半导体器件物理复习题
- 格式:doc
- 大小:455.50 KB
- 文档页数:13
半导体器件物理复习题其次章:1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。
物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低2)什么是半导体的干脆带隙和间接带隙?其价带顶部与导带最低处发生在相同动量处(p =0)。
因此,当电子从价带转换到导带时,不须要动量转换。
这类半导体称为干脆带隙半导体。
3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。
即热平衡状态下的载流子浓度不变。
5)费米分布函数表达式?物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。
6本征半导体价带中的空穴浓度:7)本征费米能级Ei :本征半导体的费米能级。
在什么条件下,本征Fermi 能级靠近禁带的中心:在室温下可以近似认为费米能级处于带隙中心8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同,即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 29) 简并半导体:当杂质浓度超过肯定数量后,费米能级进入了价带或导带的半导体。
10)非简并半导体载流子浓度:且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为:p 型半导体多子和少子的浓度分别为: 第三章:1)迁移率:是指载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢的量度,运动得越快,迁移率越大。
定义为:2)漂移电流: 载流子在热运动的同时,由于电场作用而产生的沿电场力方向的定向运动称作漂移运动。
半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。
为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。
二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。
答案:半导体材料具有介于导体和绝缘体之间的导电特性。
与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。
与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。
2. 什么是本征半导体?请举例说明。
答案:本征半导体是指不掺杂任何杂质的半导体材料。
例如,纯净的硅(Si)和锗(Ge)就是本征半导体。
3. 简述P型半导体和N型半导体的形成原理。
答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。
施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。
这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。
N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。
受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。
这样就使得半导体中存在了大量的自由电子,形成了N型半导体。
4. 简述PN结的形成原理及特性。
答案:PN结是由P型半导体和N型半导体的结合所形成。
P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。
PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。
三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。
答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。
半导体物理试卷一、选择题(每题3分,共30分)1. 本征半导体是指()的半导体。
A. 不含杂质和缺陷B. 电子浓度等于空穴浓度。
C. 导电性介于导体和绝缘体之间D. 以上都是。
2. 在半导体中,导带底附近的电子有效质量()。
A. 大于零B. 小于零C. 等于零D. 可正可负。
3. 对于N型半导体,其多数载流子是()。
A. 电子B. 空穴C. 离子D. 光子。
4. 杂质半导体中的杂质能级位于()。
A. 禁带中B. 导带中C. 价带中D. 以上都有可能。
5. 半导体的费米能级随温度升高()。
A. 向禁带中央移动B. 向导带底移动。
C. 向价带顶移动D. 不确定,取决于半导体类型。
6. 当PN结正向偏置时,()。
A. 势垒高度降低,扩散电流大于漂移电流。
B. 势垒高度升高,扩散电流小于漂移电流。
C. 势垒高度不变,扩散电流等于漂移电流。
