材料工程基础-绪论
- 格式:ppt
- 大小:6.89 MB
- 文档页数:23
材料工程基础》复习思考题第一章绪论1、材料科学与材料工程研究的对象有何异同?答:材料科学侧重于发现和揭示组成与结构,性能,使用效能,合成与加工等四要素之间的关系,提出新概念,新理论。
而材料工程指研究材料在制备过程中的工艺和工程技术问题,侧重于寻求新手段实现新材料的设计思想并使之投入使用,两者相辅相成。
6、进行材料设计时应考虑哪些因素?答:. 材料设计的最终目标是根据最终需求,设计出合理成分,制订最佳生产流程,而后生产出符合要求的材料。
材料设计十分复杂,如模型的建立往往是基于平衡态,而实际材料多处于非平衡态,如凝固过程的偏析和相变等。
材料的力学性质往往对结构十分敏感,因此,结构的任何细小变化,性能都会发生明显变化。
相图也是材料设计不可或缺的组成部分。
7、在材料选择和应用时,应考虑哪些因素?答:一,材料的规格要符合使用的需求:选择材料最基本的考虑,就在满足产品的特性及要求,例如:抗拉强度、切削性、耐蚀性等;二,材料的价格要合理;三,材料的品质要一致。
8、简述金属、陶瓷和高分子材料的主要加工方法。
答:金属:铸造(砂型铸造、特种铸造、熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、连续铸造、消失模铸造)、塑性加工(锻造、板料冲压、轧制和挤压、拉拨)、热处理、焊接(熔化焊、压力焊、钎焊);橡胶:塑炼、混炼、压延、压出、硫化五部分;高分子:挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型。
10、如何区分传统材料与先进材料?答:传统材料指已经成熟且已经在工业批量生产的材料,如水泥、钢铁,这些材料量大、产值高、涉及面广,是很多支柱产业的基础。
先进材料是正在发展,具有优异性能和应用前景的一类材料。
二者没有明显界限,传统材料采用新技术,提高技术含量、性能,大幅增加附加值成为先进材料;先进材料长期生产应用后成为传统材料,传统材料是发展先进材料和高技术基础,先进材料推到传统材料进一步发展。
“工程材料基础”绪论一、材料在社会发展中的作用1.材料的发展与人类社会的发展紧密联系人类社会历史:石器时代、铜器时代和铁器时代2.我国劳动人民在材料发展上曾取得辉煌成就3.材料在现代科技中占有重要地位材料、信息和能源是现代科技三大支柱二、工程材料的分类及性能特点三、本课程的任务及主要内容材料的性能→应用材料的组织、结构→性能材料的化学成分↘材料的组织材料的加工工艺↗材料的结构即:材料的化学成分↘材料的组织材料的加工工艺↗材料的结构→性能→应用主要内容:金属的晶体结构、合金相结构、金属的结晶、二元合金相图、铁碳合金相图、金属与合金的塑性变形、固态金属中的扩散、热处理原理与工艺、高分子材料结构与性能、陶瓷材料结构与性能四、教学要求教学环节:讲课36,习题课4,实验8 课程特点:技术基础课,掌握原理和方法,联系实际教学要求: 1.认真听课、作好笔记2.复习与作业3.实验与报告4.学习方法:概念、归纳总结、记忆五、考核问题成绩分配:平时成绩:30%(实验15%;习题15%);考试70%,有期中测验考试方式:期末考试以笔试为主,少量同学可申请口试(人数<10%)六、主要参考书1.“材料科学基础”,马泗春主编,陕西科技出版社2.“Principles of MaterialsScience and Engineering”第三版,作者:William F.Smith,出版社:McGraw-Hill,Inc.第一章金属的晶体结构§1.1金属的概念一、金属的特性金属晶体良好的导电性和导热性正的电阻温度系数具有金属光泽良好的塑性变形能力二、金属原子的结构特点两个特点:(1).最外层电子数少,一般1-2个,且与原子核结合力弱,易成正离子;(2)过渡族金属(Cr,Fe,Co,Ni,Mo等)具有未填满的次外电子层,造成其化合价可变,结合力强等,具有高强度、高熔点的特点三、金属原子的键合方式金属键四、金属原子间的结合力和结合能双原子模型,三原子模型周期势场五、对金属特性的解释金属晶体,导电性和导热性正的电阻温度系数,金属光泽塑性变性能力重点:材料性能与微观结构关系,金属特性及其微观解释,金属键§1.2 金属的晶体性一、晶体的特性固态物质按其原子或分子的排列特征,可分为晶体和非晶体。
