与反向水流相冲,沿着射流管形成强大的射流。
这种排水方式的优点是能够通过水流动能来产生高压水流,无需其他能源,利用了自然的水力资源,节省了能源成本。
另外,射流泵结构简单,没有机械运动部件,故维护成本低,使用寿命长。
同时,射流泵在运行时具有较高的运行效率,能够达到较高的工作能力。
然而,射流泵也存在一些缺点。
由于射流泵需要有一定的水头才能产生高压水流,因此其适用范围具有一定的局限性。
此外,射流泵的使用也受到水流速度和管道长度等因素的影响。
总之,射流泵是一种基于水力原理工作的水泵,能够将低压水流转化为高压水流。
其结构简单,工作效率高,节省能源成本。
但其使用范围受到一定的限制,适用于特定的场合。
一、工作原理及结构水力射流泵装置的泵送是通过两种运动流体的能量转换来达到的。
地面泵提供的高压动力流体通过喷嘴把其位能(压力)转换成高速流体的动能;喷射流体将其周围的井液从汇集室吸人喉道而充分混合,同时动力液把动量传给井液而增大井液能量,在喉道末端,两种完全混合的流体仍具有很高的流速(动能),此时,它们进人一扩散管通过流速降低而把部分动能转换成压能,流体获得的这一压力足以把自己从井下返出地面,其结构原理如图1。
图l水力射流泵工作原理图二、工艺特点水力射流泵主要由井下系统和地面系统组成。
地面系统以分离产出流体作为动力液,除去动力液中的游离气和固体,加人化学剂处理动力液,在足够的压力下循环动力液,操作井下射流泵;井下系统用来连接地面设备和井下装置,为动力液和产出流体流人、流出井下泵提供必需的通路。
水力射流泵的井下系统工作时无动力部件,喷嘴和喉道用特殊材料制成,因此井下设备有较高的可靠性,且维修周期长、费用低,还能在高温、高气液比、出砂和腐蚀等复杂条件下工作。
泵挂深度和排量的变化范围大,通过更换不同的喷嘴、喉道组合调节......水力活塞泵与射流泵抽油的工作原理压力变送器解释说,水力活塞泵是一种液压传动的无杆泵抽油装置。
它由地面泵组、井口装置和管线系统、水套加热炉、沉淀罐及井下水力活塞泵机组等部分组成。
水力活塞泵一般用稀油作动力液,用本井或邻井的原油经分离器脱气,经过水套加热炉加热至60℃左右,进人沉淀罐,然后吸人高压三缸柱塞泵,加压后的高压原油(称为动力液)经过井口的四通阀进人油管,推动并下水力活塞泵组的马达和靠连杆连成一体的下端抽油泵活塞上下往复运动,抽汲井中原油。
水力活塞泵的种类很多,有双作用水力泵、差动式水力泵和速控式单作用水力泵等。
它适用于深井、定向井、结蜡井、稠油井,以及条件较复杂的油井。
压力变送器调查说,射流泵是一种结构简单、体积小、制造方便的无杆抽油装置。
它由打捞头、胶皮碗、出油孔、扩散管、喉管、喷嘴和尾管组成。
射流泵工作原理射流泵是一种常用的流体传输设备,其工作原理基于射流效应。
射流泵通过高速射流流体的动能将液体或气体从一个区域输送到另一个区域。
下面将详细介绍射流泵的工作原理。
1. 基本原理:射流泵利用射流的动能将流体加速并输送。
它由一个驱动流体(通常是液体或气体)和一个被输送流体(通常是液体)组成。
驱动流体通过一个喷嘴或喷管射出,形成高速射流,然后与被输送流体混合,使被输送流体获得动能并被加速输送。
2. 工作过程:射流泵的工作过程可以分为三个阶段:喷射阶段、混合阶段和推动阶段。
- 喷射阶段:驱动流体从喷嘴或喷管中射出,形成高速射流。
在这个阶段,驱动流体的动能转化为射流的动能。