D. 势垒高度降低,扩散电流小于漂移电流。
7. PN结的电容包括()。
A. 势垒电容和扩散电容B. 仅势垒电容。
C. 仅扩散电容D. 寄生电容。
8. 在半导体中,空穴的运动是()。
A. 实际的粒子运动B. 电子运动的等效。
C. 离子运动的等效D. 光子运动的等效。
9. 半导体的电导率与()有关。
A. 载流子浓度和迁移率B. 禁带宽度。
C. 杂质浓度D. 以上都是。
10. 以下哪种现象不是半导体的特性()。
A. 光电导效应B. 压阻效应。
C. 超导现象D. 热电效应。
二、填空题(每题2分,共20分)1. 半导体的晶格结构主要有_____和_____(举两种)。
2. 根据杂质在半导体中提供载流子的类型,杂质可分为_____杂质和_____杂质。
3. 半导体的载流子散射机制主要有_____散射、_____散射等。
4. 在热平衡状态下,半导体中的电子浓度和空穴浓度的乘积为_____(表达式)。
5. PN结的空间电荷区是由_____和_____形成的。
6. 半导体的霍尔效应中,霍尔系数与载流子浓度和_____有关。
半导体物理学复习题一:基本概念1.离子晶体,共价晶体离子晶体:正负离子交替排列在晶格格点上,靠离子键结合成。
共价晶体:由共价键结合而成的晶体叫共价晶体。
补充:晶体的分类(按原子结合力的性质分)离子晶体:正负离子交替排列在晶格格点上,靠离子键结合成。
原子晶体:晶格格点上交替排列的是原子,依靠共价键结合而成。
分子晶体:占据晶格中格点位置的是分子,依靠范德瓦耳斯力结合而成。
金属晶体:晶格格点上排列着失去价电子的离子实,依靠金属键结合而成。
2.布喇菲点阵(七大晶系,14种点阵)布喇菲点阵(格子):实际晶体中,在基元上取一个等同点,这些点在空间中的分布反映了基元在空间的排列结构,这些等同点在空间规则分布称为布喇菲点阵。
(晶体中空间等同点的集合)补充:立方晶系:简立方(cP)、体心立方(cI)和面心立方(cF六方晶系:简六方(hP)四方晶系:简四方(tP)和体心四方(tI)三方晶系:有简六方(hP)和R心六方(hR)正交晶系:简正交(oP)、C心正交(oC)、体心正交(oI)和面心正交(oF)单斜晶系:有简单斜(mP)和C心单斜(mC三斜晶系:简三斜(aP3.原胞,晶胞原胞:构成布拉菲点阵的最小平行六面体,格点只能在顶点。
晶胞:反映布拉菲点阵对称性的前提下,构成布拉菲点阵的平行六面体。
除顶点上外,内部和表面也可以包含格点。
4.施(受)主杂质,施(受)主电离能施主杂质:杂质在硅、锗等半导体中电离时,能够释放电子而产生导电电子并形成正电中心。
施主电离能:多余的一个价电子脱离施主杂质而成为自由电子所需要的能量。
受主杂质:杂质在硅,锗等半导体中能接受电子而产生导电空穴,并形成负电中心。
受主电离能:使空穴挣脱受主杂质成为导电空穴所需要的能量。
5.量子态密度,状态密度,有效状态密度量子态密度:k空间单位体积内具有的量子态数目。
状态密度:能量E附近单位能量间隔内的量子态数。
有效状态密度:6.深(浅)杂质能级深杂质能级:若杂质提供的施主能级距离导带底较远;或提供的受主能能级距离价带顶较远,这种能级称为深能级,对应的杂质称为深能级杂质。
半导体物理复习题及考试模拟题 (一)半导体物理是微电子与信息科学技术中的重要一门学科。
在学习半导体物理时,需要掌握各种基本的概念和理论。
为便于大家复习和巩固知识,以下提供一部分半导体物理复习题和考试模拟题,希望对大家的学习有所帮助。
一、选择题1. 半导体的主要能级是?A.价带B.导带C.内壳层D.价带和导带2. 为什么掺杂后的半导体能够导电?A. 能带结构发生变化B. 半导体的导电能力增强C. 绝缘体被击穿D. 价带和导带之间的能隙缩小3. 在掺杂半导体中,会出现pn结。
pn结的正电荷主要位于哪里?A. 在p区中B. 在n区中C. 在pn结内部D. 在pn结两侧4. 变压器中可以使用铁心框绕的铜线,主要是为了A. 将绕线插入变压器内部B. 减小线圈的电感C. 保证线圈的强度D. 使线圈之间隔离5. 在弱电流下,二极管的电流I正好与电压V成比例,满足关系式 I = kV,那么k的单位是?A. 安B. 安/伏C. 伏D. 没有单位二、填空题1. 常温下,半导体材料内很少有自由的________。
2. n型半导体的导电来源是________离子。
3. 在一个n-p结中,____________维持着pn结的高反向阻抗。
4. 在单级增益放大器中,as = _________ /_________。
5. 一个二极管的节点电流与节点电压之比等于该二极管的_________。
三、简答题1. 半导体中掺杂的目的是什么?掺杂的基本原理是什么?2. pn结的工作原理是什么?在pn结被正向偏置时,有哪些基本特征?3. 对于交流信号来说,放大器的主要作用是什么?单级和多级放大器的特点和应用场景有哪些?4. 半导体器件的基本参数有哪些?对于同种器件,不同运用条件下最重要的参数是什么?四、计算题1. 一块n型掺杂浓度为1×10^16/cm^3的硅片与一块p型掺杂浓度为3×10^17/cm^3的硅片形成一个12V的pn结。