材料⼯程基础全复习资料材料⼯程基础复习资料⼀、绪论1、概念:科学:对于现象的观察、描述、确认、实验研究及理论解释。
技术:泛指根据⽣产实践经验和⾃然科学原理⽽发展成的各种⼯艺操作⽅法与技能。
⼯艺:使各种原材料、半成品加⼯成为产品的⽅法和过程。
⼯程:将科学原理应⽤到实际⽬标,如设计、组装、运转经济⽽有效的结构、设备或系统。
材料⼯程:是⼯程的⼀个领域,其⽬的在于经济地,⽽⼜为社会所能接受地控制材料的结构、性能和形状。
2、材料科学与⼯程的任务?材料科学与⼯程是关于材料成分、结构、⼯艺和它们的性能与⽤途之间有关的知识和应⽤的科学。
3、传统材料加⼯包括哪⼏个⽅⾯?①传统的⾦属铸造②塑性加⼯③粉末材料压制、烧结或胶凝固结为制品④材料的焊接与粘接材料的切除,材料的成型,材料的改性,材料的连接⼆、材料的熔炼1、钢铁冶⾦1)、⾼炉炼铁⽣产过程:①还原:矿⽯中的铁被还原;②造渣:⾼温下⽯灰⽯分解形成的氧化钙与酸性脉⽯形成炉渣;③传热和渣底反应:被还原的矿⽯降落使温度升⾼加速反应将全部氧化铁还原成氧化亚铁,风⼝区残余的氧化亚铁还原成铁,与炉渣⼀起进⼊炉缸。
2)、炼钢过程中的理化过程:①脱碳:碳被氧⽓直接氧化:在温度⾼于1100℃条件下2C+O2→2CO间接氧化:在温度低于1100℃条件下2Fe+O2→2FeOC+FeO→Fe+CO②硅、锰的氧化:a.直接氧化反应:Si+O2 →Si022Mn+O2 →2MnOb.间接氧化,但主要是间接反应:Si+2FeO →Si02+2FeMn+FeO →MnO+Fe③脱磷:磷是以磷化铁(Fe2P)形态存在,炼钢利⽤炉渣中FeO及CaO与其化合⽣成磷酸钙渣去除Fe2P+5FeO+4CaO→(CaO)4·P2O5+9Fe④脱硫:硫是以FeS形式存在,利⽤渣中⾜够的CaO,把其中FeS去除。
反应式为FeS + CaO-->FeO + CaS⑤脱氧(再还原):通常采⽤的脱氧剂有:锰铁、硅铁和铝等。
材料科学基础1绪论材料科学是研究材料的性质、结构、制备、性能和应用的学科,具有广泛的领域和深远的影响。
材料是构成物质世界的基本单元,不同材料具有不同的特性和用途。
材料科学基础就是研究材料的基本原理和基础知识,为后续的材料科学研究和应用打下坚实的基础。
材料科学基础研究的内容包括材料的组成、结构、性质以及制备和加工技术等方面。
首先,材料的组成是指材料的成分和元素的种类和比例。
不同的元素组合可以形成不同的材料,例如金属、陶瓷、塑料等。
其次,材料的结构是指材料内部的原子、分子或晶体的排列方式。
不同的结构决定了材料的性质。
再次,材料的性质是指材料特定条件下所表现出来的特征和行为。
例如,强度、硬度、导电性、热传导性等都是材料的性质。
最后,材料的制备和加工技术是指制备材料的方法和工艺,例如熔炼、凝固、烧结、激光制造等。
制备和加工技术可以改变材料的结构和性质,从而满足不同的需求和应用。
材料科学在许多领域中都起着关键的作用。
首先,在材料工程领域,材料科学的基础研究为新材料的设计和开发提供了理论支持和指导。
新材料的研发可以改善产品的性能和功能,从而推动技术进步和社会发展。
其次,在能源领域,材料科学的研究可以帮助开发高效的能源材料和设备,例如太阳能电池、锂离子电池等,促进可再生能源的利用和节能减排。
此外,在医学领域,材料科学的研究为生物材料的设计和应用提供了基础,例如人工关节、组织工程材料等,改善了医疗技术和治疗效果。
材料科学基础的研究方法包括实验研究和理论分析。
实验研究是获取材料性质和行为的主要方法,通过实验可以测试材料的力学性能、导电性能、光学性能等。
实验结果可以用于验证理论模型和假设,并指导材料的设计和制备。
理论分析是对材料的组成、结构和性质进行推断和预测的一种方法,通过数学模型和计算机模拟可以分析材料的行为和相互作用。
实验研究和理论分析相互补充,在材料科学的研究中起着重要的作用。
总之,材料科学基础是研究材料的组成、结构、性质和制备技术的学科,对于材料科学的研究和应用具有重要的意义。