- 混合阶段:高速射流与被输送流体混合。
在混合过程中,射流的动能被传递给被输送流体,使其获得动能并被加速。
- 推动阶段:被输送流体在获得动能后被推送到目标区域。
推动阶段的输送距离和速度取决于射流泵的设计和工作条件。
3. 设计要点:射流泵的设计要点包括喷嘴或喷管的形状和尺寸、驱动流体的压力和流量、被输送流体的性质等。
这些参数的选择将直接影响射流泵的性能和效率。
- 喷嘴或喷管:喷嘴或喷管的形状和尺寸决定了射流的速度和方向。
通常,喷嘴或喷管的出口较小,以增加射流的速度和动能。
- 驱动流体:驱动流体的压力和流量决定了射流的能量和输送能力。
较高的压力和流量将产生更强的射流,提高射流泵的输送效率。
- 被输送流体:被输送流体的性质(如粘度、密度等)将影响射流泵的工作效果。
较高的粘度和密度可能会降低射流泵的输送能力。
4. 应用领域:射流泵广泛应用于各个领域,包括工业、农业、环境保护等。
一些常见的应用包括:- 污水处理:射流泵可用于将污水从一个区域输送到处理站点,实现污水的集中处理和净化。
- 液体搅拌:射流泵可用于搅拌液体,将不同组分的液体混合均匀。
- 空气净化:射流泵可用于将污染空气中的有害物质吸入,并将其输送到处理设备进行净化。
- 粉尘控制:射流泵可用于控制工业生产过程中的粉尘排放,将粉尘聚集并输送到处理设备。
射流泵工作原理射流泵是一种常用的流体输送设备,它通过利用射流原理将高速流体能转化为压力能,实现流体的输送。
射流泵的工作原理主要包括三个方面:射流效应、能量转换和流体输送。
1. 射流效应射流效应是射流泵工作的基础。
当高速流体从喷嘴中喷出时,会产生一个向前的冲击力,这个冲击力可以将周围的流体推动起来。
射流效应的产生与贝努利原理有关,即高速流体的速度增加,压力就会降低。
通过喷嘴中的高速流体,射流泵可以产生足够的冲击力,推动周围的流体向前流动。
2. 能量转换射流泵利用射流效应将高速流体的动能转化为压力能。
当高速流体冲击到静止的流体时,它会将动能传递给周围的流体,使其获得一定的动能。
在这个过程中,高速流体的速度减小,而静止流体的速度增加,从而使得静止流体的压力增加。
这种能量转换的过程可以实现流体的输送。
3. 流体输送射流泵利用能量转换的原理将流体推向需要输送的方向。
当高速流体冲击到静止流体时,它会产生一个压力波,这个压力波会向前传播,推动周围的流体一起向前流动。
通过控制喷嘴的尺寸和形状,可以调节射流泵的流量和压力。
射流泵的工作原理可以通过以下实例来说明:假设有一个射流泵系统,包括一个喷嘴和一个管道。
当液体从喷嘴中喷出时,它会产生一个高速流体射流。
这个射流会冲击到管道中的静止液体,将动能转化为压力能,并将静止液体推向管道的出口。
通过控制喷嘴的尺寸和形状,可以调节射流泵的流量和压力,从而满足不同的流体输送需求。
射流泵具有以下优点:1. 结构简单,操作方便。
2. 可以实现高压力和大流量的流体输送。
3. 适用于各种流体,包括液体、气体和悬浮颗粒等。
然而,射流泵也存在一些局限性:1. 射流泵的效率较低,能量转换率一般在30%到40%之间。
2. 喷嘴和管道的磨损较大,需要定期维护和更换。
3. 对于粘稠流体和颗粒含量较高的流体,射流泵的效果较差。
总之,射流泵是一种利用射流效应实现流体输送的设备。
通过射流效应、能量转换和流体输送三个方面的工作原理,射流泵可以将高速流体的动能转化为压力能,实现流体的输送。