半导体物理复习试题及答案复习资料一、选择题1、下面关于晶体结构的描述,错误的是()A 晶体具有周期性的原子排列B 晶体中原子的排列具有长程有序性C 非晶体的原子排列没有周期性D 所有晶体都是各向同性的答案:D解释:晶体具有各向异性,而非各向同性。
2、半导体中的施主杂质能级()A 位于导带底附近B 位于价带顶附近C 位于禁带中央D 靠近价带顶答案:A解释:施主杂质能级靠近导带底,容易向导带提供电子。
3、本征半导体的载流子浓度随温度升高而()A 不变B 减小C 增大D 先增大后减小答案:C解释:温度升高,本征激发增强,载流子浓度增大。
4、下面关于 PN 结的描述,正确的是()A PN 结空间电荷区中的内建电场方向由 N 区指向 P 区B 正向偏置时,PN 结电流很大C 反向偏置时,PN 结电流很小且趋于饱和D 以上都对答案:D解释:PN 结空间电荷区中的内建电场方向由 N 区指向 P 区,正向偏置时多数载流子扩散电流大,反向偏置时少数载流子漂移电流小且趋于饱和。
5、金属和半导体接触时,如果形成阻挡层,那么半导体表面是()A 积累层C 反型层D 以上都可能答案:B解释:形成阻挡层时,半导体表面通常是耗尽层。
二、填空题1、常见的半导体材料有_____、_____和_____等。
答案:硅、锗、砷化镓2、半导体中的载流子包括_____和_____。
答案:电子、空穴3、施主杂质的电离能_____受主杂质的电离能。
(填“大于”或“小于”)答案:小于4、当半导体处于热平衡状态时,其费米能级_____。
(填“恒定不变”或“随温度变化”)答案:恒定不变5、异质结分为_____异质结和_____异质结。
答案:突变异质结、缓变异质结1、简述半导体中施主杂质和受主杂质的作用。
答:施主杂质在半导体中能够提供电子,使其成为主要的导电载流子,增加半导体的电导率。
受主杂质能够接受电子,产生空穴,使空穴成为主要的导电载流子,同样能提高半导体的电导率。
一、选择题
1.半导体材料中最常用的元素是:
A.硅(正确答案)
B.铜
C.铁
D.铝
2.在半导体中,载流子主要包括:
A.电子和质子
B.电子和空穴(正确答案)
C.空穴和离子
D.质子和中子
3.PN结的正向偏置是指:
A.P区接高电位,N区接低电位(正确答案)
B.N区接高电位,P区接低电位
C.P区和N区都接高电位
D.P区和N区都接低电位
4.二极管的正向特性是指:
A.正向电压下,电流随电压指数增长(正确答案)
B.正向电压下,电流随电压线性增长
C.反向电压下,电流随电压指数增长
D.反向电压下,电流保持不变
5.MOSFET(金属-氧化物-半导体场效应晶体管)的栅极电压主要控制:
A.源极和漏极之间的电阻(正确答案)
B.源极和栅极之间的电阻
C.漏极和栅极之间的电阻
D.源极、栅极和漏极之间的总电阻
6.在CMOS(互补金属氧化物半导体)逻辑电路中,主要利用的是:
A.二极管的单向导电性
B.MOSFET的开关特性(正确答案)
C.双极型晶体管的放大特性
D.JFET(结型场效应晶体管)的电压控制特性
7.半导体器件中的“阈值电压”是指:
A.使器件开始导电的最小电压(正确答案)
B.使器件达到最大导电能力的电压
C.器件正常工作时的电压范围
D.器件击穿时的电压
8.在半导体存储器中,DRAM(动态随机存取存储器)需要定期刷新是因为:
A.DRAM中的电容会漏电(正确答案)
B.DRAM的访问速度较慢
C.DRAM的存储容量较小
D.DRAM的制造成本较高。
一、选择题。
1. 电离后向半导体提供空穴的杂质是( A ),电离后向半导体提供电子的杂质是( B )。
A. 受主杂质B. 施主杂质C. 中性杂质2. 在室温下,半导体Si 中掺入浓度为31410-cm 的磷杂质后,半导体中多数载流子是( C ),多子浓度为( D ),费米能级的位置( G );一段时间后,再一次向半导体中掺入浓度为315101.1-⨯cm 的硼杂质,半导体中多数载流子是( B ),多子浓度为( E ),费米能级的位置( H );如果,此时温度从室温升高至K 550,则杂质半导体费米能级的位置( I )。
(已知:室温下,31010-=cm n i ;K 550时,31710-=cm n i )A. 电子和空穴B. 空穴C. 电子D. 31410-cmE. 31510-cmF. 315101.1-⨯cmG. 高于i E H. 低于i E I. 等于i E3. 在室温下,对于n 型硅材料,如果掺杂浓度增加,将导致禁带宽度( B ),电子浓度和空穴浓度的乘积00p n ( D )2i n ,功函数( C )。
如果有光注入的情况下,电子浓度和空穴浓度的乘积np ( E )2i n 。
A. 增加B. 不变C. 减小D. 等于E. 不等于F. 不确定4. 导带底的电子是( C )。
A. 带正电的有效质量为正的粒子B. 带正电的有效质量为负的准粒子C. 带负电的有效质量为正的粒子D. 带负电的有效质量为负的准粒子5. P 型半导体MIS 结构中发生少子反型时,表面的导电类型与体材料的类型( B )。
在如图所示MIS 结构的C-V 特性图中,代表去强反型的( G )。
A. 相同B. 不同C. 无关D. AB 段E. CD 段F. DE 段G. EF 和GH 段6. P 型半导体发生强反型的条件( B )。
A. ⎪⎪⎭⎫ ⎝⎛=i A S n N q T k V ln 0 B. ⎪⎪⎭⎫ ⎝⎛≥i A S n N q T k V ln 20 C. ⎪⎪⎭⎫ ⎝⎛=i D S n N q T k V ln 0 D. ⎪⎪⎭⎫ ⎝⎛≥i D S n N q T k V ln 20 7. 由于载流子存在浓度梯度而产生的电流是( B )电流,由于载流子在一定电场力的作用下而产生电流是( A )电流。
半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t??后,其中非平衡载流子将衰减为原来的( A )。
西安邮电大学微电子学系商世广半导体器件试题库常用单位:在室温( T = 300K )时,硅本征载流子的浓度为n i = 1.510×10/cm3电荷的电量 q= 1.6 ×10-19Cn2/V sp2/V s μ=1350 cmμ=500 cmε0×10-12F/m=8.854一、半导体物理基础部分(一)名词解释题杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消的作用,通常称为杂质的补偿作用。
非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。
迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。
晶向:晶面:(二)填空题1.根据半导体材料内部原子排列的有序程度,可将固体材料分为、多晶和三种。
2.根据杂质原子在半导体晶格中所处位置,可分为杂质和杂质两种。
3.点缺陷主要分为、和反肖特基缺陷。
4.线缺陷,也称位错,包括、两种。
5.根据能带理论,当半导体获得电子时,能带向弯曲,获得空穴时,能带向弯曲。
6.能向半导体基体提供电子的杂质称为杂质;能向半导体基体提供空穴的杂质称为杂质。
7.对于 N 型半导体,根据导带低E C和 E F的相对位置,半导体可分为、弱简并和三种。
8.载流子产生定向运动形成电流的两大动力是、。
9.在 Si-SiO 2系统中,存在、固定电荷、和辐射电离缺陷 4 种基本形式的电荷或能态。
10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向移动;对于P 型半导体,当温度升高时,费米能级向移动。
(三)简答题1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么?2.说明元素半导体Si 、 Ge中主要掺杂杂质及其作用?3.说明费米分布函数和玻耳兹曼分布函数的实用范围?4.什么是杂质的补偿,补偿的意义是什么?(四)问答题1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同?要获得在较高温度下能够正常工作的半导体器件的主要途径是什么?(五)计算题1.金刚石结构晶胞的晶格常数为a,计算晶面( 100)、( 110)的面间距和原子面密度。
半导体器件试题库常用单位:在室温( T = 300K)时,硅本征载流子的浓度为n i = 1.5 1×010/cm3电荷的电量q= 1.6 ×10-19C μn=1350 cm2/V s μp=500 cm2/V sε0=8.854 ×10-12 F/m一)名词解释题杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消的作用,通常称为杂质的补偿作用。
非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。
迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。
晶向:晶面:二)填空题1.根据半导体材料内部原子排列的有序程度,可将固体材料分为、多晶和三种。
2.根据杂质原子在半导体晶格中所处位置,可分为杂质和杂质两种。
3.点缺陷主要分为、和反肖特基缺陷。
4.线缺陷,也称位错,包括、两种。
5.根据能带理论,当半导体获得电子时,能带向弯曲,获得空穴时,能带向弯曲。
6.能向半导体基体提供电子的杂质称为杂质;能向半导体基体提供空穴的杂质称为杂质。
7.对于N 型半导体,根据导带低E C和E F的相对位置,半导体可分为、弱简并和三种。
8.载流子产生定向运动形成电流的两大动力是9.在Si-SiO2 系统中,存在、固定电荷、和辐射电离缺陷 4 种基本形式的电荷或能态。
10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向移动;对于P 型半导体,当温度升高时,费米能级向移动。
三)简答题1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么?2.说明元素半导体Si 、Ge中主要掺杂杂质及其作用?3.说明费米分布函数和玻耳兹曼分布函数的实用范围?4.什么是杂质的补偿,补偿的意义是什么?四)问答题1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同?要获得在较高温度下能够正常工作的半导体器件的主要途径是什么?1.金刚石结构晶胞的晶格常数为a,计算晶面(100)、(110)的面间距和原子面密度。
半导体物理学试题及答案(总6页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。
A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。
A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。
A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。
A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。
A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。
A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。
7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。
A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。
A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。
A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t?后,其中非平衡载流子将衰减为原来的( A )。
半导体器件物理复习题一. 平衡半导体: 概念题:1. 平衡半导体的特征(或称谓平衡半导体的定义)所谓平衡半导体或处于热平衡状态的半导体,是指无外界(如电压、电场、磁场或温度梯度等)作用影响的半导体。
在这种情况下,材料的所有特性均与时间和温度无关。
2. 本征半导体:本征半导体是不含杂质和无晶格缺陷的纯净半导体。
3. 受主(杂质)原子:形成P 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅲ族元素)。
4. 施主(杂质)原子:形成N 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅴ族元素)。
5. 杂质补偿半导体:半导体中同一区域既含受主杂质又含施主杂质的半导体。
6. 兼并半导体:对N 型掺杂的半导体而言,电子浓度大于导带的有效状态密度,费米能级高于导带底(0F c E E ->);对P 型掺杂的半导体而言,空穴浓度大于价带的有效状态密度。
费米能级低于价带顶(0F v E E -<)。
7. 有效状态密度:电子的有效状态密度。
穴的有效状态密度。
8. 以导带底能量c E 为参考,导带中的平衡电子浓度:其含义是:导带中的平衡电子浓度等于导带中的有效状态密度乘以能量为导带低能量时的玻尔兹曼分布函数。
9.以价带顶能量v E 为参考,价带中的平衡空穴浓度:其含义是:价带中的平衡空穴浓度等于价带中的有效状态密度乘以能量为价带顶能量时的玻尔兹曼分布函数。
10.11.12. 13.14. 本征费米能级Fi E :是本征半导体的费米能级;本征半导体费米能级的位置位于禁带中央附近,g c v E E E =-。
?15. 本征载流子浓度i n :本征半导体内导带中电子浓度等于价带中空穴浓度的浓度00i n p n ==。
硅半导体,在300T K =时,1031.510i n cm -=⨯。
16. 杂质完全电离状态:当温度高于某个温度时,掺杂的所有施主杂质失去一个电子成为带正电的电离施主杂质;掺杂的所有受主杂质获得一个电子成为带负电的电离受主杂质,称谓杂质完全电离状态。
Al l 半导体器件物理复习题一.平衡半导体:概念题:1.平衡半导体的特征(或称谓平衡半导体的定义)所谓平衡半导体或处于热平衡状态的半导体,是指无外界(如电压、电场、磁场或温度梯度等)作用影响的半导体。
在这种情况下,材料的所有特性均与时间和温度无关。
2.本征半导体:本征半导体是不含杂质和无晶格缺陷的纯净半导体。
3.受主(杂质)原子:形成P 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅲ族元素)。
4.施主(杂质)原子:形成N 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅴ族元素)。
5.杂质补偿半导体:半导体中同一区域既含受主杂质又含施主杂质的半导体。
6.兼并半导体:对N 型掺杂的半导体而言,电子浓度大于导带的有效状态密度,费米能级高于导带底();对P 型掺杂的半导体而言,空穴浓度大于价带的有0F c E E ->效状态密度。
费米能级低于价带顶()。
0F v E E -<7.有效状态密度:在价带能量范围()内,对价带量子态密度函数~v E -∞8.以导带底能量为参考,导带中的平衡电子浓度:c Ee an dAl i nod o其含义是:导带中的平衡电子浓度等于导带中的有效状态密度乘以能量为导带低能量时的玻尔兹曼分布函数。
9.以价带顶能量为参考,价带中的平衡空穴浓度:v E 其含义是:价带中的平衡空穴浓度等于价带中的有效状态密度乘以能量为价带顶能量时的玻尔兹曼分布函数。
10.11.12.13.14.本征费米能级:Fi E 是本征半导体的费米能级;本征半导体费米能级的位置位于禁带中央附近,15.本征载流子浓度:i n 本征半导体内导带中电子浓度等于价带中空穴浓度的浓度。
硅半导体,在00i n p n ==时,。
300T K =1031.510i n cm -=⨯16.杂质完全电离状态:当温度高于某个温度时,掺杂的所有施主杂质失去一个电子成为带正电的电离施主杂质;掺杂的所有受主杂质获得一个电子成为带负电的电离受主杂质,称谓杂质完全电离状态。
西安邮电大学微电子学系商世广半导体器件试题库常用单位:在室温( T = 300K )时,硅本征载流子的浓度为n i = 1.510×10/cm3电荷的电量 q= 1.6 ×10-19Cn2/V sp2/V s μ=1350 cmμ=500 cmε0×10-12F/m=8.854一、半导体物理基础部分(一)名词解释题杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消的作用,通常称为杂质的补偿作用。
非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。
迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。
晶向:晶面:(二)填空题1.根据半导体材料内部原子排列的有序程度,可将固体材料分为、多晶和三种。
2.根据杂质原子在半导体晶格中所处位置,可分为杂质和杂质两种。
3.点缺陷主要分为、和反肖特基缺陷。
4.线缺陷,也称位错,包括、两种。
5.根据能带理论,当半导体获得电子时,能带向弯曲,获得空穴时,能带向弯曲。
6.能向半导体基体提供电子的杂质称为杂质;能向半导体基体提供空穴的杂质称为杂质。
7.对于 N 型半导体,根据导带低E C和 E F的相对位置,半导体可分为、弱简并和三种。
8.载流子产生定向运动形成电流的两大动力是、。
9.在 Si-SiO 2系统中,存在、固定电荷、和辐射电离缺陷 4 种基本形式的电荷或能态。
10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向移动;对于P 型半导体,当温度升高时,费米能级向移动。
(三)简答题1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么?2.说明元素半导体Si 、 Ge中主要掺杂杂质及其作用?3.说明费米分布函数和玻耳兹曼分布函数的实用范围?4.什么是杂质的补偿,补偿的意义是什么?(四)问答题1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同?要获得在较高温度下能够正常工作的半导体器件的主要途径是什么?(五)计算题1.金刚石结构晶胞的晶格常数为a,计算晶面( 100)、( 110)的面间距和原子面密度。
半导体器件物理复习题1.简述Schrodinger波动方程的物理意义及求解边界条件。
2.简述隧道效应的基本原理。
3.什么是半导体的直接带隙和间接带隙。
4.什么是Fermi-Dirac 概率函数和Fermi 能级,写出n(E)、p(E)与态密度和Fermi 概率函数的关系。
5.什么是本征Ferm能级?在什么条件下,本征Ferm能级处于中间能带上。
6.简述硅半导体中电子漂移速度与外加电场的关系。
7.简述Hall效应基本原理。
解释为什么Hall电压极性跟半导体类型(N型或P型)有关。
8.定性解释低注入下的剩余载流子寿命。
9.一个剩余电子和空穴脉冲在外加电场下会如何运动,为什么?10.当半导体中一种类型的剩余载流子浓度突然产生时,半导体内的净电荷密度如何变化?为什么?11.什么是内建电势?它是如何保持热平衡的?12.解释p-n结内空间电荷区的形成机理及空间电荷区宽度与外施电压的关系。
13.什么是突变结和线性剃度结。
14.分别写出p-n结内剩余少子在正偏和反偏下的边界条件。
15.简述扩散电容的物理机理。
16.叙述产生电流和复合电流产生的物理机制。
17.什么理想肖特基势垒?用能带图说明肖特基势垒降低效应。
18.画出隧道结的能带图。
说明为什么是欧姆接触。
19.描述npn三极管在前向有源模式偏置下的载流子输运过程。
20.描述双极晶体管在饱和与截止之间开关时的响应情况。
21.画出一个n-型衬底的MOS电容在积聚、耗尽和反型模式下的能带图。
22.什么是平带电压和阈值电压23.简要说明p-沟道器件的增强和耗尽型模式。
24.概述MESFET的工作原理。
25.结合隧道二极管的I-V特性,简述其负微分电阻区的产生机理。
26.什么是短沟道效应?阐述短沟道效应产生的原因及减少短沟道效应的方法。
短沟道效应(shortchanneleffect):当金属-氧化物-半导体场效应晶体管(MOSFET)的沟道长度L缩短到可与源和漏耗尽层宽度之和(WS WD)相比拟时,器件将发生偏离长沟道(也即L远大于WS WD)的行为,这种因沟道长度缩短而发生的对器件特性的影响,通常称为短沟道效应。
半导体器件物理复习题一. 平衡半导体:概念题:1. 平衡半导体的特征(或称谓平衡半导体的定义)所谓平衡半导体或处于热平衡状态的半导体,是指无外界(如电压、电场、磁场或温度梯度等)作用影响的半导体。
在这种情况下,材料的所有特性均与时间和温度无关。
2. 本征半导体:本征半导体是不含杂质和无晶格缺陷的纯净半导体。
3. 受主(杂质)原子:形成P 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅲ族元素)。
4. 施主(杂质)原子:形成N 型半导体材料而掺入本征半导体中的杂质原子(一般为元素周期表中的Ⅴ族元素)。
5. 杂质补偿半导体:半导体中同一区域既含受主杂质又含施主杂质的半导体。
6. 兼并半导体:对N 型掺杂的半导体而言,电子浓度大于导带的有效状态密度, 费米能级高于导带底(0F c E E ->);对P 型掺杂的半导体而言,空穴浓度大于价带的有效状态密度。
费米能级低于价带顶(0F v E E -<)。
7. 有效状态密度: 在导带能量范围(~c E ∞)内,对导带量子态密度函数导带中电子的有效状态密度。
在价带能量范围(~vE -∞)内,对价带量子态密度函数8. 以导带底能量c E 为参考,导带中的平衡电子浓度:其含义是:导带中的平衡电子浓度等于导带中的有效状态密度乘以能量为导带低能量时的玻尔兹曼分布函数。
9.以价带顶能量v E 为参考,价带中的平衡空穴浓度:其含义是:价带中的平衡空穴浓度等于价带中的有效状态密度乘以能量为价带顶能量时的玻尔兹曼分布函数。
10.11.12.13.14.本征费米能级Fi E :是本征半导体的费米能级;本征半导体费米能级的位置位于禁带带宽度g c v E E E =-。
?15.本征载流子浓度i n :本征半导体内导带中电子浓度等于价带中空穴浓度的浓度00i n p n ==。
硅半导体,在300T K =时,1031.510i n cm -=⨯。
16. 杂质完全电离状态:当温度高于某个温度时,掺杂的所有施主杂质失去一个电子成为带正电的电离施主杂质;掺杂的所有受主杂质获得一个电子成为带负电的电离受主杂质,称谓杂质完全电离状态。
17.束缚态:在绝对零度时,半导体内的施主杂质与受主杂质成电中性状态称谓束缚态。
束缚态时,半导体内的电子、空穴浓度非常小。
18.本征半导体的能带特征:本征半导体费米能级的位置位于禁带中央附近,且跟温度有关。
如果电子和空穴的有效质量严格相等,那么本征半导体费米能级的位置严格位于禁带中央。
在该书的其后章节中,都假设:本征半导体费米能级的位置严格位于禁带中央。
(画出本征半导体的能带图)。
19.非本征半导体:进行了定量的施主或受主掺杂,从而使电子浓度或空穴浓度偏离了本征载流子浓度,产生多子电子(N 型)或多子空穴(P 型)的半导体。
20.本征半导体平衡时载流子浓度之间的关系:本征载流子浓度强烈依赖与温度。
以本征费米能级为参考描述的电子浓度和空穴浓度:从上式可以看出:如果FFi E E =,可以得出20000ii n p n n p n ===,此时的半导体具有本征半导体的特征。
上式的载流子浓度表达式既可以描述非本征半导体,又可以描述本征半导体的载流子浓度。
21.非本征半导体平衡时载流子浓度之间的关系:200i n p n =,22. 补偿半导体的电中性条件:()001a dn N p N -++=+ 其中:0n 是热平衡时,导带中总的电子浓度; 0p 是热平衡时,价带中总的空穴浓度;a a a N N p -=-是热平衡时,受主能级上已经电离的受主杂质; d d d N N n +=-是热平衡时,施主能级上已经电离的施主杂质;a N 是受主掺杂浓度;d N 是施主掺杂浓度;a p 是占据受主能级的空穴浓度;d n 是占据施主能级的电子浓度。
也可以将(1)写成:()()00()2a a d d n N p p N n +-=+-在完全电离时的电中性条件: 完全电离时,0,0da n p ==,有()003a dn N p N +=+对净杂质浓度是N 型时,热平衡时的电子浓度是对净杂质浓度是P 型时,热平衡时的空穴浓度是理解题:23.结合下图,分别用语言描述N 型半导体、P 型半导体的费米能级在能带中的位置:24.费米能级随掺杂浓度是如何变化的? 利用00exp exp F Fi F Fi i i E E E E n n p n kT kT --⎡⎤⎡⎤==-⎢⎥⎢⎥⎣⎦⎣⎦可分别求出: ()00ln ;ln 6F Fi Fi F i i n p E E kT E E kT n n ⎛⎫⎛⎫-=-= ⎪⎪⎝⎭⎝⎭如果掺杂浓度a i N n >>,且a d N N >>利用(5)式得到,0a p N ≈; 如果掺杂浓度di N n >>,且d a N N >>利用(4)式得到,0d n N ≈;带入(6)式得:()ln ;ln 7d a F Fi Fi F i i N N E E kT E E kT n n ⎛⎫⎛⎫-=-= ⎪⎪⎝⎭⎝⎭所以,随着施主掺杂浓度d N 的增大,N 型半导体的费米能级F E 远离本征费米能级Fi E 向导带靠近(为什么会向导带靠近?);同样,随着受主掺杂浓度a N 的增大,P 型半导体的费米能级F E 远离本征费米能级Fi E 向价带靠近(为什么会向价带靠近?)。
25.费米能级在能带中随温度的变化? 由于,()ln ;ln 8d a F Fi Fi F i i N N E E kT E E kT n n ⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭温度升高时,本征载流子浓度i n 增大,N 型和P 型半导体的费米能级都向本征费米能级靠近。
为什么? 26.硅的特性参数: 在室温(300T K =时,)硅的 导带有效状态密度1932.810,c N cm -=⨯ 价带的有效状态密度1931.0410v N cm -=⨯; 本征载流子浓度:1031.510i n cm -=⨯ 禁带宽度(或称带隙能量) 1.12g E eV=27. 常用物理量转换单位1478103191101010101011025.5125.41 1.610A nm m mm cm m mil in m in cm eV Jμμ-------=========⨯o28.常用物理常数:,235193107014012tan 1.3810/8.6210/arg 1.6109.1110410/8.8510/8.8510/Boltzmann s cons t k J K eV K Electronic ch e e C Free electron rest mass m kgPermeability of free space H m Permittivity of free space F cm F μπε-------=⨯=⨯=⨯=⨯=⨯=⨯=⨯,3415342710tan 6.625104.135101.054102Pr 1.67102.99810/(300)0.02590.0259t m Planck s cons th J s eV s h J soton rest mass M kgSpeed of light in vacuumc cm skTThermal voltage T K V VekT eVπ----=⨯-=⨯-==⨯-=⨯=⨯====h2141422(300)tan 11.78.8510/tan 3.98.8510/1.121350/si ox g n Silicon and SiO properties T K Silicon Dieelectric cons t F cm SiO Dieelectric cons t F cmSilicon Bandgap energey E eVSilicon Mobility of eletron cm V s Silico εεμ--==⨯⨯=⨯⨯==-2103480/4.01int 1.510p i n Mobility of Hole cm V s Silicon electron affinityVSilicon rnsic carrier condentration n cm μχ-=-==⨯23423400Pr (300)9 4.7tan 3.97.5int17001900operties of SiO and Si N T K SiO Si N Energy gap eV eV Dielectric cons t Melting po CC=≈≈29.电离能的概念:受主能级与价带能量的差值称谓受主杂质电离能,即a v E E -; 导带能量与施主能级的差值称谓施主杂质电离能,即c d E E -; 问:受主能级a E 在能带中的什么位置? 施主能级d E 在能带中的什么位置? 结合下图用语言描述。
计算能使玻尔兹曼近似成立的最大掺杂浓度及费米能级的位置。
解:考虑300T K =时对硅进行了硼掺杂,假设玻尔兹曼近似成立的条件是3F a E E kT -=,已知硼在硅中的电离能是0.045a v E E eV -=,假设本征费米能级严格等于禁带中央。
在300T K =时,P 型半导体的费米能级在Fi E 与a E 之间,所以()()()()()1017322ln 21.120.04530.02590.0259ln 20.4370.0259ln0.4370.437exp 1.510exp 3.2100.02590.02590.437c v c vFi F F a v F a g a a v F a i a i aia i Fi F E E E E E E E E E E E E N E E E E kT n N n N n N n cm E E eV-+--=-=----⎛⎫=----= ⎪⎝⎭--==⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⎝⎭⎝⎭-=玻尔兹曼近似成立的最大掺杂浓度是1733.210a N cm -=⨯ 费米能级高于本征费米能级0.437Fi FE E eV-=。
二. 半导体中的载流子输运现象与过剩载流子:概念题:30.半导体中存在两种基本的电荷输运机理,一种称谓载流子的漂移,漂移引起的载流子流动与外加电场有关;另一种电荷输运现象称谓载流子的扩散,它是由杂质浓度梯度引起的(或理解为有“扩散力”存在引起的电荷输运)。
31.给半导体施加电场,载流子的漂移速度不会无限增大,而是在散射作用下,载流子会达到平均漂移速度。
半导体内主要存在着两种散射现象:晶格散射和电离杂质散射。